A Dynamic Analysis of Toron Formation in Chiral Nematic Liquid Crystals Using a Polarization Holographic Microscope
Abstract
1. Introduction
2. Materials and Methods
2.1. LC Samples
2.2. PHM Setup
2.3. Method of the Vector Field Reconstruction
- is the Jones matrix of the LC sample;
- and are two noninterfered illuminating objects beams;
- and are corresponding reference beams.
2.4. Limitations of the PHM System
3. Results
3.1. The Distributions of the Jones Matrix
3.2. Torons for Spin–Orbit Conversion
- is the QWP;
- is the LCP beam.
4. Discussion
5. Conclusions
- A demonstration of the spin–orbit conversion functionality of torons, which act similarly to q-plates by modulating the polarization and phase structure of transmitted light;
- A real-time polarization-resolved interferometric system for monitoring their evolution;
- The capability to track the formation and dynamics of topological configurations with high temporal and spatial resolution.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BS | Beam Splitter |
DM | Dichroic Mirror |
FFT | Fast Fourier Transform |
IR | Infrared |
LC | Liquid Crystal |
LCP | Left-Circularly Polarized |
M | Mirror |
OAM | Orbital Angular Momentum |
OBJ | Microscope Objective |
P | Prism |
PBS | Polarizing Beam Splitter |
PHM | Polarization Holographic Microscope |
PS | Polarizing Sensor |
QWP | Quarter-Wave Plate |
UV | Ultraviolet |
WP | Wollaston Prism |
References
- Yang, B.; Brasselet, E. Arbitrary vortex arrays realized from optical winding of frustrated chiral liquid crystals. J. Opt. 2013, 15, 044021. [Google Scholar] [CrossRef]
- Poy, G.; Hess, A.J.; Seracuse, A.J.; Paul, M.; Žumer, S.; Smalyukh, I.I. Interaction and co-assembly of optical and topological solitons. Nat. Photonics 2022, 16, 454–461. [Google Scholar] [CrossRef]
- Beeckman, J. Liquid-crystal photonic applications. Opt. Eng. 2011, 50, 081202. [Google Scholar] [CrossRef]
- Ackerman, P.J.; Smalyukh, I.I. Diversity of Knot Solitons in Liquid Crystals Manifested by Linking of Preimages in Torons and Hopfions. Phys. Rev. X 2017, 7, 011006. [Google Scholar] [CrossRef]
- Smalyukh, I.I.; Lansac, Y.; Clark, N.A.; Trivedi, R.P. Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids. Nat. Mater. 2010, 9, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Kawachi, M.; Kogure, O.; Kato, Y. Bubble Domain Texture of a Liquid Crystal. Jpn. J. Appl. Phys. 1974, 13, 1457–1458. [Google Scholar] [CrossRef]
- Haas, W.E.L.; Adams, J.E. New optical storage mode in liquid crystals. Appl. Phys. Lett. 1974, 25, 535–537. [Google Scholar] [CrossRef]
- Hamdi, R.; Petriashvili, G.; Lombardo, G.; De Santo, M.P.; Barberi, R. Liquid crystal bubbles forming a tunable micro-lenses array. J. Appl. Phys. 2011, 110, 074902. [Google Scholar] [CrossRef]
- Yang, Y.; Forbes, A.; Cao, L. A review of liquid crystal spatial light modulators: Devices and applications. Opto-Electron. Sci. 2023, 2, 230026. [Google Scholar] [CrossRef]
- Mur, U.; Ravnik, M. Numerical modeling of optical modes in topological soft matter. Opt. Express 2022, 30, 14393. [Google Scholar] [CrossRef]
- Ackerman, P.J.; Mundoor, H.; Smalyukh, I.I.; van de Lagemaat, J. Plasmon-Exciton Interactions Probed Using Spatial Coentrapment of Nanoparticles by Topological Singularities. ACS Nano 2015, 9, 12392–12400. [Google Scholar] [CrossRef] [PubMed]
