Super Hydrophobic UHMWPE/PTFE/PVA Composites with Low Friction: Preparation and Wear Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Characterization and Testing
3. Results
3.1. Physical Properties
3.2. Tribological Properties
3.3. Wear Morphology
4. Discussion
5. Conclusions
- (1)
- PTFE disrupts UHMWPE crystallization, reducing melting temperature by up to 2.77 °C and enhancing energy dissipation; all composites exhibit hydrophobicity, with UPP3/UPP4 achieving superhydrophobicity (contact angle > 150°).
- (2)
- UPPs deliver ultra-low friction (COF < 0.2), where UPP1 reaches a minimum COF of 0.043 and wear rate below 1.5 × 10−5 mm3/(N·m) under low-load/speed conditions.
- (3)
- XPS validates UHMWPE oxidative degradation forming carboxylic acids, alongside tungsten oxides, carbides and PTFE transfer films on steel counterparts. A four-step reaction pathway (chain scission → radical oxidation → aldehyde conversion → carboxylic acid) is established.
- (4)
- Synergistic mechanisms are uncovered: PVA improves dispersion/binding for rapid transfer films; PTFE lamellar peeling enables lubrication; UHMWPE stabilizes mechanical support. Carbon-rich stratified accumulations under high-load/speed increase COF via abrasive “hard particle” effects.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Du, G.; Guo, J.; Wang, J.; Bian, D.; Zhang, X. Tribological behavior of 3D printed nanofluid reinforced photosensitive self-lubricating polymer materials. Addit. Manuf. 2024, 80, 103959. [Google Scholar] [CrossRef]
- Wang, H.; Qi, X.; Liang, L.; Wang, Y.; Zhang, J.; Meng, X. Tribological properties of graphene oxide reinforced PPTA/PTFE composites. J. Mater. Res. Technol. 2023, 23, 3505–3514. [Google Scholar] [CrossRef]
- Hussain, O.; Saleem, S.S.; Ahmad, B. Friction and wear performance evaluation of UHMWPE using Taguchi based grey approach: A study on the influence of load and bio-serum lubrication. Mater. Chem. Phys. 2020, 239, 121918. [Google Scholar] [CrossRef]
- Ning, M.; Sun, W.; Kong, L.; Han, W.; Xu, Y.; Shi, B.; Li, P.; Li, J.; Song, G. Superhydrophobic anti-fouling medicine box material: A dual modification method of UHMWPE surface melting snow wax. J. Appl. Polym. Sci. 2024, 141, 44. [Google Scholar] [CrossRef]
- Hussain, M.; Naqvi, R.A.; Abbas, N.; Khan, S.M.; Nawaz, S.; Hussain, A.; Zahra, N.; Khalid, M.W. Ultra-High-Molecular-Weight-Polyethylene (UHMWPE) as a Promising Polymer Material for Biomedical Applications: A Concise Review. Polymers 2020, 12, 323. [Google Scholar] [CrossRef] [PubMed]
- Gote, R.P.; Romano, D.; van der Eem, J.; Zhao, J.; Zhou, F.; Rastogi, S. Unprecedented Mechanical Properties in Linear UHMWPE Using a Heterogeneous Catalytic System. Macromolecules 2023, 56, 1. [Google Scholar] [CrossRef]
- Panin, S.V.; Kornienko, L.A.; Suan, T.N.; Ivanova, L.R.; Korchagin, M.A.; Shil’ko, S.V.; Pleskachevskii, Y.M. Wear resistance of composites based on hybrid UHMWPE–PTFE matrix: Mechanical and tribotechnical properties of the matrix. J. Frict. Wear 2015, 36, 249–256. [Google Scholar] [CrossRef]
- Menezes, P.L.; Kailas, S.V. Role of surface texture and roughness parameters on friction and transfer film formation when UHMWPE sliding against steel. Biosurf. Biotribol. 2016, 2, 1–10. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Chen, Q.; Li, P.; Zhou, A.; Cao, X.; Hu, Q. Preparation, mechanical and anti-friction performance of MXene/polymer composites. Mater. Des. 2016, 92, 682–689. [Google Scholar] [CrossRef]
- Chang, B.P.; Akil, H.M.; Nasir, R.B.; Khan, A. Optimization on wear performance of UHMWPE composites using response surface methodology. Tribol. Int. 2015, 88, 252–262. [Google Scholar] [CrossRef]
