Photopolymer Flexographic Printing Plate Mold for PDMS Microfluidic Manufacture
Abstract
1. Introduction
Flexographic Printing: Fundamentals and Adaptation
2. Applications of FMold in Microfluidics
2.1. Chemical Applications
2.2. Biomedical Applications
2.2.1. Suspension Cell Culture, Jurkat Cell Line, and Healthy Donor T-Cells
2.2.2. Monoclonal Antibody Production
2.2.3. Complex Cell Line Differentiation
2.2.4. Phage Screening According to Affinity
2.2.5. Cancer Stem Cell (CSC) Isolation and Culture
2.2.6. Screening Drugs Against Trypanosoma cruzi
2.2.7. Droplet Storage Chip Fabrication for Gene Editing
2.2.8. Fast and Optical Cell Detection Through a Hybrid Microchannel-Solid Micropore Device
2.2.9. Development of an Algorithm to Quantify, Count and Measure Spheres Derived from Cancer Stem Cells Automatically
3. Other Applications of Flexography in Science
3.1. Diagnostic Devices
3.2. Chemical Analysis
3.3. Biofabrication
4. Current Challenges and Limitations
4.1. Material Compatibility
4.2. Aspect Ratio and Feature Resolution Constraints
4.3. Durability and Replication Fidelity
4.4. Challenges in Reproducible Multi-Level Structure Fabrication
4.5. Potential Oxygen Inhibition in Alternative Photopolymer Systems
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AQSA | Automatic quantification of spheres algorithm |
BZN | Benznidazole |
Ca | Capillary number |
CNC | Computer numerical control |
CI | Confidence intervals |
CSCs | Cancer stem cells |
CT | Chemotherapeutic treatment |
DTIR | A high-quality digital no-process film imaged with KODAK SQUARESPOT Imaging Technology |
EBOV | Ebola virus |
EVD | Ebola virus disease |
ERmold | Epoxi-resin mold |
EOR | Enhanced oil recovery |
FMold | Flexographic printing plate mold |
FMold-T | SiO2-coated mold |
GP | Glycoprotein |
GUI | Graphical user interface |
hiPSC | Human-induced pluripotent stem cell |
HIV | Human immunodeficiency virus |
HMDS | Hexamethyldisilazane |
LAMS | Laser ablation mask systems |
LED | Light-emitting diode |
LM bioreactor | Large-area microfluidic bioreactor |
LOC | Lab-on-a-chip |
mAb | Monoclonal antibody |
MOI | Multiplicity of infection |
PDMS | Polydimethylsiloxane |
PET | Polyethylene terephthalate |
PEVCD | Plasma-enhanced chemical vapor deposition |
PV | Poral volume |
SDG | Serial dilution generator |
SEM | Scanning electron microscopy |
TIL | Thermic imaging layer |
UV | Ultraviolet |
References
- Kipphan, H. Handbook of Print Media; Kipphan, H., Ed.; Springer: Berlin/Heidelberg, Germany, 2001; ISBN 978-3-540-29900-4. [Google Scholar]
- Anyflexo Flexo. Chronicles: From Its Beginnings to Today. Available online: https://flexopedia.net/innovations-and-digitalisation-of-flexo-printing/ (accessed on 13 October 2024).
- FTA. An Introduction to Flexography. Available online: https://www.flexography.org/training-resources/resource-library/flexography-101-online-course/ (accessed on 2 July 2024).
- Novaković, D. A model for improving the flexographic printing plate making process. Teh. Vjesn. 2010, 17, 403–410. [Google Scholar]
- Miraclon. 10 Years of Continuing Success: The KODAK FLEXCEL NX System Transforming Flexo with Game Changing Technology. Available online: https://www.miraclon.com/news/10-years-of-continuing-success-the-kodak-flexcel-nx-system-transforming-flexo-with-game-changing-technology/ (accessed on 1 July 2024).
- Miraclon. KODAK FLEXCEL NX Ultra 42 Solution Delivers Powerful Prepress and on-Press Performance for PPC Flex. Available online: https://www.miraclon.com/featured-customers/kodak-flexcel-nx-ultra-42-solution-delivers-powerful-prepress-and-on-press-performance-for-ppc-flex/ (accessed on 2 July 2024).
