Gamma Irradiation-Induced Changes in Microstructure of Cyclic Olefin Copolymer (COC) Revealed by NMR and SAXS Characterization
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Experimental Operation
3. Results and Discussion
3.1. The Effect of Gamma Radiation on the Segments of COC Analyzed via NMR Spectroscopy
3.2. The Effect of Gamma Radiation on Particles Inside COC Analyzed by SAXS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Floros, G.; Saragas, N.; Paraskevopoulou, P.; Psaroudakis, N.; Koinis, S.; Pitsikalis, M.; Hadjichristidis, N.; Mertis, K. Ring Opening Metathesis Polymerization of Norbornene and Derivatives by the Triply Bonded Ditungsten Complex Na[W2(µ-Cl)3Cl4(THF)2]·(THF)3. Polymers 2012, 4, 1657–1673. [Google Scholar] [CrossRef]
- Cui, J.; Yang, J.; Li, Y.; Li, Y. Synthesis of High Performance Cyclic Olefin Polymers (COPs) with Ester Group via Ring-Opening Metathesis Polymerization. Polymers 2015, 7, 1389–1409. [Google Scholar] [CrossRef]
- Lamonte, R.R.; Mcnallu, D. Uses and processing of cyclic olefin copolymers. Plast. Eng. 2000, 56, 51–55. [Google Scholar]
- Lago, W.S.R.; Aymes-Chodur, C.; Ahoussou, A.P.; Yagoubi, N. Physico-chemical ageing of ethylene–norbornene copolymers: A review. J. Mater. Sci. 2017, 52, 6879–6904. [Google Scholar] [CrossRef]
- Barakat, H.; Lago, W.S.R.; Aymes-Chodur, C.; Ahoussou, A.P.; Yagoubi, N. Multi detection in Size-Exclusion Chromatography of electron beam irradiated Ethylene Norbornene Copolymers. Polym. Degrad. Stab. 2017, 147, 206–214. [Google Scholar] [CrossRef]
- Šećerov, B.; Marinović-Cincović, M.; Popović, S.; Nedić, Z.; Kačarević-Popović, Z. Characterization of Gamma Irradiated Ethylene-Norbornene Copolymer using FTIR, UV-Vis and DSC Techniques. Polym. Bull. 2008, 60, 313–322. [Google Scholar] [CrossRef]
- Zhang, F.; Dong, C.; Lei, H.; Guo, F.; Shen, R.; Xing, Z.; Wu, G. Effects of gamma radiation on cyclic olefin copolymers with varied norbornene content: Impacts on structure and properties at sterilization doses. Polym. Degrad. Stab. 2024, 227, 110881. [Google Scholar] [CrossRef]
- Zhang, F.; Ji, Z.; Zhang, Q.; Shen, R.; Xing, Z.; Wu, G. Electron spin resonance study on free radicals in cyclic olefin copolymers irradiated by gamma rays at cryogenic and room temperatures. Radiat. Phys. Chem. 2022, 202, 110505. [Google Scholar] [CrossRef]
- Zhang, F.; Mao, X.; Lei, H.; Guo, F.; Shen, R.; Xing, Z.; Wu, G. Investigation on discoloration mechanism of cyclic olefin copolymer under ionizing irradiation sterilization. Polym. Degrad. Stab. 2024, 221, 110676. [Google Scholar] [CrossRef]
- Zhu, Q.; Fumitaka, H. The Effect of irradiation on a change in quantity of two types of radiation induced cross-links in HDPE with different morphology. J. Radiat. Res. Radiat. Process. 1990, 8, 80–85. [Google Scholar]
