Oil Spill Recovery of Petroleum-Derived Fuels Using a Bio-Based Flexible Polyurethane Foam
Abstract
1. Introduction
- -
- It uses a bio-based polyurethane derived from renewable sources, offering a sustainable alternative to traditional fossil-derived foams.
- -
- It demonstrates high sorption capacity (up to 70 g/g) for three common fuels (diesel, gasoline, and kerosene), in both freshwater and seawater, which is uncommon in the literature.
- -
- The foam exhibits excellent reusability, maintaining sorption performance for up to 50 regeneration cycles using a simple and non-destructive method (centrifugation).
- -
- It introduces a material with practical relevance for oil spill remediation, supporting circular economy goals.
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Synthesis of HMF from D-Fructose
2.2.2. Synthesis of BHMF from HMF
2.2.3. Prepolymer Synthesis
2.2.4. Polyurethane Synthesis Using BHMF for Chain Extension
2.2.5. Adsorption Capacity Test in Oil/Freshwater System
2.2.6. Adsorption Capacity Test in Oil/Seawater System
2.2.7. Characterization
FT-IR
GC-MS
HPLC
SEM
3. Results and Discussion
3.1. Total Sorption Capacity of PU in Diesel/Water, Gasoline/Water, and Kerosene/Water Systems in Batch
3.2. Sorption Kinetics of PU in Freshwater and Seawater Systems in Batch
- The dominance of pseudo-second-order behavior suggests that modifying the chemical composition of the PU, especially its polar and aromatic groups, could directly tune sorption kinetics and selectivity. For instance, increasing the content of BHMF may enhance chemisorption-driven uptake, particularly for high-viscosity pollutants like diesel.
- The secondary role of intra-particle diffusion implies that porosity and surface area are less limiting than surface chemistry, at least within the short contact times tested. This is supported by the fact that equilibrium was consistently reached within 60 s, a performance metric that is important for real-world spill applications.
- The higher sorption capacities observed in seawater across all fuels suggest that ionic strength plays a synergistic role, possibly enhancing phase separation at the water–oil interface. This insight could be useful in designing foams for marine applications, where salinity is an intrinsic factor.
3.3. Adsorption Isotherms in Freshwater and Seawater Systems in Batch
3.4. A Comparison with Literature Data
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zarandi, M.; Panahi, M.; Rafiee, A.; Namazi Rad, S.; Galán-Martín, Á.; Mateo-Sanz, J.M.; Jiménez, L. Exploring the Environmental and Economic Benefits of Hybrid Natural Gas and Biomass Conversion to Liquid Fuels. Int. J. Hydrogen Energy 2025, 105, 1309–1319. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Wang, J. Advances in Aviation Fuels: Kerosene as a Sustainable Jet Fuel. Renew. Sustain. Energy Rev. 2023, 160, 112389. [Google Scholar] [CrossRef]
- Smith, A.; Johnson, B. Hybrid Vehicles and Their Role in the Transition to Sustainable Transport. J. Clean. Prod. 2022, 350, 131450. [Google Scholar] [CrossRef]
- International Maritime Organization (IMO). IMO 2020 Sulfur Cap and Its Impact on the Shipping Industry. 2020. Available online: https://www.imo.org/en/MediaCentre/PressBriefings/pages/02-IMO-2020.aspx (accessed on 26 May 2025).
- Lee, S.; Kim, H.; Park, J. Environmental Impacts of Marine Fuels and Prospects for Alternative Energy in Shipping. Mar. Pollut. Bull. 2024, 190, 114736. [Google Scholar] [CrossRef]
- Herdzik, J. Decarbonization of Marine Fuels—The Future of Shipping. Energies 2021, 14, 4311. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Chen, Y. Marine Oil Spill Incidents and Their Ecological Impacts: A Review. Environ. Pollut. 2023, 317, 120711. [Google Scholar]
- Singh, R.; Sharma, P. Techniques for Oil Removal from Contaminated Water: A Comprehensive Review. J. Environ. Manag. 2022, 320, 115767. [Google Scholar] [CrossRef]
- Kumar, S.; Patel, R.; Verma, A. Recent Advances in Chemical Methods for Oil Spill Remediation. Chemosphere 2024, 317, 137853. [Google Scholar]
- Sejkorová, M.; Hurtová, I.; Jilek, P.; Novák, M.; Voltr, O. Study of the Effect of Physicochemical Degradation and Contamination of Motor Oils on Their Lubricity. Coatings 2021, 11, 60. [Google Scholar] [CrossRef]
- Chen, W.; Sun, J.; Ji, R.; Min, J.; Wang, L.; Zhang, J.; Qiao, H.; Cheng, S. Crude Oil Biodegradation by a Biosurfactant-Producing Bacterial Consortium in High-Salinity Soil. J. Mar. Sci. Eng. 2024, 12, 2033. [Google Scholar] [CrossRef]
- Olivito, F.; Algieri, V.; Jiritano, A.; Tallarida, M.A.; Costanzo, P.; Maiuolo, L.; De Nino, A. Bio-Based Polyurethane Foams for the Removal of Petroleum-Derived Pollutants: Sorption in Batch and in Continuous-Flow. Polymers 2023, 15, 1785. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, H.; Li, M. Sorbent Materials for Oil Spill Cleanup: Efficiency, Regeneration, and Environmental Impact. J. Hazard. Mater. 2023, 447, 130922. [Google Scholar]
- Olivito, F.; Jagdale, P.; Oza, G. Synthesis and Biodegradation Test of a New Polyether Polyurethane Foam Produced from PEG 400, L-Lysine Ethyl Ester Diisocyanate (L-LDI) and Bis-hydroxymethyl Furan (BHMF). Toxics 2023, 11, 698. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, T.; Yang, C. Bio-Based Absorbents for Oil Spill Cleanup: Trends and Challenges. J. Clean. Prod. 2024, 379, 135262. [Google Scholar]
- Plastics Europe. Plastics—The Facts 2023: An Analysis of European Plastics Production, Demand and Waste Data; Plastics Europe: Brussels, Belgium, 2023; Available online: https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023/ (accessed on 28 May 2025).
