Evaluating Polylactic Acid and Basalt Fibre Composites as a Potential Bioabsorbable Stent Material
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PLA/BF Composites
2.3. Hot-Melt Extrusion of Composites
2.4. Injection Moulding
2.5. Content Uniformity (Ash Content Analysis)
2.6. Fracture Surface Morphology
2.7. Rheological Analysis
2.8. Mechanical Analysis
Tensile Testing
3. Results and Discussion
3.1. Content Uniformity
3.2. Fracture Surface Morphology
3.2.1. Effect of Fibre Loading at Constant Screw Speed
3.2.2. The Effect of the Screw Speed at a Constant Fibre Loading
3.2.3. Effect of Secondary Extrusion at Constant Screw Speed
3.3. Rheological Analysis
3.4. Mechanical Properties
Tensile Testing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ralapanawa, U.; Sivakanesan, R. Epidemiology and the Magnitude of Coronary Artery Disease and Acute Coronary Syndrome: A Narrative Review. J. Epidemiol. Glob. Health 2021, 11, 169–177. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, E.D.; Jun, E.J.; Yoo, H.S.; Lee, J.W. Analysis of trends and prospects regarding stents for human blood vessels. Biomater. Res. 2018, 22, 8. [Google Scholar] [CrossRef]
- Bowen, P.K.; Shearier, E.R.; Zhao, S.; Guillory, R.J.; Zhao, F.; Goldman, J.; Drelich, J.W. Biodegradable Metals for Cardiovascular Stents: From Clinical Concerns to Recent Zn-Alloys. Adv. Healthc. Mater. 2016, 5, 1121–1140. [Google Scholar] [CrossRef]
- Franchin, L.; Piroli, F.; D’Ascenzo, F.; Nuñez-Gil, I.; Wojakowski, W.; Imori, Y.; Trabattoni, D.; Huczek, Z.; Venuti, G.; Muscoli, S.; et al. Impact of stent thickness on clinical outcomes in small vessel and bifurcation lesions: A RAIN-CARDIOGROUP VII sub-study. J. Cardiovasc. Med. 2021, 22, 20–25. [Google Scholar] [CrossRef]
- Watson, T.; Webster, M.W.I.; Ormiston, J.A.; Ruygrok, P.N.; Stewart, J.T. Long and short of optimal stent design. Open Heart 2017, 4, e000680. [Google Scholar] [CrossRef] [PubMed]
- Barua, R.; Aydin, H.; Rajagopalan, S.K.; Yue, S.; Frost, D.L.; Bertrand, O.F.; Mongrain, R. Development of a Metallic Biodegradable Stent Based on Microgalvanic Corrosion. J. Med. Devices 2014, 1, 8. [Google Scholar]
- Shields, M.C.; Goldberg, S. Bioabsorbable Scaffolds: Can the Problems of Dissolution Be Overcome? Cardiology 2017, 138, 63–65. [Google Scholar] [CrossRef]
- Truesdell, A.G.; Abbott, J.D. Bioresorbable polymers: A temporary solution? Catheter. Cardiovasc. Interv. 2012, 80, 797–798. [Google Scholar] [CrossRef]
- Nazif, T.M.; Kalra, S.; Ali, Z.A.; Karmpaliotis, D.; Turner, M.E.; Starc, T.J.; Cao, Y.; Marboe, C.C.; Collins, M.B.; Leon, M.B.; et al. Percutaneous Coronary Intervention with Bioresorbable Scaffolds in a Young Child. JAMA Cardiol. 2017, 2, 430. [Google Scholar] [CrossRef]
- Ang, H.Y.; Huang, Y.Y.; Lim, S.T.; Wong, P.; Joner, M.; Foin, N. Mechanical behavior of polymer-based vs. metallic-based bioresorbable stents. J. Thorac. Dis. 2017, 9, S923–S934. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Smith, A.F.; Jiménez, J.M. Stent strut streamlining and thickness reduction promote endothelialization. J. R. Soc. Interface 2021, 18, 20210023. [Google Scholar] [CrossRef]
- Naseem, R.; Zhao, L.; Liu, Y.; Silberschmidt, V.V. Experimental and computational studies of poly-L-lactic acid for cardiovascular applications: Recent progress. Mech. Adv. Mater. Mod. Process. 2017, 3, 13. [Google Scholar] [CrossRef]
