Multifunctional Polymer Composite Materials
1. Introduction
2. Overview of Published Articles
3. Summary and Future Outlook
Acknowledgments
Conflicts of Interest
References
- Al-Amiery, A.A.; Fayad, M.A.; Wahhab, H.A.A.; Al-Azzawi, W.K.; Mohammed, J.K.; Majdi, H.S. Interfacial engineering for advanced functional materials: Surfaces, interfaces, and applications. Results Eng. 2024, 22, 102125. [Google Scholar] [CrossRef]
- Ganeshkumar, S.; Rahman, H.A.; Gowtham, T.M.; Adithya, T.; Suyambulinagm, I.; Maniraj, J. Multifunctional Polymer Composites: Design, Properties, and Emerging Applications—A Critical Review. In International Conference on Eco-Friendly Fibers and Polymeric Materials; Springer Nature: Singapore, 2024; pp. 637–649. [Google Scholar]
- Luo, L.; Zhang, F.; Wang, L.; Liu, Y.; Leng, J. Recent advances in shape memory polymers: Multifunctional materials, multiscale structures, and applications. Adv. Funct. Mater. 2024, 34, 2312036. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Velidakis, E.; Tzounis, L.; Mountakis, N.; Boura, O.; Grammatikos, S.A. Multi-functional polyamide 12 (PA12)/multiwall carbon nanotube 3D printed nanocomposites with enhanced mechanical and electrical properties. Adv. Compos. Mater. 2022, 31, 630–654. [Google Scholar] [CrossRef]
- Wawrzyńczak, A.; Chudzińska, J.; Feliczak-Guzik, A. Metal and metal oxides nanoparticles as nanofillers for biodegradable polymers. ChemPhysChem 2024, 25, e202300823. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Pandey, R.K.; Shukla, S.S.; Gidwani, B. Ceramic fillers, fibers, and acrylics. In Magnetic Polymer Composites and Their Emerging Applications; CRC Press: Boca Raton, FL, USA, 2024; pp. 289–313. [Google Scholar]
- Jiang, R.; Zheng, X.; Zhu, S.; Li, W.; Zhang, H.; Liu, Z.; Zhou, X. Recent advances in functional polyurethane chemistry: From structural design to applications. Chem. Sel. 2023, 8, e202204132. [Google Scholar] [CrossRef]
- Kumar, V.; Parvin, N.; Joo, S.W.; Mandal, T.K.; Park, S.S. Great carbon nano materials based composites for electronic skin: Intelligent sensing, and self-powered nano generators. Nano Energy 2025, 137, 110805. [Google Scholar] [CrossRef]
- Liu, J.; Yao, Y.; Li, X.; Zhang, Z. Fabrication of advanced polydimethylsiloxane-based functional materials: Bulk modifications and surface functionalizations. Chem. Eng. J. 2021, 408, 127262. [Google Scholar] [CrossRef]
- Qi, D.; Zhang, K.; Tian, G.; Jiang, B.; Huang, Y. Stretchable electronics based on PDMS substrates. Adv. Mater. 2021, 33, 2003155. [Google Scholar] [CrossRef]
- Zhu, M.; Biswas, S.; Dinulescu, S.I.; Kastor, N.; Hawkes, E.W.; Visell, Y. Soft, wearable robotics and haptics: Technologies, trends, and emerging applications. Proc. IEEE 2022, 110, 246–272. [Google Scholar] [CrossRef]
- Lee, J.H.; Cho, K.H.; Cho, K. Emerging trends in soft electronics: Integrating machine intelligence with soft acoustic/vibration sensors. Adv. Mater. 2023, 35, 2209673. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, K.; Liu, Y.; Guo, Y.; Liu, Y. Intrinsically flexible displays: Key materials and devices. Natl. Sci. Rev. 2022, 9, nwac090. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekar, A.; Hegde, M.; Krishna, S.; Gopi, J.A.; Kotresh, T.M.; Prabhu, T.N. Non-covalent surface functionalization of nanofillers towards the enhancement of thermal conductivity of polymer nanocomposites: A mini review. Eur. Polym. J. 2023, 198, 112379. [Google Scholar] [CrossRef]
- Luan, C.; Movva, S.; Wang, K.; Yao, X.; Zhang, C.; Wang, B. Towards next-generation fiber-reinforced polymer composites: A perspective on multifunctionality. Funct. Compos. Struct. 2019, 1, 042002. [Google Scholar] [CrossRef]
- Kumar, V.; Alam, M.N.; Yewale, M.A.; Park, S.S. Multifunctional Aspects of Mechanical and Electromechanical Properties of Composites Based on Silicone Rubber for Piezoelectric Energy Harvesting Systems. Polymers 2024, 16, 2058. [Google Scholar] [CrossRef]
- Iyer, V.; Petersen, J.; Geier, S.; Wierach, P. Design and Characterization of Poly (ethylene oxide)-Based Multifunctional Composites with Succinonitrile Fillers for Ambient-Temperature Structural Sodium-Ion Batteries. Polymers 2024, 16, 2806. [Google Scholar] [CrossRef] [PubMed]
- Assadakorn, D.; Liu, G.; Hao, K.; Bai, L.; Liu, F.; Xu, Y.; Guo, L.; Liu, H. Effects of BET Surface Area and Silica Hydrophobicity on Natural Rubber Latex Foam Using the Dunlop Process. Polymers 2024, 16, 3076. [Google Scholar] [CrossRef]
