Tailoring the Properties of Magnetite/PLA Nanocomposites: A Composition-Dependent Study
Abstract
:1. Introduction
2. Experimental Procedures
2.1. PLA Synthesis
2.2. MNP/PLA Composite Syntheses
2.3. Characterization Methods
2.3.1. Powder X-Ray Diffraction (XRD)
2.3.2. Fourier-Transform Infrared Spectroscopy (FT-IR)
2.3.3. Fourier-Transform Raman Spectroscopy (FT-Raman)
2.3.4. Microscopy Analyses
2.3.5. Magnetic Analysis
2.3.6. Thermal Analysis (TG/DTG and DTA)
2.3.7. Textural Properties
3. Results and Discussion
3.1. Characterization of PLA and MNP Materials
3.2. Elemental Analysis of MNP/PLA Nanocomposites
3.3. XRD of xMNP/PLA Nanocomposites
3.4. FT-IR of xMNP/PLA Nanocomposites
3.5. Thermal Stability of xMNP/PLA Nanocomposites
3.6. FT-Raman of xMNP/PLA Nanocomposites
3.7. Micrography Analyses of xMNP/PLA Nanocomposites
3.7.1. SEM Images
3.7.2. TEM Images
3.8. Textural Properties of xMNP/PLA Nanocomposites
3.9. Magnetic Properties of xMNP/PLA Nanocomposites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, S.S.; Abdelkarim, E.A.; Elsamahy, T.; Al-Tohamy, R.; Li, F.; Kornaros, M.; Zuorro, A.; Zhu, D.; Sun, J. Bioplastic Production in Terms of Life Cycle Assessment: A State-of-the-Art Review. Environ. Sci. Ecotechnol. 2023, 15, 100254. [Google Scholar] [CrossRef] [PubMed]
- de França, J.O.C.; da Silva Valadares, D.; Paiva, M.F.; Dias, S.C.L.; Dias, J.A. Polymers Based on PLA from Synthesis Using D,L-Lactic Acid (or Racemic Lactide) and Some Biomedical Applications: A Short Review. Polymers 2022, 14, 2317. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Wang, M.; Sun, H.; Zhu, F.; Han, J.; Bhat, G. Preparation and Properties of Poly (Lactic Acid)/Magnetic Fe3 O4 Composites and Nonwovens. RSC Adv. 2017, 7, 41929–41935. [Google Scholar] [CrossRef]
- Balla, E.; Daniilidis, V.; Karlioti, G.; Kalamas, T.; Stefanidou, M.; Bikiaris, N.D.; Vlachopoulos, A.; Koumentakou, I.; Bikiaris, D.N. Poly(Lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties—From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications. Polymers 2021, 13, 1822. [Google Scholar] [CrossRef]
- Kulkarni, R.K.; Pani, K.C.; Neuman, C.; Leonard, F. Polylactic Acid for Surgical Implants. Arch. Surg. 1966, 93, 839–843. [Google Scholar] [CrossRef]
- Keshta, B.E.; Gemeay, A.H.; Kumar Sinha, D.; Elsharkawy, S.; Hassan, F.; Rai, N.; Arora, C. State of the Art on the Magnetic Iron Oxide Nanoparticles: Synthesis, Functionalization, and Applications in Wastewater Treatment. Results Chem. 2024, 7, 101388. [Google Scholar] [CrossRef]
- Salmanian, G.; Hassanzadeh-Tabrizi, S.A.; Koupaei, N. Magnetic Chitosan Nanocomposites for Simultaneous Hyperthermia and Drug Delivery Applications: A Review. Int. J. Biol. Macromol. 2021, 184, 618–635. [Google Scholar] [CrossRef]
- Ghazi, R.; Ibrahim, T.K.; Nasir, J.A.; Gai, S.; Ali, G.; Boukhris, I.; Rehman, Z. Iron Oxide Based Magnetic Nanoparticles for Hyperthermia, MRI and Drug Delivery Applications: A Review. RSC Adv. 2025, 15, 11587–11616. [Google Scholar] [CrossRef]