- Miraclon. KODAK FLEXCEL NX System. Available online: https://miraclon.com/content/uploads/2020/04/FLEXCEL-NX-SellSheet-4260-3548-US.pdf (accessed on 20 May 2025).
- Miraclon. FLEXCEL NX System Consistently Highest Resolution, Fastest Imaging. Available online: https://www.miraclon.com/products-technology/flexcel-nx-system/ (accessed on 21 May 2025).
- Miraclon. FLEXCEL NXUH Plates & Thermal Imaging Layer. Available online: https://www.miraclon.com/content/uploads/2021/05/NXUH_Plates_Sell-Sheet_US_230717_LR.pdf (accessed on 21 May 2025).
- Zikulnig, J.; Kosel, J. Fabrication technologies for flexible printed sensors. In Encyclopedia of Sensors and Biosensors; Elsevier: Amsterdam, The Netherlands, 2023; pp. 33–50. ISBN 9780128225493. [Google Scholar]
- Kim, S.; Sojoudi, H.; Zhao, H.; Mariappan, D.; McKinley, G.H.; Gleason, K.K.; Hart, A.J. Ultrathin high-resolution flexographic printing using nanoporous stamps. Sci. Adv. 2016, 2, e1601660. [Google Scholar] [CrossRef]
- Banik, S.; Uchil, A.; Kalsang, T.; Chakrabarty, S.; Ali, M.A.; Srisungsitthisunti, P.; Mahato, K.K.; Surdo, S.; Mazumder, N. The revolution of PDMS microfluidics in cellular biology. Crit. Rev. Biotechnol. 2023, 43, 465–483. [Google Scholar] [CrossRef]
- Kumar, A.S.; Venkatesalu, S.; Dilliyappan, S.; Pasupulla, A.P.; Prathap, L.; Palaniyandi, T.; Baskar, G.; Ravi, M.; Sugumaran, A. Microfluidics as diagnostic tools. Clin. Chim. Acta 2024, 556, 117841. [Google Scholar] [CrossRef]
- Minas, G. Lab-on-a-Chip Devices for Chemical Analysis. In Encyclopedia of Microfluidics and Nanofluidics; Li, D., Ed.; Springer: Boston, MA, USA, 2008; pp. 910–927. ISBN 978-0-387-32468-5. [Google Scholar]
- Aryal, P.; Hefner, C.; Martinez, B.; Henry, C.S. Microfluidics in environmental analysis: Advancements, challenges, and future prospects for rapid and efficient monitoring. Lab Chip 2024, 24, 1175–1206. [Google Scholar] [CrossRef]
- Liu, X.; Sun, A.; Brodský, J.; Gablech, I.; Lednický, T.; Vopařilová, P.; Zítka, O.; Zeng, W.; Neužil, P. Microfluidics chips fabrication techniques comparison. Sci. Rep. 2024, 14, 28793. [Google Scholar] [CrossRef]
- Patel, J.N.; Gray, B.L.; Kaminska, B.; Wu, N.; Gates, B.D. SU-8- and PDMS-based hybrid fabrication technology for combination of permanently bonded flexible and rigid features on a single device. J. Micromech. Microeng. 2013, 23, 065029. [Google Scholar] [CrossRef]
- Golvari, P.; Kuebler, S.M. Fabrication of Functional Microdevices in SU-8 by Multi-Photon Lithography. Micromachines 2021, 12, 472. [Google Scholar] [CrossRef] [PubMed]
- Mansour, H.; Soliman, E.A.; El-Bab, A.M.F.; Matsushita, Y.; Abdel-Mawgood, A.L. Fabrication and characterization of microfluidic devices based on boron-modified epoxy resin using CO2 laser ablation for bio-analytical applications. Sci. Rep. 2023, 13, 12623. [Google Scholar] [CrossRef]
- Lin, X.; Li, V.W.T.; Chen, S.; Chan, C.-Y.; Cheng, S.-H.; Shi, P. Autonomous system for cross-organ investigation of ethanol-induced acute response in behaving larval zebrafish. Biomicrofluidics 2016, 10, 024123. [Google Scholar] [CrossRef]