- D’Amico, S.; Fusco, G.; Russo, M.V. Synthesis and Applications of Polyurethanes: A Comprehensive Review. Prog. Polym. Sci. 2022, 128, 101488. [Google Scholar]
- Wang, J.; Li, Y.; Zhao, M. Market Trends and Future Prospects of Polyurethane Foams. J. Appl. Polym. Sci. 2023, 140, e53219. [Google Scholar] [CrossRef]
- Bociaga, E.; Janik, H. Advances in Polyurethane Foams: Properties and Applications. J. Polym. Sci. 2024, 62, 210–228. [Google Scholar]
- Li, Y.; Zhang, X.; Chen, Z. Bio-Based Polyols for Sustainable Polyurethane Production: A Review. Renew. Sustain. Energy Rev. 2023, 176, 113371. [Google Scholar] [CrossRef]
- Singh, N.; Kumar, A.; Sharma, P. Renewable Polyols from Vegetable Oils: Synthesis and Application in Polyurethanes. Ind. Crops Prod. 2024, 195, 115419. [Google Scholar]
- Chen, H.; Zhang, L.; Yu, J. Chemical Recycling of Polyurethane Waste: Current Status and Future Prospects. Waste Manag. 2022, 142, 123–134. [Google Scholar] [CrossRef]
- Olivito, F.; Algieri, V.; Tallarida, M.A.; Jiritano, A.; Costanzo, P.; Maiuolo, L.; De Nino, A. High-yield synthesis of HMF from glucose and fructose by selective catalysis with water-tolerant rare earth metal triflates assisted by choline chloride. Green Chem. 2023, 25, 1679. [Google Scholar] [CrossRef]
- ASTM D1141-98; Standard Practice for Preparation of Substitute Ocean Water. ASTM: West Conshohocken, PA, USA, 2021.
- Akhmetzhan, A.; Abeu, N.; Longinos, S.N.; Tashenov, A.; Myrzakhmetova, N.; Amangeldi, N.; Kuanyshova, Z.; Ospanova, Z.; Toktarbay, Z. Synthesis and Heavy-Metal Sorption Studies of N,N-Dimethylacrylamide-Based Hydrogels. Polymers 2021, 13, 3084. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Gao, P.; Jin, T.; Ding, Y.; Bao, C. An Investigation into the Adsorption Mechanism of Organic Anions on a New Spandex. Polymers 2022, 14, 3108. [Google Scholar] [CrossRef]
- Chowdhury, S.; Saha, P. Adsorption Kinetic Modeling of Safranin onto Rice Husk Biomatrix Using Pseudo-First- and Pseudo-Second-Order Kinetic Models: Comparison of Linear and Non-Linear Methods. Clean Soil Air Water 2011, 39, 274–281. [Google Scholar] [CrossRef]
- Chakravorti, R.K. Pore and Solid Diffusion Models for Fixed-Bed Adsorbers. AIChE J. 1974, 20, 228–238. [Google Scholar]
- Chen, X. Modeling of Experimental Adsorption Isotherm Data. Information 2015, 6, 14–22. [Google Scholar] [CrossRef]
- Cuong, T.D.; Dien, L.Q.; Hoang, P.H. Preparation of bio-based porous material with high oil adsorption capacity from bio-polyurethane and sugarcane bagasse. RSC Adv. 2024, 14, 6938. [Google Scholar] [CrossRef]
- Jiang, P.; Li, K.; Chen, X.; Dan, R.; Yu, Y. Magnetic and Hydrophobic Composite Polyurethane Sponge for Oil–Water Separation. Appl. Sci. 2020, 10, 1453. [Google Scholar] [CrossRef]
- Tomon, T.R.B.; Omisol, C.J.M.; Aguinid, B.J.M.; Sabulbero, K.X.L.; Alguno, A.C.; Malaluan, R.M.; Lubguban, A.A. A novel naturally superoleophilic coconut oil-based foam with inherent hydrophobic properties for oil and grease sorption. Sci. Rep. 2024, 14, 14223. [Google Scholar] [CrossRef]
- Baidar, L.A.; Medjahdi, M.; Mahida, B.; Mechab, B.; Baillis, D. Polyurethane Foam and Algae-Based Activated Carbon Biocomposites for Oil Spill Remediation. Materials 2024, 17, 4137. [Google Scholar] [CrossRef]