- Papič, M.; Mur, U.; Zuhail, K.P.; Ravnik, M.; Muševič, I.; Humar, M. Topological liquid crystal superstructures as structured light lasers. Proc. Natl. Acad. Sci. USA 2021, 118, e2110839118. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.S.; Ackerman, P.J.; Broer, D.J.; van de Lagemaat, J.; Smalyukh, I.I. Optical generation, templating, and polymerization of three-dimensional arrays of liquid-crystal defects decorated by plasmonic nanoparticles. Phys. Rev. E 2013, 87, 032503. [Google Scholar] [CrossRef]
- Ackerman, P.J.; Qi, Z.; Smalyukh, I.I. Optical generation of crystalline, quasicrystalline, and arbitrary arrays of torons in confined cholesteric liquid crystals for patterning of optical vortices in laser beams. Phys. Rev. E 2012, 86, 021703. [Google Scholar] [CrossRef]
- Fukuda, J.; Nych, A.; Ognysta, U.; Žumer, S.; Muševič, I. Liquid Crystalline Half-Skyrmions and Their Optical Properties. Ann. Phys. 2022, 534, 2100336. [Google Scholar] [CrossRef]
- Kachynski, A.V.; Kuzmin, A.N.; Prasad, P.N.; Smalyukh, I.I. Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals. Appl. Phys. Lett. 2007, 91, 151905. [Google Scholar] [CrossRef]
- Cardano, F.; Karimi, E.; Slussarenko, S.; Marrucci, L.; de Lisio, C.; Santamato, E. Polarization pattern of vector vortex beams generated by q-plates with different topological charges. Appl. Opt. 2012, 51, C1. [Google Scholar] [CrossRef]
- Svistunov, A.S.; Rymov, D.A.; Starikov, R.S.; Cheremkhin, P.A. HoloForkNet: Digital Hologram Reconstruction via Multibranch Neural Network. Appl. Sci. 2023, 13, 6125. [Google Scholar] [CrossRef]
- Hess, A.J.; Poy, G.; Tai, J.S.B.; Žumer, S.; Smalyukh, I.I. Control of Light by Topological Solitons in Soft Chiral Birefringent Media. Phys. Rev. X 2020, 10, 031042. [Google Scholar] [CrossRef]
- Agez, G.; Brasselet, E. Spin–orbit photonic diode from biomimetic 3D chiral liquid crystal architectures. Optica 2022, 9, 652. [Google Scholar] [CrossRef]
- Poy, G.; Hess, A.J.; Smalyukh, I.I.; Žumer, S. Chirality-Enhanced Periodic Self-Focusing of Light in Soft Birefringent Media. Phys. Rev. Lett. 2020, 125, 077801. [Google Scholar] [CrossRef]
- Bouchal, P.; Štrbková, L.; Dostál, Z.; Chmelík, R.; Bouchal, Z. Geometric-Phase Microscopy for Quantitative Phase Imaging of Isotropic, Birefringent and Space-Variant Polarization Samples. Sci. Rep. 2019, 9, 3608. [Google Scholar] [CrossRef]
- Shin, S.; Lee, K.; Yaqoob, Z.; So, P.T.C.; Park, Y. Reference-free polarization-sensitive quantitative phase imaging using single-point optical phase conjugation. Opt. Express 2018, 26, 26858. [Google Scholar] [CrossRef]
- Dudley, A.; Majola, N.; Chetty, N.; Forbes, A. Techniques to measure complex-plane fields. Proc. SPIE 2014, 919416. [Google Scholar] [CrossRef]
- Dudley, A.; Milione, G.; Alfano, R.R.; Forbes, A. Wavefront sensing with all-digital Stokes measurements. Proc. SPIE 2014, 91940C. [Google Scholar] [CrossRef]
- Bozhok, A.; Dellinger, J.; Takakura, Y.; Zallat, J.; Heinrich, C. Fourier ptychographic microscopy and Mueller matrix microscopy: Differences and complementarity. In Unconventional Optical Imaging II; Fournier, C., Georges, M.P., Popescu, G., Eds.; SPIE: Bellingham, WA, USA, 2020; p. 80. [Google Scholar] [CrossRef]
- Yakubov, S.I.; Bretsko, M.V.; Khalilov, S.I.; Maksimov, D.V.; Lapaeva, S.N.; Akimova, Y.E. Formation and Control of the Polarization Structure of Vector Structured Laguerre-Gaussian Beams. Opt. Mem. Neural Netw. 2024, 33, S90–S97. [Google Scholar] [CrossRef]