- Ormiston, J.A.; Serruys, P.W.S. Bioabsorbable Coronary Stents. Circ. Cardiovasc. Interv. 2009, 2, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Dillon, B.; Doran, P.; Fuenmayor, E.; Healy, A.V.; Gately, N.M.; Major, I.; Lyons, J.G. Influence of Annealing and Biaxial Expansion on the Properties of Poly(l-Lactic Acid) Medical Tubing. Polymers 2019, 11, 1172. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Deng, C.; Hong, R.; Fu, Q.; Zhang, J. Effect of thermal annealing on crystal structure and properties of PLLA/PCL blend. J. Polym. Res. 2020, 27, 221. [Google Scholar] [CrossRef]
- Kumbhar, V.P. An Overview: Basalt Rock Fibers—New Construction Material. Acta Eng. Int. 2014, 2, 11–18. [Google Scholar]
- Czigány, T.; Kovács, J.G.; Tábi, T. Basalt Fiber Reinforced Poly(Lactic Acid) Composites for Engineerıng Applications. In Proceedings of the 19th International Conference on Composite Materials, Montreal, QC, Canada, 28 July–2 August 2013. [Google Scholar]
- Liu, T.; Yu, F.; Yu, X.; Zhao, X.; Lu, A.; Wang, J. Basalt fiber reinforced and elastomer toughened polylactide composites: Mechanical properties, rheology, crystallization, and morphology. J. Appl. Polym. Sci. 2012, 125, 1292–1301. [Google Scholar] [CrossRef]
- Kogan, F.M.; Nikitina, O.V. Solubility of chrysotile asbestos and basalt fibers in relation to their fibrogenic and carcinogenic action. Environ. Health Perspect. 1994, 102, 205–206. [Google Scholar]
- McConnell, E.E.; Kamstrup, O.; Musselman, R.; Hesterberg, T.W.; Chevalier, J.; Miiller, W.C.; Thevenaz, P. Chronic Inhalation Study of Size-Separated Rock and Slag Wool Insulation Fibers in Fischer 344/N Rats. Inhal. Toxicol. 1994, 6, 571–614. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Gu, N. A novel basalt fiber-reinforced polylactic acid composite for hard tissue repair. Biomed. Mater. 2010, 5, 044104. [Google Scholar] [CrossRef]
- Venkatesh, C.; Chen, Y.; Cao, Z.; Brennan, S.; Major, I.; Lyons, J.G.; Devine, D.M. Influence of extrusion screw speed on the properties of halloysite nanotube impregnated polylactic acid nanocomposites. J. Polym. Eng. 2021, 41, 499–508. [Google Scholar] [CrossRef]
- ASTM D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2014.
- ASTM D5630-1; Standard Test Method for Ash Content in Plastics. ASTM International: West Conshohocken, PA, USA, 2013.
- Kyeremateng, S. Correlating rheological behavior with molecular weight of different pharmaceutical. J. Anal. Pharm. Res. 2022, 11, 39–43. [Google Scholar]
- Centre for Industrial Rheology. High Temperature Rheology Characterisation Service. 2025. Available online: https://www.rheologylab.com/support/high-temperature-rheology-characterisation-service/ (accessed on 1 May 2025).
- Wong, C.P.J.; Choi, P. Prediction of crossover in the molecular weight dependence of polyethylene viscosity using a polymer free volume theory. Soft. Matter. 2020, 16, 7458–7469. [Google Scholar] [CrossRef]
- ATS Rheo Systems. Available online: https://cannoninstrument.com/pub/media/assets/product/documents/Whitepapers/SPECIFIC%20APPLICATIONS/Polypropylene%20Rheology%20-%20QC.pdf#:~:text=be%20attributed%20to%20the%20change,For.PolypropyleneRheology-QC (accessed on 1 May 2025).
- Tainstruments. Available online: https://www.tainstruments.com/pdf/literature/RN14.pdf (accessed on 1 May 2025).