- Chih, A.; Ansón-Casaos, A.; Puértolas, J.A. Frictional and mechanical behaviour of graphene/UHMWPE composite coatings. Tribol. Int. 2017, 116, 295–302. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, H.; Wang, Y.; Yan, F. Modification effects of short carbon fibers on mechanical properties and fretting wear behavior of UHMWPE composites. Surf. Interface Anal. 2016, 48, 139–145. [Google Scholar] [CrossRef]
- Chukov, D.I.; Stepashkin, A.A.; Maksimkin, A.V.; Tcherdyntsev, V.V.; Kaloshkin, S.D.; Kuskov, K.V.; Bugakov, V.I. Investigation of structure, mechanical and tribological properties of short carbon fiber reinforced UHMWPE-matrix composites. Compos. Part B Eng. 2015, 76, 79–88. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; Gao, J.; Yue, H. Tribological properties of self-reinforced ultra-high molecular weight polyethylene composites. Mater. Express 2015, 5, 146–152. [Google Scholar] [CrossRef]
- Cai, T.; Zhan, S.; Yang, T.; Jia, D.; Tu, J.; Li, Y.; Li, J.; Duan, H. Influence mechanism of organic-modified α-zirconium phosphate on tribological properties of UHMWPE. Wear 2023, 512, 204548. [Google Scholar] [CrossRef]
- Belotti, L.P.; Vadivel, H.S.; Emami, N. Tribological performance of hygrothermally aged UHMWPE hybrid composite. Tribol. Int. 2019, 138, 150–156. [Google Scholar] [CrossRef]
- Zhen, J.; Han, Y.; Zhu, L.; Hou, W.; Liu, Y.; Huang, W.; Yang, L.; Yuan, L.; Jia, Z.; Zhang, R. MoS2/CF synergistic enhancement to improve the friction and wear properties of UHMWPE composites. Tribol. Int. 2023, 179, 108097. [Google Scholar] [CrossRef]
- Zheng, Z.; Dong, C.; Bai, X.; Yuan, C.; Cai, T. A novel biomimetic strategy for improving lubrication performances of modified UHMWPE inspired by the slippery gel release behavior of chia seeds. Compos. Part B Eng. 2025, 301, 112520. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, Z.; Shen, J.; Wang, J.; Luo, Y. Enhanced Tribological Performance of UHMWPE Composites Reinforced With Wollastonite: Biocompatibility and Wear Behavior. ASME J. Tribol. 2025, 147, 044001. [Google Scholar] [CrossRef]
- Zhou, X.; Li, B.; Huang, Q.; Huang, J. Effects of graphene oxide and graphene spatial orientation on tribological properties of UHMWPE composites. Wear 2025, 564–565, 205684. [Google Scholar] [CrossRef]
- Li, S.; Tang, L.; Pu, J.; Wang, J.; Fan, C.; Li, Z.; Song, J. Continuous Hyaluronic Acid Supply by a UHMWPE/PEEK Interlocking Scaffold for Metatarsophalangeal Joint Prosthesis Lubricating Applications. ACS Appl. Mater. Interfaces 2025, 17, 11704–11717. [Google Scholar] [CrossRef] [PubMed]
- ISO 3290:2014; Rolling Bearings—Balls—Dimensions and Tolerances. International Organization for Standardization: Geneva, Switzerland, 2014.
- Qu, Z.Y.; Wang, F.; Liu, P.; Yu, Q.L.; Brouwers, H.J.H. Super-hydrophobic magnesium oxychloride cement (MOC): From structural control to self-cleaning property evaluation. Mater. Struct. 2020, 53, 1–10. [Google Scholar] [CrossRef]
- Shen, H.; Wang, T.; Feng, X.; Zhang, J.; Liu, X.; Tong, L. Improvement of wear resistance of polyarylene ether nitrile composites through synergistic effect of PTFE and ZnO. Polymer 2024, 313, 127739. [Google Scholar] [CrossRef]
- Xi, C.; Zhang, B.; Ye, X.; Yan, H. Fabrication of polytetrafluoroethylene—Reinforced fluorocarbon composite coatings and tribological properties under multi-environment working conditions. Polymers 2024, 16, 3595. [Google Scholar] [CrossRef]
- Liu, C.; Wang, H.; Qi, X.; Fan, B.; Yang, X.; Dong, Y. Experimental investigation on triglycidyl isocyanurate-based tribologically functional composites. Polym. Compos. 2023, 4, 3641–3652. [Google Scholar] [CrossRef]