- Malashin, I.; Masich, I.; Tynchenko, V.; Gantimurov, A.; Nelyub, V.; Borodulin, A.; Martysyuk, D.; Galinovsky, A. Machine Learning in 3D and 4D Printing of Polymer Composites: A Review. Polymers 2024, 16, 3125. [Google Scholar] [CrossRef]
- Sriani, T.; Mahardika, M.; Arifvianto, B.; Yusof, F.; Whulanza, Y.; Prihandana, G.S.; Baskoro, A.S. Study of Polysulfone-Impregnated Hydroxyapatite for Ultrafiltration in Whey Protein Separation. Polymers 2024, 16, 3079. [Google Scholar] [CrossRef]
- Bril’, I.Y.; Voronin, A.; Fadeev, Y.; Pavlikov, A.; Govorun, I.; Podshivalov, I.; Parshin, B.; Makeev, M.; Mikhalev, P.; Afanasova, K.; et al. Laser-Induced Silver Nanowires/Polymer Composites for Flexible Electronics and Electromagnetic Compatibility Application. Polymers 2024, 16, 3174. [Google Scholar] [CrossRef]
- Inna, T.; Krajangta, N.; Rakmanee, T. The Staining Susceptibility and Surface Roughness of Teeth Restored by Microabrasion and Resin Infiltration: An In Vitro Study. Polymers 2024, 16, 3523. [Google Scholar] [CrossRef]
- Fatkullin, M.; Petrov, I.; Dogadina, E.; Kogolev, D.; Vorobiev, A.; Postnikov, P.; Chen, J.-J.; de Oliveira, R.F.; Kanoun, O.; Rodriguez, R.D.; et al. Electrochemical Switching of Laser-Induced Graphene/Polymer Composites for Tunable Electronics. Polymers 2025, 17, 192. [Google Scholar] [CrossRef] [PubMed]
- Repin, D.; Gablina, M.; Repina, N.; Cherednichenko, K.; Li, W.; Gushchina, Y.; Ivanov, E.; Melnikov, V.; Fakhrullin, R.; Vinokurov, V. Cellulose-Based Composite Materials for Fresh Water Extraction from Atmospheric Air. Polymers 2025, 17, 328. [Google Scholar] [CrossRef]
- Plamadiala, I.; Croitoru, C.; Pop, M.A.; Roata, I.C. Enhancing Polylactic Acid (PLA) Performance: A Review of Additives in Fused Deposition Modelling (FDM) Filaments. Polymers 2025, 17, 191. [Google Scholar] [CrossRef]
- Janmanee, R.; Sriwichai, S. Development of an Electrochemical Biosensor Based on Polypyrrole-3-carboxylic Acid/Polypyrrole/Au Nanoparticle Composites for Detection of Dopamine. Polymers 2025, 17, 754. [Google Scholar] [CrossRef]
- Kumar, V.; Alam, M.N.; Manik, G.; Park, S.S. Recent Advancements in Rubber Composites for Physical Activity Monitoring Sensors: A Critical Review. Polymers 2025, 17, 1085. [Google Scholar] [CrossRef] [PubMed]
- Oladele, I.O.; Omotosho, T.F.; Adediran, A.A. Polymer-based composites: An indispensable material for present and future applications. Int. J. Polym. Sci. 2020, 2020, 8834518. [Google Scholar] [CrossRef]
- Zhang, X.; Li, B.W.; Dong, L.; Liu, H.; Chen, W.; Shen, Y.; Nan, C.W. Superior energy storage performances of polymer nanocomposites via modification of filler/polymer interfaces. Adv. Mater. Interfaces 2018, 5, 1800096. [Google Scholar] [CrossRef]
- Šupová, M.; Martynková, G.S.; Barabaszová, K. Effect of nanofillers dispersion in polymer matrices: A review. Sci. Adv. Mater. 2011, 3, 1–25. [Google Scholar] [CrossRef]
- Garner, L.; Sane, S.; Suh, D.; Byrne, T.; Dani, A.; Martin, T.; Mello, M.; Patel, M.; Williams, R. Finding Solutions to the Challenges in Package Interconnect Reliability. Intel Technol. J. 2005, 9, 297. [Google Scholar] [CrossRef]
- Maalihan, R.D.; Domalanta, M.R.B.; Corrales, A.C.C.; Caldona, E.B. Advances in interfacially engineered surface-functionalized fillers for multifunctional polymer composite coatings. Polym. Compos. 2025, 46, 5857–5881. [Google Scholar] [CrossRef]
- Garrison, T.F.; Murawski, A.; Quirino, R.L. Bio-based polymers with potential for biodegradability. Polymers 2016, 8, 262. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Lee, S.W.; Lee, Y.; Choi, H.J.; Chen, J.; Yang, X.; Du, Y.; Falcone, N.; Barros, N.R.D.; Lee, S.M.; et al. Emerging energy harvesters in flexible bioelectronics: From wearable devices to biomedical innovations. Small Sci. 2024, 4, 2300148. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, V.; Alam, M.N. Multifunctional Polymer Composite Materials. Polymers 2025, 17, 1636. https://doi.org/10.3390/polym17121636
Kumar V, Alam MN. Multifunctional Polymer Composite Materials. Polymers. 2025; 17(12):1636. https://doi.org/10.3390/polym17121636
Chicago/Turabian StyleKumar, Vineet, and Md Najib Alam. 2025. "Multifunctional Polymer Composite Materials" Polymers 17, no. 12: 1636. https://doi.org/10.3390/polym17121636
APA StyleKumar, V., & Alam, M. N. (2025). Multifunctional Polymer Composite Materials. Polymers, 17(12), 1636. https://doi.org/10.3390/polym17121636