- Wang, H.-T.; Chiang, P.-C.; Tzeng, J.-J.; Wu, T.-L.; Pan, Y.-H.; Chang, W.-J.; Huang, H.-M. In Vitro Biocompatibility, Radiopacity, and Physical Property Tests of Nano-Fe3O4 Incorporated Poly-l-Lactide Bone Screws. Polymers 2017, 9, 191. [Google Scholar] [CrossRef]
- Bakina, O.V.; Ivanova, L.Y.; Toropkov, N.E.; Senkina, E.I.; Lerner, M.I.; Glazkova, E.A.; Krinitsyn, M.G. Core–Shell Fe-Fe3O4 Nanoparticles for Synthesizing PLA Composites with Low Toxicity and High Radiopacity. Phys. Mesomech. 2022, 25, 270–278. [Google Scholar] [CrossRef]
- Khalid, M.Y.; Arif, Z.U.; Noroozi, R.; Zolfagharian, A.; Bodaghi, M. 4D Printing of Shape Memory Polymer Composites: A Review on Fabrication Techniques, Applications, and Future Perspectives. J. Manuf. Process. 2022, 81, 759–797. [Google Scholar] [CrossRef]
- Sun, H.; Peng, S.; Wang, M.; Zhu, F.; Bhat, G.; Yu, B. Preparation and Characterization of Magnetic PLA/Fe3O4-g-PLLA Composite Melt Blown Nonwoven Fabric for Air Filtration. J. Eng. Fibers Fabr. 2020, 15, 1558925020968222. [Google Scholar] [CrossRef]
- Ren, Z.; Zhou, X.; Ding, K.; Ji, T.; Sun, H.; Chi, X.; Wei, Y.; Xu, M. Advancing Multi-Stimuli 4D Printing of Polylactic Acid with Rapid Shape Memory and Enhanced Toughness Using Lignin-Coated Fe3O4 Nanoparticles. Ind. Crops Prod. 2024, 208, 117809. [Google Scholar] [CrossRef]
- Firoz, A.B.; Rybakov, V.; Fetisova, A.A.; Shlapakova, L.E.; Pariy, I.O.; Toropkov, N.; Lozhkomoev, A.S.; Mukhortova, Y.R.; Sharonova, A.A.; Wagner, D.V.; et al. 3D-Printed Biodegradable Composite Poly(Lactic Acid)-Based Scaffolds with a Shape Memory Effect for Bone Tissue Engineering. Adv. Compos. Hybrid Mater. 2025, 8, 95. [Google Scholar] [CrossRef]
- Makridis, A.; Okkalidis, N.; Trygoniaris, D.; Kazeli, K.; Angelakeris, M. Composite Magnetic 3D-Printing Filament Fabrication Protocol Opens New Perspectives in Magnetic Hyperthermia. J. Phys. Appl. Phys. 2023, 56, 285002. [Google Scholar] [CrossRef]
- Ryu, C.; Lee, H.; Kim, H.; Hwang, S.; Hadadian, Y.; Mohanty, A.; Park, I.-K.; Cho, B.; Yoon, J.; Lee, J.Y. Highly Optimized Iron Oxide Embedded Poly(Lactic Acid) Nanocomposites for Effective Magnetic Hyperthermia and Biosecurity. Int. J. Nanomed. 2022, 17, 31–44. [Google Scholar] [CrossRef]
- Bakr, E.A.; Gaber, M.; Saad, D.R.; Salahuddin, N. Comparative Study between Two Different Morphological Structures Based on Polylactic Acid, Nanocellulose and Magnetite for Co-Delivery of Flurouracil and Curcumin. Int. J. Biol. Macromol. 2023, 230, 123315. [Google Scholar] [CrossRef]
- Pekdemir, M.E.; Aydin, D.; Selçuk Pekdemir, S.; Erecevit Sönmez, P.; Aksoy, E. Shape Memory Polymer-Based Nanocomposites Magnetically Enhanced with Fe3O4 Nanoparticles. J. Inorg. Organomet. Polym. Mater. 2023, 33, 1147–1155. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, R.; Singh, T.P.; Batish, A. On Process Capability Comparison of Hybrid and Multi Blend PLA Matrix Composite: Magnetic and Surface Properties View Point. Mater. Today Proc. 2020, 28, 521–525. [Google Scholar] [CrossRef]
- Pratama, J.; Suyitno; Badranaya, M.I.; Adib, A.Z.; Wijaya, R.; Sandi, A.; Salim, U.A.; Saptoadi, H.; Arifvianto, B.; Mahardika, M. A Novel Powder Addition Method for Preparing Polylactic Acid (PLA)-Based Composite with Fused Filament Fabrication. Int. J. Adv. Manuf. Technol. 2024, 133, 3513–3527. [Google Scholar] [CrossRef]