- Stadler, F.J.; Münstedt, H. Numerical description of shear viscosity functions of long-chain branched metallocene-catalyzed polyethylenes. J. Nonnewton. Fluid. Mech. 2008, 151, 129–135. [Google Scholar] [CrossRef]
- Palade, L.I.; Lehermeier, H.J.; Dorgan, J.R. Melt Rheology of High l-Content Poly(lactic acid). Macromolecules 2001, 34, 1384–1390. [Google Scholar] [CrossRef]
- Poletto, M. Polystyrene cellulose fiber composites: Effect of the processing conditions on mechanical and dynamic mechanical properties. Matéria 2016, 21, 552–559. [Google Scholar] [CrossRef]
- Guo, G.; Yang, Z.; Cai, M.; Wang, S.; Jiang, L. Surface Activation and Characterization of Basalt Fiber by Plasma Treatment and Its Interfacial Adhesion with Epoxy. Polymers 2024, 16, 3181. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, J.; Wang, S.; Ma, X.; Huang, J.; Zhao, G.; Liu, Y. Facile preparation of multiscale graphene-basalt fiber reinforcements and their enhanced mechanical and tribological properties for polyamide 6 composites. Mater. Chem. Phys. 2018, 217, 315–322. [Google Scholar] [CrossRef]
- Ge, M.; Li, X.; Han, F.; Su, X.; Jiang, H.; Liu, Y.; Wang, Y.; Zou, M. Enhanced Mechanical and Acoustic Properties of Basalt Fiber/Polyurethane Composites by Silane Coupling Agents. Polymers 2024, 17, 61. [Google Scholar] [CrossRef]
- España, J.M.; Samper, M.D.; Fages, E.; Sánchez-Nácher, L.; Balart, R. Investigation of the effect of different silane coupling agents on mechanical performance of basalt fiber composite laminates with biobased epoxy matrices. Polym. Compos. 2013, 34, 376–381. [Google Scholar] [CrossRef]
- Han, L.; Ma, F.; Chen, S.; Pu, Y. Effect of short basalt fibers on durability, mechanical properties, and thermal properties of polylactic acid composites. Polym. Renew. Resour. 2019, 10, 45–59. [Google Scholar] [CrossRef]
- Prashanth, M.; Gouda, P.S.S.; Manjunatha, T.S.; Banapurmath, N.R.; Edacheriane, A. Understanding the impact of fiber orientation on mechanical, interlaminar shear strength, and fracture properties of jute–banana hybrid composite laminates. Polym. Compos. 2021, 42, 5475–5489. [Google Scholar] [CrossRef]
- Subhedar, K.; Chauhan, G.; Singh, B.P.; Dhakate, S. Effect of fibre orientation on mechanical properties of carbon fibre composites. Indian J. Eng. Mater. Sci. 2020, 27, 1100–1103. [Google Scholar] [CrossRef]
- Gálvez, J.; Correa Aguirre, J.; Hidalgo Salazar, M.; Vera Mondragón, B.; Wagner, E.; Caicedo, C. Effect of Extrusion Screw Speed and Plasticizer Proportions on the Rheological, Thermal, Mechanical, Morphological and Superficial Properties of PLA. Polymers 2020, 12, 2111. [Google Scholar] [CrossRef] [PubMed]
- Velghe, I.; Buffel, B.; Vandeginste, V.; Thielemans, W.; Desplentere, F. Review on the Degradation of Poly(lactic acid) during Melt Processing. Polymers 2023, 15, 2047. [Google Scholar] [CrossRef]