- Su, R.; Wang, F.; McAlpine, M.C. 3D printed microfluidics: Advances in strategies, integration, and applications. Lab Chip 2023, 23, 1279–1299. [Google Scholar] [CrossRef]
- Behroodi, E.; Latifi, H.; Bagheri, Z.; Ermis, E.; Roshani, S.; Salehi Moghaddam, M. A combined 3D printing/CNC micro-milling method to fabricate a large-scale microfluidic device with the small size 3D architectures: An application for tumor spheroid production. Sci. Rep. 2020, 10, 22171. [Google Scholar] [CrossRef]
- Rodríguez, C.F.; Andrade-Pérez, V.; Vargas, M.C.; Mantilla-Orozco, A.; Osma, J.F.; Reyes, L.H.; Cruz, J.C. Breaking the clean room barrier: Exploring low-cost alternatives for microfluidic devices. Front. Bioeng. Biotechnol. 2023, 11, 1176557. [Google Scholar] [CrossRef]
- Desai, S.P.; Freeman, D.M.; Voldman, J. Plastic masters-rigid templates for soft lithography. Lab Chip 2009, 9, 1631–1637. [Google Scholar] [CrossRef] [PubMed]
- Bourguignon, N.; Olmos, C.M.; Sierra-Rodero, M.; Peñaherrera, A.; Rosero, G.; Pineda, P.; Vizuete, K.; Arroyo, C.R.; Cumbal, L.; Lasorsa, C.; et al. Accessible and cost-effective method of PDMS microdevices fabrication using a reusable photopolymer mold. J. Polym. Sci. B Polym. Phys. 2018, 56, 1433–1442. [Google Scholar] [CrossRef]
- Scott, S.M.; Ali, Z. Fabrication methods for microfluidic devices: An overview. Micromachines 2021, 12, 319. [Google Scholar] [CrossRef]
- Olmos, C.M.; Vaca, A.; Rosero, G.; Peñaherrera, A.; Perez, C.; de Sá Carneiro, I.; Vizuete, K.; Arroyo, C.R.; Debut, A.; Pérez, M.S.; et al. Epoxy resin mold and PDMS microfluidic devices through photopolymer flexographic printing plate. Sens. Actuators B Chem. 2019, 288, 742–748. [Google Scholar] [CrossRef]
- Olmos, C.M.; Peñaherrera, A.; Rosero, G.; Vizuete, K.; Ruarte, D.; Follo, M.; Vaca, A.; Arroyo, C.R.; Debut, A.; Cumbal, L.; et al. Cost-effective fabrication of photopolymer molds with multi-level microstructures for PDMS microfluidic device manufacture. RSC Adv. 2020, 10, 4071–4079. [Google Scholar] [CrossRef]
- Niggemann, M.; Ehrfeld, W.; Weber, L.; Günther, R.; Sollböhmer, O. Miniaturized plastic micro plates for applications in HTS. Microsyst. Technol. 1999, 6, 48–53. [Google Scholar] [CrossRef]
- Alting, L.; Kimura, F.; Hansen, H.N.; Bissacco, G. Micro Engineering. CIRP Ann. 2003, 52, 635–657. [Google Scholar] [CrossRef]
- Benavides, G.L.; Bieg, L.F.; Saavedra, M.P.; Bryce, E.A. High aspect ratio meso-scale parts enabled by wire micro-EDM. Microsyst. Technol. 2002, 8, 395–401. [Google Scholar] [CrossRef]
- Allen, D.M.; Shore, P.; Evans, R.W.; Fanara, C.; O’Brien, W.; Marson, S.; O’Neill, W. Ion beam, focused ion beam, and plasma discharge machining. CIRP Ann. 2009, 58, 647–662. [Google Scholar] [CrossRef]
- Williams, J.D. Study on the postbaking process and the effects on UV lithography of high aspect ratio SU-8 microstructures. J. Microlithogr. Microfabr. Microsyst. 2004, 3, 563. [Google Scholar] [CrossRef]
- Miraclon; Ali, Z. R&D Scientists at Miraclon Recognized for Outstanding Innovation for the KODAK FLEXCEL NX Ultra Solution. Available online: https://www.miraclon.com/archived/rd-scientists-at-miraclon-recognized-for-outstanding-innovation-for-the-kodak-flexcel-nx-ultra-solution/ (accessed on 2 December 2024).