- Singh, R.K.; Chaubey, S.K.; Rathor, M.; Tamang, R.; Koch, B. Polarization digital holographic microscope for live cell imaging. In Three-Dimensional Imaging, Visualization, and Display 2024; Shen, X., Javidi, B., Anand, A., Eds.; SPIE: Bellingham, WA, USA, 2024; p. 16. [Google Scholar] [CrossRef]
- Qiu, Y.; Wang, Z.; Weng, Z.; Ren, Z.C.; Wang, X.L.; Ding, J.; Wang, H.T. Single-shot measurement of the Jones matrix for anisotropic media using four-channel digital polarization holography. Appl. Opt. 2023, 62, 7890. [Google Scholar] [CrossRef]
- Baek, N.; Lee, Y.; Kim, T.; Jung, J.; Lee, S.A. Lensless polarization camera for single-shot full-Stokes imaging. APL Photonics 2022, 7, 116107. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, Y.; Wang, Y.; Wen, K.; Zheng, J.; Liu, L.; Gao, P. Polarization grating based on diffraction phase microscopy for quantitative phase imaging of paramecia. Opt. Express 2020, 28, 29775. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, H.Y.; Guo, C.S. Polarization holographic microscope slide for birefringence imaging of anisotropic samples in microfluidics. Opt. Express 2020, 28, 14762. [Google Scholar] [CrossRef]
- Kim, Y.; Jeong, J.; Jang, J.; Kim, M.W.; Park, Y. Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix. Opt. Express 2012, 20, 9948–9955. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Yang, T.D.; Seo, D.; Hyeon, M.G.; Kong, T.; Kim, B.M.; Choi, Y.; Choi, W.; Choi, Y. Jones Matrix Microscopy for Living Eukaryotic Cells. ACS Photonics 2021, 8, 3042–3050. [Google Scholar] [CrossRef]
- Jiao, Y.; Kandel, M.E.; Liu, X.; Lu, W.; Popescu, G. Real-time Jones phase microscopy for studying transparent and birefringent specimens. Opt. Express 2020, 28, 34190. [Google Scholar] [CrossRef]
- Liu, H.; Vinu, R.V.; Chen, K.; Liao, D.; Chen, Z.; Pu, J. Real-Time Jones Matrix Synthesis by Compact Polarization Inline Holographic Microscopy. Laser Photonics Rev. 2024, 18, 2301261. [Google Scholar] [CrossRef]
- Chen, G.X.; Zhang, Y.Y.; Yang, Y.; Huang, H.Y.; Yue, Q.Y.; Guo, C.S. Compact common-path polarisation holographic microscope for measuring spatially-resolved Jones matrix parameters of dynamic samples in microfluidics. Opt. Commun. 2022, 503, 127460. [Google Scholar] [CrossRef]
- Varanytsia, A.; Posnjak, G.; Mur, U.; Joshi, V.; Darrah, K.; Muševič, I.; Čopar, S.; Chien, L.C. Topology-commanded optical properties of bistable electric-field-induced torons in cholesteric bubble domains. Sci. Rep. 2017, 7, 16149. [Google Scholar] [CrossRef]
- Loussert, C.; Brasselet, E. Multiple chiral topological states in liquid crystals from unstructured light beams. Appl. Phys. Lett. 2014, 104, 051911. [Google Scholar] [CrossRef]
- Röhrich, R.; Hoekmeijer, C.; Osorio, C.I.; Koenderink, A.F. Quantifying single plasmonic nanostructure far-fields with interferometric and polarimetric k-space microscopy. Light Sci. Appl. 2018, 7, 65. [Google Scholar] [CrossRef]
- Ushenko, A.; Zheng, J.; Gorsky, M.; Dubolazov, A.; Ushenko, Y.; Soltys, I.; Mikirin, I.; Chen, Z.; Wanchuliak, O.; Gordey, I.; et al. 3D digital holographic polarimetry of diffuse optically anisotropic biological tissue object fields. Front. Phys. 2023, 11, 1288935. [Google Scholar] [CrossRef]
- Wu, S.-T. Molecular Design Strategies for High Birefringence Liquid Crystals. MRS Proc. 2001, 709, CC7.2.1. [Google Scholar] [CrossRef]