- Kaminsky, W.; Spiehl, R. Copolymerization of cycloalkenes with ethylene in presence of chiral zirconocene catalysts. Die Makromol. Chem. 1989, 190, 515–552. [Google Scholar] [CrossRef]
- Wang, W.; Qu, S.; Li, X.; Chen, J.; Guo, Z.; Sun, W. Transition metal complex catalysts promoting copolymers of cycloolefin with propylene/higher olefins. Coord. Chem. Rev. 2023, 494, 215351. [Google Scholar] [CrossRef]
- Wendt, R.A.; Fink, G. Ethene-norbornene copolymerizations using two different homogeneous metallocene catalyst systems and investigations of the copolymer microstructure. J. Mol. Catal. A Chem. 2003, 203, 101–111. [Google Scholar] [CrossRef]
- Yao, Z.; Lv, F.; Liu, S.-J.; Cao, K. Synthesis of ethylene and norbornene copolymer with metallocene catalysts and characteristic analysis. J. Appl. Polym. Sci. 2008, 107, 286–291. [Google Scholar] [CrossRef]
- Blank, F.; Janiak, C. Metal catalysts for the vinyl/addition polymerization of norbornene. Coord. Chem. Rev. 2009, 253, 827–861. [Google Scholar] [CrossRef]
- Heinz, B.S.; Alt, F.P.; Heitz, W. Pd(II)-catalyzed vinylic polymerization of norbornene and copolymerization with norbornene and copolymerization with norbornene carboxylic acid esters. Macromol. Rapid Commun. 1998, 19, 251–256. [Google Scholar] [CrossRef]
- Li, Y.; Gao, M.; Wu, Q. Vinyl polymerization of norbornene by nickel (II) complexes bearing β-diketiminate ligands. Appl. Organomet. Chem. 2007, 21, 965–969. [Google Scholar] [CrossRef]
- Suslov, D.S.; Bykov, M.V.; Abramov, P.A.; Pakhomova, M.V.; Ushakov, I.A.; Voronov, V.K.; Tkach, V.S. Synthesis, characterization, and application for addition polymerization of norbornene of novel acetylacetonate bis(anilines) palladium (II) complexes. Inorg. Chem. Commun. 2016, 66, 1–4. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Lin, S.-A.; Zhu, F.-M.; Gao, H.-Y.; Wu, Q. Dinuclear nickel (II) complexes bearing two pyrazolylimine ligands: Synthesis characterization, and catalytic properties for vinyl-type polymerization of norbornene. Eur. Polym. J. 2008, 44, 2308–2317. [Google Scholar] [CrossRef]
- Tosi, C.; Ciampelli, F.; Cameli, N. Spectroscopic examination of ethylene–propylene–norbornenic diene terpolymers. J. Appl. Polym. Sci. 1972, 16, 801–810. [Google Scholar] [CrossRef]
- Herfert, N.; Montag, P.; Fink, G. Elementary processes of the Ziegler catalysis, 7. Ethylene, α-olefin and norbornene copolymerization with the stereorigid catalyst systems ipr[flucp]zrcl2/mao and me2si[ind]2zrcl2/mao. Macromol. Chem. Phys. 2001, 194, 3167–3182. [Google Scholar] [CrossRef]
- Ruchatz, D.; Fink, G. Ethene−Norbornene Copolymerization Using Homogenous Metallocene and Half-Sandwich Catalysts: Kinetics and Relationships between Catalyst Structure and Polymer Structure. 2. Comparative Study of Different Metallocene- and Half-Sandwich/Methylaluminoxane Catalysts and Analysis of the Copolymers by 13C Nuclear Magnetic Resonance Spectroscopy. Macromolecules 1998, 31, 4674. [Google Scholar] [CrossRef]