- Yang, W.; Zhong, Y.; Feng, P.; Gao, C.; Peng, S.; Zhao, Z.; Shuai, C. Disperse Magnetic Sources Constructed with Functionalized Fe3O4 Nanoparticles in Poly-l-Lactic Acid Scaffolds. Polym. Test. 2019, 76, 33–42. [Google Scholar] [CrossRef]
- Murariu, M.; Galluzzi, A.; Paint, Y.; Murariu, O.; Raquez, J.-M.; Polichetti, M.; Dubois, P. Pathways to Green Perspectives: Production and Characterization of Polylactide (PLA) Nanocomposites Filled with Superparamagnetic Magnetite Nanoparticles. Materials 2021, 14, 5154. [Google Scholar] [CrossRef] [PubMed]
- Nikolić, N.; Gonzalez-Gaitano, G.; González-Benito, J. Spun Nanofibrous Materials Based on Polylactic Acid/Magnetite-Nanoparticles: Tunning Mechanical Behavior. Soc. Sci. Res. Netw. 2025, 5087136. [Google Scholar] [CrossRef]
- Shan, D.; Shi, Y.; Duan, S.; Wei, Y.; Cai, Q.; Yang, X. Electrospun Magnetic Poly(l-Lactide) (PLLA) Nanofibers by Incorporating PLLA-Stabilized Fe3O4 Nanoparticles. Mater. Sci. Eng. C 2013, 33, 3498–3505. [Google Scholar] [CrossRef]
- de França, J.O.C.; Lima, Q.d.S.; Barbosa, M.M.; Fonseca, A.L.F.; Machado, G.D.F.; Dias, S.C.L.; Dias, J.A. Sonochemical Synthesis of Magnetite/Poly(Lactic Acid) Nanocomposites. Polymers 2023, 15, 4662. [Google Scholar] [CrossRef]
- Chafran, L.S.; Campos, J.M.C.; Santos, J.S.; Sales, M.J.A.; Dias, S.C.L.; Dias, J.A. Synthesis of Poly(Lactic Acid) by Heterogeneous Acid Catalysis from d,l-Lactic Acid. J. Polym. Res. 2016, 23, 107. [Google Scholar] [CrossRef]
- Chafran, L.S.; Paiva, M.F.; França, J.O.C.; Sales, M.J.A.; Dias, S.C.L.; Dias, J.A. Preparation of PLA Blends by Polycondensation of D,L-Lactic Acid Using Supported 12-Tungstophosphoric Acid as a Heterogeneous Catalyst. Heliyon 2019, 5, e01810. [Google Scholar] [CrossRef]
- Boua-In, K.; Chaiyut, N.; Ksapabutr, B. Preparation of Polylactide by Ring-Opening Polymerisation of Lactide. Optoelectron. Adv. Mater.–RAPID Commun. 2010, 4, 1404–1407. [Google Scholar]
- Singla, P.; Mehta, R.; Berek, D.; Upadhyay, S.N. Microwave Assisted Synthesis of Poly(Lactic Acid) and Its Characterization Using Size Exclusion Chromatography. J. Macromol. Sci. Part A 2012, 49, 963–970. [Google Scholar] [CrossRef]
- Jarmelo, S.; Marques, D.A.S.; Simões, P.N.; Carvalho, R.A.; Batista, C.M.S.G.; Araujo-Andrade, C.; Gil, M.H.; Fausto, R. Experimental (IR/Raman and 1H/13C NMR) and Theoretical (DFT) Studies of the Preferential Conformations Adopted by l-Lactic Acid Oligomers and Poly(l-Lactic Acid) Homopolymer. J. Phys. Chem. B 2012, 116, 9–21. [Google Scholar] [CrossRef]
- Kenawy, E.-R.; Abd El Hay, A.M.; Saad, N.; Azaam, M.M.; Shoueir, K.R. Synthesis, Characterization of Poly L(+) Lactic Acid and Its Application in Sustained Release of Isosorbide Dinitrate. Sci. Rep. 2024, 14, 7062. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-S.; Hong, C.-K. Relationship between the Stereocomplex Crystallization Behavior and Mechanical Properties of PLLA/PDLA Blends. Polymers 2021, 13, 1851. [Google Scholar] [CrossRef] [PubMed]