- Xie, T.; Shi, Y. Effects of LaF3/CeF3 on the friction transfer of PTFE-based composites. Tribol. Int. 2021, 161, 107069. [Google Scholar] [CrossRef]
- Wang, K.; Liu, M.; Song, C.; Shen, L.; Chen, P.; Xu, S. Surface-conductive UHMWPE fibres via in situ reduction and deposition of graphene oxide. Mater. Des. 2018, 148, 167–176. [Google Scholar] [CrossRef]
- Wang, K.; Hou, D.; Wang, J.; Wang, Z.; Tian, B.; Liang, P. Hydrophilic surface coating on hydrophobic PTFE membrane for robust anti-oil-fouling membrane distillation. Appl. Surf. Sci. 2018, 450, 57–65. [Google Scholar] [CrossRef]
- Ženíšek, J.; Ondračka, P.; Čechal, J.; Souček, P.; Holec, D.; Vašina, P. W 4f electron binding energies in amorphous W-B-C systems. Appl. Surf. Sci. 2022, 586, 152824. [Google Scholar] [CrossRef]
- Tan, C.; Huang, Y.; Zhang, L.; Zhang, J.; Li, N. Preparation and properties analysis of Ni-W/Si3N4 composite coating on 7075 aluminum alloy. Phys. B Condens. Matter 2025, 700, 416929. [Google Scholar] [CrossRef]
- You, Y.-L.; Li, D.-X.; Si, G.-J.; Deng, X. Investigation of the influence of solid lubricants on the tribological properties of polyamide 6 nanocomposite. Wear 2014, 311, 57–64. [Google Scholar] [CrossRef]
- Fu, L.; Fu, B.; Zhou, M.; Du, S.; Zhang, Y.; Shan, Q.; Hua, L.; Ding, Z.; Zhang, G. Study on metal nanoparticles-PDA interface modification and its effect on the tribology behavior of PTFE self-lubricating coating materials. Appl. Surf. Sci. 2025, 693, 162839. [Google Scholar] [CrossRef]
- Li, C.; Lu, G.; Wang, G.; Liu, B.; Xue, T.; Yuan, H.; Nie, J.; Zhu, X. Initiator-Free Photo-Curing 3D-Printable PVA-based Hydrogel with Tunable Mechanical Properties and Cell Compatibility. Macromol. Rapid Commun. 2023, 44, e2300214. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Kim, G.; Kim, D. Effect of Carboxymethyl Cellulose and Polyvinyl Alcohol on the Dispersibility and Chemical Functional Group of Nonwoven Fabrics Composed of Recycled Carbon Fibers. Materials 2024, 17, 4209. [Google Scholar] [CrossRef]
UHMWPE | PVA | PTFE | |
---|---|---|---|
UPP1 | 8 g | 1 g | 1 g |
UPP2 | 10 g | 1 g | 3 g |
UPP3 | 12 g | 1 g | 5 g |
UPP4 | 14 g | 1 g | 8 g |
Load | Velocity | Distance | |
---|---|---|---|
W1 | 2 N | 1 Hz | 200 m |
W2 | 2 N | 2 Hz | |
W3 | 2 N | 4 Hz | |
W4 | 5 N | 1 Hz | |
W5 | 5 N | 2 Hz | |
W6 | 5 N | 4 Hz | |
W7 | 10 N | 1 Hz | |
W8 | 10 N | 2 Hz | |
W9 | 10 N | 4 Hz |
UHMWPE (Prop) | PVA (Prop) | PTFE (Prop) | ΔH/(J/g) | ΔH/(J/g) | XC/% | |
---|---|---|---|---|---|---|
Pure | 1.000 | 0.000 | 0.000 | 293.000 | 195.315 | 66.660 |
UPP1 | 0.800 | 0.100 | 0.100 | 263.400 | 161.731 | 61.401 |
UPP2 | 0.714 | 0.071 | 0.214 | 247.143 | 133.925 | 54.189 |
UPP3 | 0.667 | 0.056 | 0.278 | 238.111 | 105.048 | 44.117 |
UPP4 | 0.609 | 0.043 | 0.348 | 227.478 | 124.849 | 54.884 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Shao, Z.; Shen, K.; Bateer, B.; Ren, F.; Qi, X. Super Hydrophobic UHMWPE/PTFE/PVA Composites with Low Friction: Preparation and Wear Mechanism. Polymers 2025, 17, 1664. https://doi.org/10.3390/polym17121664
Wang H, Shao Z, Shen K, Bateer B, Ren F, Qi X. Super Hydrophobic UHMWPE/PTFE/PVA Composites with Low Friction: Preparation and Wear Mechanism. Polymers. 2025; 17(12):1664. https://doi.org/10.3390/polym17121664
Chicago/Turabian StyleWang, Hai, Zhiwei Shao, Kuiyuan Shen, Buhe Bateer, Fushen Ren, and Xiaowen Qi. 2025. "Super Hydrophobic UHMWPE/PTFE/PVA Composites with Low Friction: Preparation and Wear Mechanism" Polymers 17, no. 12: 1664. https://doi.org/10.3390/polym17121664
APA StyleWang, H., Shao, Z., Shen, K., Bateer, B., Ren, F., & Qi, X. (2025). Super Hydrophobic UHMWPE/PTFE/PVA Composites with Low Friction: Preparation and Wear Mechanism. Polymers, 17(12), 1664. https://doi.org/10.3390/polym17121664