PU Freshwater | Parameters | Diesel | Gasoline | Kerosene |
---|---|---|---|---|
qe (g/g) experimental | 67 | 56 | 63 | |
Pseudo first-order | R2 | 0.9476 | 0.9607 | 0.9101 |
qe (g/g) | 1.13 | 1.39 | 1.35 | |
k1 | 0.0686 | 0.0647 | 0.0606 | |
Pseudo second-order | R2 | 0.9909 | 0.9905 | 0.9951 |
qe (g/g) | 68.49 | 59.52 | 65.7 | |
k2 | 0.0019 | 0.0008 | 0.0024 | |
Intra-particle diffusion | R2 | 0.8356 | 0.7241 | 0.7264 |
C | 13.955 | 15.462 | 14.5 | |
kid | 4.9938 | 4.677 | 4.7812 | |
PU Seawater | Parameters | Diesel | Gasoline | Kerosene |
qe (g/g) experimental | 70 | 59 | 67 | |
Pseudo first-order | R2 | 0.9547 | 0.9551 | 0.9565 |
qe (g/g) | 1.22 | 1.01 | 1.17 | |
k1 | 0.06 | 0.0591 | 0.0612 | |
Pseudo second-order | R2 | 0.9926 | 0.9909 | 0.9955 |
qe (g/g) | 70.9 | 61.35 | 66.6 | |
k2 | 0.0022 | 0.0012 | 0.0031 | |
Intra-particle diffusion | R2 | 0.8724 | 0.8154 | 0.8161 |
C | 14.186 | 14.436 | 14.467 | |
kid | 4.9527 | 4.8266 | 4.7855 |
PU Freshwater | Parameters | Diesel | Gasoline | Kerosene |
---|---|---|---|---|
Isotherm | ||||
Langmuir model | KL | 0.067 | 0.099 | 0.322 |
qm (g/g) | 68.96 | 53.48 | 59.17 | |
R2 | 0.9956 | 0.9904 | 0.9998 | |
Freundlich model | KF | 641.21 | 953.23 | 722.77 |
n | 3.66 | 2.74 | 3.86 | |
R2 | 0.9197 | 0.9353 | 0.8748 | |
PU Seawater | Parameters | Diesel | Gasoline | Kerosene |
Isotherm | ||||
Langmuir model | KL | 0.552 | 0.884 | 0.939 |
qm (g/g) | 60.61 | 68.96 | 64.9 | |
R2 | 0.9982 | 0.9965 | 0.9963 | |
Freundlich model | KF | 537.28 | 979.94 | 538.52 |
n | 3.23 | 2.68 | 3.27 | |
R2 | 0.9743 | 0.9472 | 0.9719 |
Material | Sorption Capacity (g/g) | Oil Type | Regeneration | Reference |
---|---|---|---|---|
Bio-based PU (this study) | 56–70 | Diesel, gasoline, kerosene | 50 | This study |
Sunflower-oil-based PU with bagasse fibers | 15.2 | Diesel | Not specified | [30] |
Magnetic and Hydrophobic Composite PU | 32–40 | Peanut Oil | 6 | [31] |
Coconut-oil-based super-oleophilic PU | 14.89–24.65 | Vegetable oil, Engine oil and others | Up to 20 | [32] |
PU with algae-derived activated carbon (PUF1B) | 53 | Diesel | Not specified | [33] |
Bio-based PU | 49–65 | Diesel and gasoline | 50 | [12] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olivito, F.; Ilham, Z.; Wan-Mohtar, W.A.A.Q.I.; Oza, G.; Procopio, A.; Nardi, M. Oil Spill Recovery of Petroleum-Derived Fuels Using a Bio-Based Flexible Polyurethane Foam. Polymers 2025, 17, 1959. https://doi.org/10.3390/polym17141959
Olivito F, Ilham Z, Wan-Mohtar WAAQI, Oza G, Procopio A, Nardi M. Oil Spill Recovery of Petroleum-Derived Fuels Using a Bio-Based Flexible Polyurethane Foam. Polymers. 2025; 17(14):1959. https://doi.org/10.3390/polym17141959
Chicago/Turabian StyleOlivito, Fabrizio, Zul Ilham, Wan Abd Al Qadr Imad Wan-Mohtar, Goldie Oza, Antonio Procopio, and Monica Nardi. 2025. "Oil Spill Recovery of Petroleum-Derived Fuels Using a Bio-Based Flexible Polyurethane Foam" Polymers 17, no. 14: 1959. https://doi.org/10.3390/polym17141959
APA StyleOlivito, F., Ilham, Z., Wan-Mohtar, W. A. A. Q. I., Oza, G., Procopio, A., & Nardi, M. (2025). Oil Spill Recovery of Petroleum-Derived Fuels Using a Bio-Based Flexible Polyurethane Foam. Polymers, 17(14), 1959. https://doi.org/10.3390/polym17141959