- Monti, G.A.; Acosta, R.H.; Chattah, A.K.; Linck, Y.G. Solid state nuclear magnetic resonance of polymers. J. Magn. Reson. Open 2023, 16–17, 100119. [Google Scholar] [CrossRef]
- Provasoli, A.; Ferro, D.R.; Tritto, I.; Boggioni, L. The Conformational Characteristics of Ethylene−Norbornene Copolymers and Their Influence on the 13C NMR Spectra. Macromolecules 1999, 32, 6697–6706. [Google Scholar] [CrossRef]
- Shin, J.Y.; Park, J.Y.; Liu, C.; He, J.; Kim, S.C. Chemical structure and physical properties of cyclic olefin copolymers (IUPAC Technical Report). Pure Appl. Chem. 2005, 77, 801–814. [Google Scholar] [CrossRef]
- Tritto, I.; Marestin, C.; Boggioni, L.; Zetta, L.; Provasoli, A.; Ferro, D.R. Ethylene−Norbornene Copolymer Microstructure. Assessment and Advances Based on Assignments of 13C NMR Spectra†. Macromolecules 2000, 33, 8931. [Google Scholar] [CrossRef]
- Tritto, I.; Marestin, C.; Boggioni, L.; Sacchi, M.C.; Brintzinger, H.H.; Ferro, D.R. Stereoregular and Stereoirregular Alternating Ethylene−Norbornene Copolymers. Macromolecules 2001, 34, 5770–5777. [Google Scholar] [CrossRef]
- Fernández-Delgado, S.; García-Peñas, A.; Serrano, D.; Cerrada, M.L.; Gómez-Elvira, J.M. Detailed microstructure analysis through monomeric insertion modes of poly(propylene-co-norbornene) copolymers and poly(propylene-co-ethylene-co-norbornene) terpolymers with low norbornene contents. Polym. Test. 2023, 124, 108081. [Google Scholar] [CrossRef]
- Gao, H.; Chen, S.; Du, B.; Dai, Z.; Lu, X.; Zhang, K.; Pan, L.; Li, Y.; Li, Y. Cyclic olefin copolymers containing both linear polyethylene and poly(ethylene-co-norbornene) segments prepared from chain shuttling copolymerization of ethylene and norbornene. Polym. Chem. 2022, 13, 245–257. [Google Scholar] [CrossRef]
- Bykov, V.I.; Butenko, T.A. Composition and Microstructure of Norbornene–Ethylene Copolymers. Polym. Sci. Ser. B 2018, 60, 754–759. [Google Scholar] [CrossRef]
- Rische, T.; Waddon, A.J.; Dickinson, L.C.; MacKnight, W.J. Microstructure and Morphology of Cycloolefin Copolymers. Macromolecules 1998, 31, 1871–1874. [Google Scholar] [CrossRef]
- Mortazavi, S.M.M.; Galland, G.B.; Khonakdar, H.; Ahmadjo, S.; Hayati, S. Effect of chain transfer agent on microstructure and thermal properties of cyclic olefin copolymer with low comonomer content. J. Therm. Anal. Calorim. 2022, 147, 13341–13350. [Google Scholar] [CrossRef]
- Brar, A.S.; Kumar, R. Investigation of microstructure of the N-vinyl-2-pyrrolidone/methyl methacrylate copolymers by NMR spectroscopy. J. Appl. Polym. Sci. 2002, 85, 1328–1336. [Google Scholar] [CrossRef]
- Boggioni, L.; Losio, S.; Tritto, I. Microstructure of Copolymers of Norbornene Based on Assignments of 13C NMR Spectra: Evolution of a Methodology. Polymers 2018, 10, 647. [Google Scholar] [CrossRef]