- Labels & Labeling. ALFT Packaging Company Invests in Kodak Flexcel NX System from Miraclon. Available online: https://www.labelsandlabeling.com/news/installations/alft-packaging-company-invests-kodak-flexcel-nx-system-miraclon (accessed on 2 December 2024).
- Flexo24. Flexo24, Your Partner in Flexo. Available online: https://www.flexo24.com/international/ (accessed on 17 December 2024).
- Splash Graphics, Inc. Flexography. Available online: https://splash-graphics.com/flexography/ (accessed on 7 January 2025).
- Betancur, S.; Olmos, C.M.; Pérez, M.; Lerner, B.; Franco, C.A.; Riazi, M.; Gallego, J.; Carrasco-Marín, F.; Cortés, F.B. A microfluidic study to investigate the effect of magnetic iron core-carbon shell nanoparticles on displacement mechanisms of crude oil for chemical enhanced oil recovery. J. Pet. Sci. Eng. 2020, 184, 106589. [Google Scholar] [CrossRef]
- Pérez-Sosa, C.; Sanluis-Verdes, A.; Waisman, A.; Lombardi, A.; Rosero, G.; Greca, A.L.; Bhansali, S.; Bourguignon, N.; Luzzani, C.; Pérez, M.S.; et al. Single cell transfection of human-induced pluripotent stem cells using a droplet-based microfluidic system. R. Soc. Open Sci. 2022, 9, 211510. [Google Scholar] [CrossRef]
- Bourguignon, N.; Chamorro, D.; Pérez-Sosa, C.; Aravelli, A.; Bravo, E.; Perez, M.; Miriuka, S.; Lerner, B.; Bhansali, S. Micro and milli-chamber bioreactors for human induced pluripotent stem cell culture: Model and experimental validation. Biochem. Eng. J. 2022, 187, 108660. [Google Scholar] [CrossRef]
- Gimenez, R.; Pérez-Sosa, C.; Bourguignon, N.; Miriuka, S.; Bhansali, S.; Arroyo, C.R.; Debut, A.; Lerner, B.; Pérez, M.S. Simple microcontact printing technique to obtain cell patterns by lithography using grayscale, photopolymer flexographic mold, and PDMS. Biomimetics 2022, 7, 155. [Google Scholar] [CrossRef]
- García, I.; Martínez, L.A.; Zanini, A.; Raith, D.; Boedecker, J.; Stingl, M.G.; Lerner, B.; Pérez, M.S.; Mertelsmann, R. Automatic feedback control by image processing for mixing solutions in a microfluidic device. Biomicrofluidics 2022, 16, 054106. [Google Scholar] [CrossRef]
- Sanluis-Verdes, A.; Peñaherrera, A.; Torán, J.L.; Rosero, G.; Noriega, M.A.; Lerner, B.; Pérez, M.; Casasnovas, J.M. Selection of phage-displayed antibodies with high affinity and specificity by electrophoresis in microfluidic devices. Electrophoresis 2023, 44, 864–872. [Google Scholar] [CrossRef]
- Cadena, M.F.; Rosero-Yanez, G.; Isa-Jara, R.; Belaunzarán, M.L.; Giulianotti, M.A.; Pinilla, C.; Alba Soto, C.D.; Perez, M.; Lerner, B.; Gimenez, G. Lab on a chip (LOC) platform for drug screening against the intracellular forms of Trypanosoma cruzi. Microchem. J. 2024, 203, 110870. [Google Scholar] [CrossRef]
- Agüero, E.I.; Belgorosky, D.; García-Silva, J.I.; Booth, R.; Lerner, B.; Pérez, M.S.; Eiján, A.M. Microdevices for cancer stem cell culture as a predictive chemotherapeutic response platform. J. Mol. Med. 2023, 101, 1465–1475. [Google Scholar] [CrossRef]
- Pérez-Sosa, C.; Pérez, M.S.; Vallejo-Janeta, A.P.; Bhansali, S.; Miriuka, S.; Lerner, B. Droplets for Gene Editing Using CRISPR-Cas9 and Clonal Selection Improvement Using Hydrogels. Micromachines 2024, 15, 413. [Google Scholar] [CrossRef]