- Eselini, N.; Tirkes, S.; Akar, A.O.; Tayfun, U. Production and characterization of poly (lactic acid)-based biocomposites filled with basalt fiber and flax fiber hybrid. J. Elastomers Plast. 2020, 52, 701–716. [Google Scholar] [CrossRef]
- Aldhafeeri, T.; Alotaibi, M.; Barry, C.F. Impact of Melt Processing Conditions on the Degradation of Polylactic Acid. Polymers 2022, 14, 2790. [Google Scholar] [CrossRef]
- Kaya, M.; Aslan, M.; Güler, O.; Alver, Ü. Effect of fibre content on the mechanical properties of basalt fibre reinforced polylactic acid (PLA) composites. Text. Appar. 2018, 28, 66–71. [Google Scholar]
- Mohanty, S.; Singh, J.I.P.; Dhawan, V.; Singh, S.; Belaadi, A. A review on basalt/PLA composite and its chemical and mechanical properties. AIP Conf. Proc. 2024, 2962, 020016. [Google Scholar] [CrossRef]
- Liou, G.Y.; Su, C.W.; Huang, P.W.; Hwang, S.J.; Huang, C.T.; Peng, H.S. Fabrication and Property Characterization of Long-Glass-Fiber-Reinforced Polypropylene Composites Processed Using a Three-Barrel Injection Molding Machine. Polymers 2022, 14, 1251. [Google Scholar] [CrossRef]
- Wei, Y.; Zhao, J.; Zhuang, J.; Zhang, P.; Han, Z. Optimization Mechanism of Mechanical Properties of Basalt Fiber-Epoxy Resin Composites by Interfacially Enriched Distribution of Nano-Starch Crystals. Chin. J. Mech. Eng. 2024, 37, 44. [Google Scholar] [CrossRef]
BF (wt.%) | PLA (g) | Basalt Fibre (g) |
---|---|---|
0 | 1000 | 0 |
5 | 950 | 50 |
7.5 | 925 | 75 |
10 | 900 | 100 |
Basalt Fibre Loading (%) | Screw Speed (RPM) | Run | Purpose |
---|---|---|---|
0 (Virgin PLA) | 200 | R1 | Control |
0 (Virgin PLA) | 200 | R2 | |
5 | 200 | R1 | Effect of fibre loading |
7.5 | 200 | R1 | |
10 | 200 | R1 | |
7.5 | 50 | R1 | Effect of screw speed |
7.5 | 200 | R1 | |
7.5 | 350 | R1 | |
7.5 | 200 | R1 | Effect of extrusion run |
7.5 | 200 | R2 |
Target Fibre Loading (%) | Conditions (RPM/Extrusion Run) | Actual Fibre Content (%) |
---|---|---|
5% | 50/R1 | 4.10 ± 0.13 |
50/R2 | 4.75 ± 0.03 | |
200/R1 | 4.36 ± 0.05 | |
200/R2 | 4.86 ± 0.04 | |
350/R1 | 4.41 ± 0.07 | |
350/R2 | 4.87 ± 0.01 | |
7.50% | 50/R1 | 6.48 ± 0.07 |
50/R2 | 7.41 ± 0.03 | |
200/R1 | 7.08 ± 0.12 | |
200/R2 | 7.72 ± 0.05 | |
350/R1 | 7.11 ± 0.19 | |
350/R2 | 7.74 ± 0.05 | |
10% | 50/R1 | 8.71 ± 0.05 |
50/R2 | 10.09 ± 0.07 | |
200/R1 | 10.12 ± 0.27 | |
200/R2 | 9.90 ± 0.06 | |
350/R1 | 10.15 ± 0.22 | |
350/R2 | 10.10 ± 0.02 |
Fibre Loading (%) | Conditions (RPM/Extrusion Run) | Crossover Point (rad/s) | Zero-Shear Viscosity (Pa·s) |
---|---|---|---|
Virgin | — | 169.00 ± 0.71 | 3796.80 ± 53.60 |
5 | 50/R1 | 208.65 ± 5.66 | 2617.51 ± 19.30 |
50/R2 | 278.55 ± 14.28 | 2309.74 ± 104.35 | |
200/R1 | 240.918 ± 0.90 | 2562.42 ± 43.60 | |
200/R2 | 284.56 ± 10.82 | 2215.52 ± 59.90 | |
350/R1 | 270.91 ± 6.40 | 2119.73 ± 62.76 | |