- Arndt, M.; Beulich, I. C1-symmetric metallocenes for olefin polymerisation, 1. Catalytic performance of [Me2C(3-tertBuCp)(Flu)]ZrCl2 in ethene/norbornene copolymerization. Macromol. Chem. Phys. 1998, 199, 1221–1232. [Google Scholar]
- Wendt, R.A.; Fink, G. 13C NMR Studies of Ethene/Norbornene Copolymers using 13C-Enriched Monomers: Signal Assignments of Copolymers Containing Norbornene Microblocks of up to a Length of Three Norbornene Units. Macromol. Chem. Phys. 2001, 202, 3490–3501. [Google Scholar] [CrossRef]
- Viglianisi, C.; Menichetti, S.; Assanelli, G.; Sacchi, M.C.; Tritto, I.; Losio, S. Ethylene/hindered phenol substituted norbornene copolymers: Synthesis and NMR structural determination. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 4647–4655. [Google Scholar] [CrossRef]
- Hai, Y.; Huang, C.; Ma, M.; Liu, Q.; Wang, Y.; Liu, Y.; Tian, F.; Lin, J.; Zhu, Z. SAXS investigation of latent track structure in HDPE irradiated with high energy Fe ions. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2015, 356–357, 129–134. [Google Scholar] [CrossRef]
- Fayolle, B.; Verdu, J. Radiation aging and chemi-crystallization processes in polyoxymethylene. Eur. Polym. J. 2011, 47, 2145–2151. [Google Scholar] [CrossRef]
- Somani, R.H.; Hsiao, B.S.; Nogales, A.; Srinivas, S.; Tsou, A.H.; Sics, I.; Balta-Calleja, F.J.; Ezquerra, T.A. Structure development during shear flow-induced crystallization of i-PP: In-situ small-angle X-ray scattering study. Macromolecules 2000, 33, 9385–9394. [Google Scholar] [CrossRef]
- Rui, E.; Yang, J.; Li, X.; Ma, G. Effect of proton irradiation on mechanical properties of low-density polyethylene/multiwalled carbon nanotubes composites. Polym. Compos. 2014, 36, 278–286. [Google Scholar] [CrossRef]
- Ge, L.; Wang, D.-X.; Xing, R.; Ma, D.; Walsh, P.J.; Feng, C. Photoredox-Catalyzed Oxo-Amination of Aryl Cyclopropanes. Nat. Commun. 2019, 2019, 4367. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, M.; Tang, Z.; Wu, G. ESR study of free radicals in UHMW-PE fiber irradiated by gamma rays. Radiat. Phys. Chem. 2010, 79, 429–433. [Google Scholar] [CrossRef]
- Kiminami, H.; Imae, Y.; Takahashi, E.; Wei, H.; Oomura, S.; Abe, Y. Electron beam sterilization of cyclo olefin polymer leads to polymer degradation and production of alkyl radicals. J. Appl. Polym. Sci. 2016, 133, 43498. [Google Scholar] [CrossRef]
- Mochizuki, A.; Ono, D.; Kiminami, H.; Shinoda, S.; Abe, Y. Carbon radicals generated by solid polymers: Electron spin resonance spectroscopy for detection of species in water. J. Appl. Polym. Sci. 2019, 137, 48604. [Google Scholar] [CrossRef]
Sequences | C Chemical Shifts | Reference | H Chemical Shifts | Reference | |
---|---|---|---|---|---|
C-Et | EEEEE | 27.7 | [27,28,29,30,31,32,33,34,35,36,37] | 0.9–1.5 | |
NENEN | 28.0 | ||||
C5/C6 | ENNE | 26.2 | [27,31,32,33,34,35,36,37] | 0.9–1.5 | |
ENNE | 29.7 | [27,31,32,33,34,35,36] | |||
NENEN | 28.3 | [27,31,32,33,34,35,36] | |||
C7 | NENEN | 31.0 | [27,31,32,33,34,35,36] | 0.9 | |