- Marx, B.; Bostan, L.; Herrmann, A.S.; Boskamp, L.; Koschek, K. Properties of Stereocomplex PLA for Melt Spinning. Polymers 2023, 15, 4510. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Yang, H.; Cheng, K.; Song, H.; Zou, J.; Li, C.; Xiao, W.; Liu, Z.; Liao, X. Development of Magnetic Poly(L-Lactic Acid) Nanofibrous Microspheres for Transporting and Delivering Targeted Cells. Colloids Surf. B Biointerfaces 2023, 223, 113175. [Google Scholar] [CrossRef]
- Fattahi, N.; Kashif, M.; Ramazani, A. Caesium Carbonate Functionalized Magnetic Nanoparticles: An Efficient Heterogeneous and Reusable Inorganic Catalyst for Aldol Reaction in Water. Inorg. Chem. Commun. 2023, 149, 110388. [Google Scholar] [CrossRef]
- Oliveira-Filho, G.B.; Atoche-Medrano, J.J.; Aragón, F.F.H.; Mantilla Ochoa, J.C.; Pacheco-Salazar, D.G.; da Silva, S.W.; Coaquira, J.A.H. Core-Shell Au/Fe3O4 Nanocomposite Synthesized by Thermal Decomposition Method: Structural, Optical, and Magnetic Properties. Appl. Surf. Sci. 2021, 563, 150290. [Google Scholar] [CrossRef]
- de Mendonça, E.S.D.T.; de Faria, A.C.B.; Dias, S.C.L.; Aragón, F.F.H.; Mantilla, J.C.; Coaquira, J.A.H.; Dias, J.A. Effects of Silica Coating on the Magnetic Properties of Magnetite Nanoparticles. Surf. Interfaces 2019, 14, 34–43. [Google Scholar] [CrossRef]
- Teixeira, S.; Eblagon, K.M.; Miranda, F.R.; Pereira, M.F.; Figueiredo, J.L. Towards Controlled Degradation of Poly(Lactic) Acid in Technical Applications. C 2021, 7, 42. [Google Scholar] [CrossRef]
- Tudorachi, N.; Chiriac, A.P.; Nita, L.E.; Mustata, F.; Diaconu, A.; Balan, V.; Rusu, A.; Lisa, G. Studies on the Nanocomposites Based on Carboxymethyl Starch-g-Lactic Acid-Co-Glycolic Acid Copolymer and Magnetite. J. Therm. Anal. Calorim. 2018, 131, 1867–1880. [Google Scholar] [CrossRef]
- Karimpour-Motlagh, N.; Khonakdar, H.A.; Jafari, S.M.A.; Mahjub, A.; Panahi-Sarmad, M.; Kasbi, S.F.; Shojaei, S.; Goodarzi, V.; Arjmand, M. Influence of Polypropylene and Nanoclay on Thermal and Thermo-Oxidative Degradation of Poly(Lactide Acid): TG-FTIR, TG-DSC Studies and Kinetic Analysis. Thermochim. Acta 2020, 691, 178709. [Google Scholar] [CrossRef]
- Gupta, M.C.; Deshmukh, V.G. Thermal Oxidative Degradation of Poly-Lactic Acid. Colloid Polym. Sci. 1982, 260, 308–311. [Google Scholar] [CrossRef]
- Shabanian, M.; Khoobi, M.; Hemati, F.; Khonakdar, H.A.; Ebrahimi, S.E.S.; Wagenknecht, U.; Shafiee, A. New PLA/PEI-Functionalized Fe3O4 Nanocomposite: Preparation and Characterization. J. Ind. Eng. Chem. 2015, 24, 211–218. [Google Scholar] [CrossRef]
- Oliveira, M.; Santos, E.; Araújo, A.; Fechine, G.J.M.; Machado, A.V.; Botelho, G. The Role of Shear and Stabilizer on PLA Degradation. Polym. Test. 2016, 51, 109–116. [Google Scholar] [CrossRef]
- Oksiuta, Z.; Jalbrzykowski, M.; Mystkowska, J.; Romanczuk, E.; Osiecki, T. Mechanical and Thermal Properties of Polylactide (PLA) Composites Modified with Mg, Fe, and Polyethylene (PE) Additives. Polymers 2020, 12, 2939. [Google Scholar] [CrossRef]