- Peñaherrera-Pazmiño, A.B.; Isa-Jara, R.F.; Hincapié-Arias, E.; Gómez, S.; Belgorosky, D.; Agüero, E.I.; Tellado, M.; Eiján, A.M.; Lerner, B.; Pérez, M. AQSA-Algorithm for Automatic Quantification of Spheres Derived from Cancer Cells in Microfluidic Devices. J. Imaging 2024, 10, 295. [Google Scholar] [CrossRef]
- Olmos, C.M.; Rosero, G.; Fernández-Cabada, T.; Booth, R.; Der, M.; Cabaleiro, J.M.; Debut, A.; Cumbal, L.; Pérez, M.S.; Lerner, B. Hybrid microchannel-solid state micropore device for fast and optical cell detection. RSC Adv. 2020, 10, 5361–5370. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, M. Polymeric Microfluidic Devices Fabricated Using Epoxy Resin for Chemically Demanding and Day-Long Experiments. Biosensors 2022, 12, 838. [Google Scholar] [CrossRef] [PubMed]
- Tomašegović, T. Functionalmodel of Photopolymer Printing Plate Production Process. Doctoral Dissertation, University of Zagreb, Zagreb, Croatia, 2016. [Google Scholar]
- Zhu, H.; Hu, X.; Huang, Y. The effect of epoxy resin and curing agent groups on mechanical properties investigated by molecular dynamics. Mater. Today Commun. 2024, 41, 110447. [Google Scholar] [CrossRef]
- Gao, D.; Jin, F.; Lee, J.K.; Zare, R.N. Aqueous microdroplets containing only ketones or aldehydes undergo Dakin and Baeyer-Villiger reactions. Chem. Sci. 2019, 10, 10974–10978. [Google Scholar] [CrossRef]
- Shao, C.; Chi, J.; Shang, L.; Fan, Q.; Ye, F. Droplet microfluidics-based biomedical microcarriers. Acta Biomater. 2022, 138, 21–33. [Google Scholar] [CrossRef]
- van Tatenhove-Pel, R.J.; Hernandez-Valdes, J.A.; Teusink, B.; Kuipers, O.P.; Fischlechner, M.; Bachmann, H. Microdroplet screening and selection for improved microbial production of extracellular compounds. Curr. Opin. Biotechnol. 2020, 61, 72–81. [Google Scholar] [CrossRef]
- Peñaherrera-Pazmiño, A.B.; Rosero, G.; Ruarte, D.; Pinter, J.; Vizuete, K.; Perez, M.; Follo, M.; Lerner, B.; Mertelsmann, R. Activation and Expansion of Human T-Cells Using Microfluidic Devices. Biosensors 2025, 15, 270. [Google Scholar] [CrossRef]
- Hilal-Alnaqbi, A.; Hu, A.Y.C.; Zhang, Z.; Al-Rubeai, M. Growth, metabolic activity, and productivity of immobilized and freely suspended CHO cells in perfusion culture. Biotechnol. Appl. Biochem. 2013, 60, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Abaci, H.E.; Devendra, R.; Smith, Q.; Gerecht, S.; Drazer, G. Design and development of microbioreactors for long-term cell culture in controlled oxygen microenvironments. Biomed. Microdevices 2012, 14, 145–152. [Google Scholar] [CrossRef]
- Bhansali, S.; Perez, M.S.; Lerner, B.; Bourguignon, N. Large Microfluidic Bioreactor and Manufacturing Method Thereof 2021. U.S. Patent 11135589B2, 5 October 2021. [Google Scholar]
- Bourguignon, N.; Karp, P.; Attallah, C.; Chamorro, D.A.; Oggero, M.; Booth, R.; Ferrero, S.; Bhansali, S.; Pérez, M.S.; Lerner, B.; et al. Large area microfluidic bioreactor for production of recombinant protein. Biosensors 2022, 12, 526. [Google Scholar] [CrossRef]
- Frenzel, A.; Schirrmann, T.; Hust, M. Phage display-derived human antibodies in clinical development and therapy. MAbs 2016, 8, 1177–1194. [Google Scholar] [CrossRef]