350/R2 | 305.06 ± 20.63 | 1829.53 ± 40.09 | |
7.5 | 50/R1 | 237.62 ± 0.07 | 2685.14 ± 13.90 |
50/R2 | 295.16 ± 12.61 | 1935.29 ± 13.66 | |
200/R1 | 255.20 ± 4.02 | 2446.86 ± 2.33 | |
200/R2 | 263.02 ± 12.32 | 2200.02 ± 38.60 | |
350/R1 | 286.35 ± 8.39 | 2106.46 ± 80.96 | |
350/R2 | 331.07 ± 3.19 | 1889.74 ± 5.59 | |
10 | 50/R1 | 244.05 ± 2.76 | 2416.65 ± 19.80 |
50/R2 | 267.31 ± 8.23 | 2215.33 ± 45.76 | |
200/R1 | 253.70 ± 4.57 | 2312.44 ± 66.90 | |
200/R2 | 270.849 ± 8.10 | 2153.46 ± 75.31 | |
350/R1 | 283.40 ± 8.57 | 2002.23 ± 62.62 | |
350/R2 | 322.99 ± 8.73 | 1811.29 ± 74.73 |
Fibre Loading (%) | Conditions (RPM/Run) | YM (MPa) | UTS (MPa) | Elongation (%) |
- | Virgin PLA | 3299.40 ± 172 | 69.22 ± 2.34 | 3.89 ± 0.05 |
5 | 50/R1 | 3478.79 ± 89 | 72.25 ± 2.12 | 2.87 ± 0.06 |
200/R1 | 3605.63 ± 115 | 74.78 ± 2.87 | 2.86 ± 0.05 | |
350/R1 | 3527.81 ± 106 | 71.26 ± 1.98 | 3.09 ± 0.07 | |
50/R2 | 3702.99 ± 98 | 71.97 ± 1.45 | 2.88 ± 0.06 | |
200/R2 | 3721.33 ± 79 | 67.31 ± 2.63 | 2.94 ± 0.06 | |
350/R2 | 3689.69 ± 111 | 66.3 ± 1.79 | 2.73 ± 0.08 | |
7.5 | 50/R1 | 3824.06 ± 99 | 77.71 ± 2.01 | 2.84 ± 0.05 |
200/R1 | 3820.19 ± 78 | 77.35 ± 2.56 | 2.85 ± 0.06 | |
350/R1 | 3881.81 ± 11 | 73.11 ± 3.22 | 2.76 ± 0.05 | |
50/R2 | 4033.06 ± 76 | 80.28 ± 1.97 | 2.86 ± 0.04 | |
200/R2 | 4038.9 ± 85 | 80.79 ± 3.18 | 2.9 ± 0.05 | |
350/R2 | 3801.5 ± 84 | 74.78 ± 2.75 | 2.85 ± 0.06 | |
10 | 50/R1 | 4110.53 ± 94 | 80.26 ± 2.94 | 2.68 ± 0.06 |
200/R1 | 4151.81 ± 85 | 76.35 ± 1.88 | 2.56 ± 0.07 | |
350/R1 | 4169.88 ± 112 | 75.82 ± 2.43 | 2.75 ± 0.05 | |
50/R2 | 4207.56 ± 121 | 83.43 ± 2.21 | 2.92 ± 0.05 | |
200/R2 | 4137.35 ± 102 | 76.21 ± 1.76 | 2.85 ± 0.06 | |
350/R2 | 4065.44 ± 106 | 77.86 ± 2.89 | 2.81 ± 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mulkerins, S.; Yan, G.; Colbert, D.M.; Devine, D.M.; Doran, P.; Connolly, S.; Gately, N. Evaluating Polylactic Acid and Basalt Fibre Composites as a Potential Bioabsorbable Stent Material. Polymers 2025, 17, 1948. https://doi.org/10.3390/polym17141948
Mulkerins S, Yan G, Colbert DM, Devine DM, Doran P, Connolly S, Gately N. Evaluating Polylactic Acid and Basalt Fibre Composites as a Potential Bioabsorbable Stent Material. Polymers. 2025; 17(14):1948. https://doi.org/10.3390/polym17141948
Chicago/Turabian StyleMulkerins, Seán, Guangming Yan, Declan Mary Colbert, Declan M. Devine, Patrick Doran, Shane Connolly, and Noel Gately. 2025. "Evaluating Polylactic Acid and Basalt Fibre Composites as a Potential Bioabsorbable Stent Material" Polymers 17, no. 14: 1948. https://doi.org/10.3390/polym17141948
APA StyleMulkerins, S., Yan, G., Colbert, D. M., Devine, D. M., Doran, P., Connolly, S., & Gately, N. (2025). Evaluating Polylactic Acid and Basalt Fibre Composites as a Potential Bioabsorbable Stent Material. Polymers, 17(14), 1948. https://doi.org/10.3390/polym17141948