- Testa-Anta, M.; Ramos-Docampo, M.A.; Comesaña-Hermo, M.; Rivas-Murias, B.; Salgueiriño, V. Raman Spectroscopy to Unravel the Magnetic Properties of Iron Oxide Nanocrystals for Bio-Related Applications. Nanoscale Adv. 2019, 1, 2086–2103. [Google Scholar] [CrossRef]
- Garg, P.; Mohapatra, L.; Poonia, A.K.; Kushwaha, A.K.; Adarsh, K.N.V.D.; Sarker, D.; Deshpande, U. Highly [210] Oriented Porous α-Fe2O3/Fe3O4/Fe Mesocrystalline Photoanode for Efficient Water Splitting. J. Phys. Chem. C 2024, 128, 18736–18749. [Google Scholar] [CrossRef]
- Schwaminger, S.P.; Fraga-García, P.; Selbach, F.; Hein, F.G.; Fuß, E.C.; Surya, R.; Roth, H.-C.; Blank-Shim, S.A.; Wagner, F.E.; Heissler, S.; et al. Bio-Nano Interactions: Cellulase on Iron Oxide Nanoparticle Surfaces. Adsorption 2017, 23, 281–292. [Google Scholar] [CrossRef]
- Shebanova, O.N.; Lazor, P. Raman Spectroscopic Study of Magnetite (FeFe2O4): A New Assignment for the Vibrational Spectrum. J. Solid State Chem. 2003, 174, 424–430. [Google Scholar] [CrossRef]
- Girardet, T.; Diliberto, S.; Carteret, C.; Cleymand, F.; Fleutot, S. Determination of the Percentage of Magnetite in Iron Oxide Nanoparticles: A Comparison between Mössbauer Spectroscopy and Raman Spectroscopy. Solid State Sci. 2023, 143, 107258. [Google Scholar] [CrossRef]
- Hanesch, M. Raman Spectroscopy of Iron Oxides and (Oxy)Hydroxides at Low Laser Power and Possible Applications in Environmental Magnetic Studies. Geophys. J. Int. 2009, 177, 941–948. [Google Scholar] [CrossRef]
- Slavov, L.; Abrashev, M.V.; Merodiiska, T.; Gelev, C.; Vandenberghe, R.E.; Markova-Deneva, I.; Nedkov, I. Raman Spectroscopy Investigation of Magnetite Nanoparticles in Ferrofluids. J. Magn. Magn. Mater. 2010, 322, 1904–1911. [Google Scholar] [CrossRef]
- Mansournia, M.; Azizi, F. Ammonia-Mediated Method for One-Step and Surfactant-Free Synthesis of Magnetite Nanoparticles. J. Nanostruct. 2015, 5, 403–408. [Google Scholar] [CrossRef]
- Morel, A.-L.; Nikitenko, S.I.; Gionnet, K.; Wattiaux, A.; Lai-Kee-Him, J.; Labrugere, C.; Chevalier, B.; Deleris, G.; Petibois, C.; Brisson, A.; et al. Sonochemical Approach to the Synthesis of Fe3O4@SiO2 Core−Shell Nanoparticles with Tunable Properties. ACS Nano 2008, 2, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Gregg, S.J.; Sing, K.S.W. Adsorption Surface Area and Porosity, 2nd ed.; Academic Press Inc., Ltd.: London, UK, 1967. [Google Scholar]
- Cornell, R.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2003; ISBN 978-3-527-60209-4. [Google Scholar]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Sangwichien, C.; Aranovich, G.L.; Donohue, M.D. Density Functional Theory Predictions of Adsorption Isotherms with Hysteresis Loops. Colloids Surf. Physicochem. Eng. Asp. 2002, 206, 313–320. [Google Scholar] [CrossRef]
- Sabzi, M.; Jiang, L.; Atai, M.; Ghasemi, I. PLA/Sepiolite and PLA/Calcium Carbonate Nanocomposites: A Comparison Study. J. Appl. Polym. Sci. 2013, 129, 1734–1744. [Google Scholar] [CrossRef]
- Łatwińska, M.; Sójka-Ledakowicz, J.; Chruściel, J.; Piórkowski, M. PLA and PP Composite Nonwoven with Antimicrobial Activity for Filtration Applications. Int. J. Polym. Sci. 2016, 2016, 2510372. [Google Scholar] [CrossRef]