- Bahmad, H.F.; Cheaito, K.; Chalhoub, R.M.; Hadadeh, O.; Monzer, A.; Ballout, F.; El-Hajj, A.; Mukherji, D.; Liu, Y.-N.; Daoud, G.; et al. Sphere-Formation Assay: Three-Dimensional in vitro Culturing of Prostate Cancer Stem/Progenitor Sphere-Forming Cells. Front. Oncol. 2018, 8, 347. [Google Scholar] [CrossRef]
- Agüero, E.I.; Gómez López, S.M.; Peñaherrera-Pazmiño, A.B.; Tellado, M.; Pérez, M.S.; Lerner, B.; Belgorosky, D.; Eiján, A.M. Towards Personalized Medicine: Microdevice-Assisted Evaluation of Cancer Stem Cell Dynamics and Treatment Response. Cancers 2025, 17, 1922. [Google Scholar] [CrossRef]
- Rahul, R.; Prasad, N.; Ajith, R.R.; Sajeesh, P.; Mini, R.S.; Kumar, R.S. A mould-free soft-lithography approach for rapid, low-cost and bulk fabrication of microfluidic chips using photopolymer sheets. Microfluid. Nanofluid. 2023, 27, 78. [Google Scholar] [CrossRef]
- Minemawari, H.; Yamada, T.; Matsui, H.; Tsutsumi, J.; Haas, S.; Chiba, R.; Kumai, R.; Hasegawa, T. Inkjet printing of single-crystal films. Nature 2011, 475, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.J.; Foster, S.W.; Grinias, J.P. Low-cost and open-source strategies for chemical separations. J. Chromatogr. A 2021, 1638, 461820. [Google Scholar] [CrossRef]
- Parween, S.; Asthana, A.; Nahar, P. Fundamentals of Image-Based Assay (IBA) System for Affordable Point of Care Diagnostics. Microchem. J. 2023, 186, 108345. [Google Scholar] [CrossRef]
- Olkkonen, J.; Lehtinen, K.; Erho, T. Flexographically printed fluidic structures in paper. Anal. Chem. 2010, 82, 10246–10250. [Google Scholar] [CrossRef] [PubMed]
- Deganello, D.; Cherry, J.A.; Gethin, D.T.; Claypole, T.C. Patterning of micro-scale conductive networks using reel-to-reel flexographic printing. Thin Solid Film. 2010, 518, 6113–6116. [Google Scholar] [CrossRef]
- Krebs, F.C.; Fyenbo, J.; Jørgensen, M. Product integration of compact roll-to-roll processed polymer solar cell modules: Methods and manufacture using flexographic printing, slot-die coating and rotary screen printing. J. Mater. Chem. 2010, 20, 8994. [Google Scholar] [CrossRef]
- Lorenz, A.; Senne, A.; Rohde, J.; Kroh, S.; Wittenberg, M.; Krüger, K.; Clement, F.; Biro, D. Evaluation of Flexographic Printing Technology for Multi-busbar Solar Cells. Energy Procedia 2015, 67, 126–137. [Google Scholar] [CrossRef]
- Wolfer, T.; Bollgruen, P.; Mager, D.; Overmeyer, L.; Korvink, J.G. Printing and preparation of integrated optical waveguides for optronic sensor networks. Mechatronics 2016, 34, 119–127. [Google Scholar] [CrossRef]
- Amar, M.B.; Bonn, D. Fingering instabilities in adhesive failure. Phys. D Nonlinear Phenom. 2005, 209, 1–16. [Google Scholar] [CrossRef]
- Brumm, P.; Fritschen, A.; Doß, L.; Dörsam, E.; Blaeser, A. Fabrication of biomimetic networks using viscous fingering in flexographic printing. Biomed. Mater. 2022, 17, 045012. [Google Scholar] [CrossRef]
- DKSH International Ltd. Miraclon—Kodak Flexcel NX Plates Kits. Available online: https://technology-products.dksh.com/product/miraclon-kodak-flexcel-nx-plates-kits/#:~:text=Compatible%20with%20most%20washout%20solvents,solutions%20are%20available%20upon%20request (accessed on 21 May 2025).