ENNE | 31.3 | [27,31,32,33,34,35,36] | 1.4 | ||
C1/C4 | EENEE | 39.5 | [27,31,32,33,34,35,36] | Not available | [32,33] |
NENEN | 39.5 | [27,31,32,33,34,35,36] | 1.9 | ||
ENNE | 40.4 | [27,31,32,33,34,35,36] | 1.8, 2.0 | ||
C2/C3 | NENEN | 45.2 | [27,28,29,30,31,32,33,34,35,36] | 1.4 | [32,33] |
ENNE | 48.1 | [27,28,29,30,31,32,33,34,35,36] | 1.2, 1.4 | ||
NENNN | 50.8–52.0 | [27,34,36] | Not available |
TOPAS Grades | Norbornene/mol% (Reference) | Norbornene/mol% (Sample) | Absorbed Dose (kGy) | Sample |
---|---|---|---|---|
8007 | 35 | 37.5 | 25 | COC-35-25 |
100 | COC-35-100 | |||
5013 | 46 | 48.3 | 25 | COC-46-25 |
100 | COC-46-100 | |||
6015 | 52 | 52.5 | 25 | COC-52-25 |
100 | COC-52-100 | |||
6017 | 57 | 55.5 | 25 | COC-57-25 |
100 | COC-57-100 |
H Chemical Shifts | C Chemical Shifts | Sequences | Reference | |
---|---|---|---|---|
C-Et | 1.0 | 29.6 | EENEE | |
1.1 | 29.9 | NENEN | This work | |
1.6 | 27.7 | ENNE | ||
C5/C6 | 0.8 | 30.2 | EENEE | This work |
1.1 | 29.9 | NENEN | ||
1.5 | 29.9 | ENNE | ||
C7 | 0.9 | 32.5 | EENEE | This work |
1.3 | 32.5 | ENNE | ||
C1/C4 | 1.8 | 41.5 | NENEN/EENEE | [24] |
2.0 | 40.9 | ENNE | ||
C2/C3 | 1.2 | 47.3 | ENNE | [24] |
1.4 | 47.0 | NENEN/EENEE | ||
1.4 | 48.6 | ENNE |
Sample | Long Period (nm) | Rg (nm) | |
---|---|---|---|
Norbornene 35 mol% | COC-35-0 | 35.2 | 10.9 |
COC-35-25 | 35.4 | 10.0 | |
COC-35-100 | 38.1 | 9.9 | |
Norbornene 46 mol% | COC-46-0 | 29.8 | 8.4 |
COC-46-25 | 29.5 | 9.4 | |
COC-46-100 | 29.5 | 8.8 | |
Norbornene 52 mol% | COC-52-0 | 35.1 | 10.0 |
COC-52-25 | 29.6 | 10.4 | |
COC-52-100 | 29.5 | 10.0 | |
Norbornene 57 mol% | COC-57-0 | 35.4 | 8.4 |
COC-57-25 | 34.9 | 9.7 | |
COC-57-100 | 34.9 | 9.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Lei, H.; Guo, F.; Hu, J.; Liu, H.; Wang, Q.; Liu, W.; Xing, Z.; Wu, G. Gamma Irradiation-Induced Changes in Microstructure of Cyclic Olefin Copolymer (COC) Revealed by NMR and SAXS Characterization. Polymers 2025, 17, 1751. https://doi.org/10.3390/polym17131751
Zhang F, Lei H, Guo F, Hu J, Liu H, Wang Q, Liu W, Xing Z, Wu G. Gamma Irradiation-Induced Changes in Microstructure of Cyclic Olefin Copolymer (COC) Revealed by NMR and SAXS Characterization. Polymers. 2025; 17(13):1751. https://doi.org/10.3390/polym17131751
Chicago/Turabian StyleZhang, Fan, Heng Lei, Feng Guo, Jiangtao Hu, Haiming Liu, Qing Wang, Weihua Liu, Zhe Xing, and Guozhong Wu. 2025. "Gamma Irradiation-Induced Changes in Microstructure of Cyclic Olefin Copolymer (COC) Revealed by NMR and SAXS Characterization" Polymers 17, no. 13: 1751. https://doi.org/10.3390/polym17131751
APA StyleZhang, F., Lei, H., Guo, F., Hu, J., Liu, H., Wang, Q., Liu, W., Xing, Z., & Wu, G. (2025). Gamma Irradiation-Induced Changes in Microstructure of Cyclic Olefin Copolymer (COC) Revealed by NMR and SAXS Characterization. Polymers, 17(13), 1751. https://doi.org/10.3390/polym17131751