- Tai, J.-S.B.; Smalyukh, I.I. Surface anchoring as a control parameter for stabilizing torons, skyrmions, twisted walls, fingers, and their hybrids in chiral nematics. Phys. Rev. E 2020, 101, 042702. [Google Scholar] [CrossRef]
- Petrov, N.V.; Sokolenko, B.; Kulya, M.S.; Gorodetsky, A.; Chernykh, A.V. Design of broadband terahertz vector and vortex beams: I. Review of materials and components. Light Adv. Manuf. 2022, 3, 43. [Google Scholar] [CrossRef]
- Petrov, N.V.; Sokolenko, B.; Kulya, M.S.; Gorodetsky, A.; Chernykh, A.V. Design of broadband terahertz vector and vortex beams: II. Holographic assessment. Light Adv. Manuf. 2022, 3, 44. [Google Scholar] [CrossRef]
- Egorov, Y.; Rubass, A. Spin-orbit interaction in quasi-monochromatic singular beams. Comput. Opt. 2024, 48, 18–25. [Google Scholar] [CrossRef]
- Shalev, A.; Misura, A.; Georgieva, A.; Chernykh, A.; Petrov, N.; Orlova, T.; Lobanov, I.; Aksenova, E.; Uzdin, V.; Kiselev, A. Polarization-Controlled Orbital Angular Momentum of Light Passing Through a Cholesteric Spherulite. Opt. Open 2025, preprint. [Google Scholar] [CrossRef]
- Shvetsov, S.; Orlova, T.; Emelyanenko, A.V.; Zolot’ko, A. Thermo-Optical Generation of Particle-Like Structures in Frustrated Chiral Nematic Film. Crystals 2019, 9, 574. [Google Scholar] [CrossRef]
- Fernandez-Nieves, A.; Puertas, A.M. (Eds.) Fluids, Colloids and Soft Materials: An Introduction to Soft Matter Physics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Lobanov, I.; Aksenova, E.; Orlova, T.; Darmoroz, D.; Uzdin, V.; Kiselev, A.D. Optical Imaging and Analytical Design of Localized Topological Structures in Chiral Liquid Crystals. Symmetry 2022, 14, 2476. [Google Scholar] [CrossRef]
- Sun, J.; Wang, H.; Wang, L.; Cao, H.; Xie, H.; Luo, X.; Xiao, J.; Ding, H.; Yang, Z.; Yang, H. Preparation and thermo-optical characteristics of a smart polymer-stabilized liquid crystal thin film based on smectic A–chiral nematic phase transition. Smart Mater. Struct. 2014, 23, 125038. [Google Scholar] [CrossRef]
- Kosa, T.; Sukhomlinova, L.; Su, L.; Taheri, B.; White, T.J.; Bunning, T.J. Light-induced liquid crystallinity. Nature 2012, 485, 347–349. [Google Scholar] [CrossRef]
- Nesic, A.; Blaicher, M.; Marin-Palomo, P.; Füllner, C.; Randel, S.; Freude, W.; Koos, C. Ultra-broadband polarisation beam splitters and rotators based on 3D-printed waveguides. Light Adv. Manuf. 2023, 4, 251. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reztsov, T.V.; Chernykh, A.V.; Orlova, T.; Petrov, N.V. A Dynamic Analysis of Toron Formation in Chiral Nematic Liquid Crystals Using a Polarization Holographic Microscope. Polymers 2025, 17, 1849. https://doi.org/10.3390/polym17131849
Reztsov TV, Chernykh AV, Orlova T, Petrov NV. A Dynamic Analysis of Toron Formation in Chiral Nematic Liquid Crystals Using a Polarization Holographic Microscope. Polymers. 2025; 17(13):1849. https://doi.org/10.3390/polym17131849
Chicago/Turabian StyleReztsov, Tikhon V., Aleksey V. Chernykh, Tetiana Orlova, and Nikolay V. Petrov. 2025. "A Dynamic Analysis of Toron Formation in Chiral Nematic Liquid Crystals Using a Polarization Holographic Microscope" Polymers 17, no. 13: 1849. https://doi.org/10.3390/polym17131849
APA StyleReztsov, T. V., Chernykh, A. V., Orlova, T., & Petrov, N. V. (2025). A Dynamic Analysis of Toron Formation in Chiral Nematic Liquid Crystals Using a Polarization Holographic Microscope. Polymers, 17(13), 1849. https://doi.org/10.3390/polym17131849