- Miraclon Patented FLEXCEL NXProcess. Available online: https://www.miraclon.com/products-technology/technology/patented-flexcel-nx-process/ (accessed on 21 May 2025).
Description | References | |
---|---|---|
Base Film (PET) | Provides support and dimensional stability to the photopolymer layer of the FLEXCEL NX plate. This is part of the final plate structure. | [1] |
Laminated Interface | The critical interface created when the TIL is laminated onto the FLEXCEL NX plate before UV exposure. This eliminates oxygen inhibition. | [7,8] |
Thermal Imaging Layer (TIL) | A separate film with a special coating that is thermally imaged to create a high-resolution mask. | [9] |
FLEXCEL NX Plate | The main photopolymer material that is selectively hardened by UV light to form the relief image. This becomes the final printing plate. | [9] |
Technology | Minimum Feature Size (µm) | Resolution | Typical Aspect Ratio | Achievable Roughness Ra (nm) | 1 cm2 Price (USD) | References |
---|---|---|---|---|---|---|
FMold from FLEXCEL SRH | 25 | 10 µm | 60 | 23 | 0.03 | [25] |
FMold from FLEXCEL NX positive relief (convex) | 357.6 | 10 µm | 13 | 7.4 | 0.07 | [27,28] |
FMold from FLEXCEL NX negative relief (concave) | 114 | 10 µm | 13 | 29.8 | 0.07 | [27,28] |
Laser ablation | <1 | ~1 | <10 | 100 | 0.02 | [29,30] |
Focus ion beam | 40 nm | 5 nm | 10 | 0.58 | >65 | [31,32] |
MEMS process | Some µm | NA | <40 | 10 | >100 | [33] |
FMold | ERmold | |
---|---|---|
Advantages | ||
Short-time mold fabrication [27] | X | X |
Clean room-free [25] | X | X |
Large substrate (1270 2062 mm2) [28] | X | |
Heights up 1500 µm [28] | X | X |
A diverse array of molds exhibiting a broad spectrum of dimensions [28] | X | |
High-throughput replication [27] | X | X |
Low price [25] | X | X |
Worldwide accessible [25,27,28] | X | X |
Monolithic mold that is not prone to delamination [27] | X | X |
Durable [27,49,50] | X | X |
Reusable [25,27] | X | X |
Chemical resistance [51] | X | |
Disadvantages | ||
Resolution (10 µm) [28] | X | X |
Widths less than 20 µm are not resolved yet [8] | X | X |
Sidewall inclination [25,27,28] | X | X |
Requires plasma-enhanced chemical vapor deposition for SiO2 coating [25,27] | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peñaherrera-Pazmiño, A.B.; Rosero, G.I.; Pérez, M.; Lerner, B. Photopolymer Flexographic Printing Plate Mold for PDMS Microfluidic Manufacture. Polymers 2025, 17, 1723. https://doi.org/10.3390/polym17131723
Peñaherrera-Pazmiño AB, Rosero GI, Pérez M, Lerner B. Photopolymer Flexographic Printing Plate Mold for PDMS Microfluidic Manufacture. Polymers. 2025; 17(13):1723. https://doi.org/10.3390/polym17131723
Chicago/Turabian StylePeñaherrera-Pazmiño, Ana Belén, Gustavo Iván Rosero, Maximiliano Pérez, and Betiana Lerner. 2025. "Photopolymer Flexographic Printing Plate Mold for PDMS Microfluidic Manufacture" Polymers 17, no. 13: 1723. https://doi.org/10.3390/polym17131723
APA StylePeñaherrera-Pazmiño, A. B., Rosero, G. I., Pérez, M., & Lerner, B. (2025). Photopolymer Flexographic Printing Plate Mold for PDMS Microfluidic Manufacture. Polymers, 17(13), 1723. https://doi.org/10.3390/polym17131723