- Gupta, A.K.; Gupta, M. Synthesis and Surface Engineering of Iron Oxide Nanoparticles for Biomedical Applications. Biomaterials 2005, 26, 3995–4021. [Google Scholar] [CrossRef]
- Shokrollahi, H. A Review of the Magnetic Properties, Synthesis Methods and Applications of Maghemite. J. Magn. Magn. Mater. 2017, 426, 74–81. [Google Scholar] [CrossRef]
- Maity, D.; Choo, S.-G.; Yi, J.; Ding, J.; Xue, J.M. Synthesis of Magnetite Nanoparticles via a Solvent-Free Thermal Decomposition Route. J. Magn. Magn. Mater. 2009, 321, 1256–1259. [Google Scholar] [CrossRef]
Material | Fe3O4 Content (%) | Difference (%) a |
---|---|---|
2MNP/PLA | 2.0 | −0.5 |
5MNP/PLA | 4.8 | −0.2 |
10MNP/PLA | 8.3 | −1.7 |
15MNP/PLA | 13.1 | −1.9 |
20MNP/PLA | 18.2 | −1.8 |
Material | T1 (°C) | T2 (°C) |
---|---|---|
2MNP/PLA | 281 | 361 |
5MNP/PLA | 276 | 371 |
10MNP/PLA | 276 | 361 |
15MNP/PLA | 275 | 334 |
20MNP/PLA | 271 | 336 |
Material | TPT (°C) a | TTD (°C) b | TOD1 (°C) c | TOD2 (°C) c |
---|---|---|---|---|
PLA | 139 | 305 | 338 | 366 |
2MNP/PLA | 145 | 276 | 303 | 370 |
5MNP/PLA | 143 | 269 | 294 | 381 |
10MNP/PLA | 143 | 270 | 293 | 365 |
15MNP/PLA | 143 | 269 | 311 | 331 |
20MNP/PLA | 145 | 259 | 318 | 350 |
Material | SBET a (m2/g) | SMicro b (m2/g) | Vp c (cm3/g) | VMicro d (cm3/g) |
---|---|---|---|---|
MNP | 41.5 | 10.7 | 0.15 | 0.0047 |
PLA | 0.4 | 0 | 0 | 0 |
2MNP/PLA | 2.2 | 1.4 | 0.03 | 0.0004 |
5MNP/PLA | 2.3 | 1.4 | 0.04 | 0.0005 |
10MNP/PLA | 1.6 | 1.3 | 0.02 | 0.0005 |
15MNP/PLA | 2.0 | 1.4 | 0.02 | 0.0002 |
20MNP/PLA | 2.1 | 2.2 | 0.04 | 0.0008 |
Material | HC (5 K) | HC (300 K) | MS (5 K) | MS (300 K) |
---|---|---|---|---|
MNP | 339 | 108 | 65.1 | 58.6 |
2MNP/PLA | 237 | 0 | 1.8 | 0.6 |
5MNP/PLA | 411 | 38 | 2.5 | 1.9 |
10MNP/PLA | 313 | 46 | 5.3 | 4.1 |
15MNP/PLA | 403 | 78 | 10.9 | 9.4 |
20MNP/PLA | 403 | 59 | 13.7 | 11.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa, M.M.d.M.; de França, J.O.C.; Lima, Q.d.S.; Dias, S.C.L.; Huayhua, C.A.V.; Aragón, F.F.H.; Coaquira, J.A.H.; Dias, J.A. Tailoring the Properties of Magnetite/PLA Nanocomposites: A Composition-Dependent Study. Polymers 2025, 17, 1713. https://doi.org/10.3390/polym17121713
Barbosa MMdM, de França JOC, Lima QdS, Dias SCL, Huayhua CAV, Aragón FFH, Coaquira JAH, Dias JA. Tailoring the Properties of Magnetite/PLA Nanocomposites: A Composition-Dependent Study. Polymers. 2025; 17(12):1713. https://doi.org/10.3390/polym17121713
Chicago/Turabian StyleBarbosa, Mariana Martins de Melo, Juliene Oliveira Campos de França, Quezia dos Santos Lima, Sílvia Cláudia Loureiro Dias, Carlos A. Vilca Huayhua, Fermín F. H. Aragón, José A. H. Coaquira, and José Alves Dias. 2025. "Tailoring the Properties of Magnetite/PLA Nanocomposites: A Composition-Dependent Study" Polymers 17, no. 12: 1713. https://doi.org/10.3390/polym17121713
APA StyleBarbosa, M. M. d. M., de França, J. O. C., Lima, Q. d. S., Dias, S. C. L., Huayhua, C. A. V., Aragón, F. F. H., Coaquira, J. A. H., & Dias, J. A. (2025). Tailoring the Properties of Magnetite/PLA Nanocomposites: A Composition-Dependent Study. Polymers, 17(12), 1713. https://doi.org/10.3390/polym17121713