Treatment of Natural Rubber Skim Latex Using Ultrafiltration Process with PVDF-TiO2 Mixed-Matrix Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Skim Latex Preparation
2.3. Preparation of PVDF-TiO2 Mixed-Matrix Membranes
2.4. Skim Latex Filtration Using Membrane Ultrafiltration Process
2.5. Analysis of Skim Latex Filtration Products
3. Results and Discussion
3.1. Skim Latex Properties Analysis
3.2. Skim Latex After Ultrafiltration Process Using Mixed-Matrix Membrane
3.2.1. Physicochemical Properties of Skim Serum and Concentrate Skim Latex
3.2.2. Total Solid Content (TSC) of Skim Latex and Concentrated Latex
3.2.3. Alkalinity and pH of Skim Latex and Concentrated Latex
3.2.4. Viscosity of Skim Latex and Concentrated Latex
3.3. CHNS Analysis
3.4. FTIR Analysis of Skim Latex and Skim Latex Concentrate
3.5. FTIR of Concentrated Skim Latex and Skim Serum from Membrane Filtration Process
3.6. Measurement of Skim Serum Flux from Skim Latex Ultrafiltration
3.7. Membrane Characterization After Filtration of Skim Latex
3.7.1. FESEM-EDX of Membrane After Skim Latex Filtration
3.7.2. Energy Dispersive X-Ray (EDX) of Membranes After Filtration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TiO2 | Titanium dioxide |
PVDF | Polyvinilidene fluoride |
PVP | Polyvinylpyrrolidone |
NP | Nanoparticle |
MMM | Mixed-matrix membrane |
NIPS | Non-solvent phase inversion method |
CHNS | Carbon, hydrogen, nitrogen, and sulphur |
TSC | Total solid content |
FTIR | Fourier transform infrared spectroscopy |
FESEM | Field emission scanning electron microscopy |
EDX | Energy-dispersive X-ray |
References
- Kaesaman, A.; Kaewchuen, S.; Nakason, C. Implementing eco-friendly creaming agents to address coagulation issues and minimize acid consumption in skim natural rubber latex processing. Ind. Crops Prod. 2024, 222, 119499. [Google Scholar] [CrossRef]
- Mardina, V.; Yusof, F. Skim latex serum as an alternative nutrition for microbial growth. In Multifaceted Protocol in Biotechnology; Springer: Singapore, 2018; pp. 179–196. [Google Scholar] [CrossRef]
- Than-ardna, B.; Tamura, H.; Furuike, T. Improving Deproteinized Skim Natural Rubber Latex with a Further Leaching Process. Eng. Appl. Sci. Res. 2019, 46, 64–71. [Google Scholar] [CrossRef]
- Tahir, H.; Misran, M.; Mohamed, R. Purification and Characterisation of Protein from Natural Rubber Latex (NRL) Skim Serum. AIP Conf. Proc. 2018, 1985, 040009. [Google Scholar] [CrossRef]
- Danwanichakul, P.; Pohom, W.; Yingsampancharoen, J. L-Quebrachitol from Acidic Serum Obtained After Rubber Coagulation of Skim Natural Rubber Latex. Ind. Crops Prod. 2019, 137, 157–161. [Google Scholar] [CrossRef]
- Oktriyedi, F.; Dahlan, M.H.; Irfannuddin, M.; Ngudiantoro. Impact of Latex Coagulant Various from Rubber Industry in South Sumatera. AIP Conf. Proc. 2021, 2344, 020001. [Google Scholar] [CrossRef]
- Perera, A.L.H.A.; Perera, B.G.K. Development of an Economical Method to Reduce the Extractable Latex Protein Levels in Finished Dipped Rubber Products. BioMed Res. Int. 2017, 2017, 9573021. [Google Scholar] [CrossRef]
- Nazri, N.A.M.; Lau, W.J.; Ismail, A.F.; Matsuura, T.; Veerasamy, D.; Hilal, N. Performance of PAN-Based Membranes with Graft Copolymers Bearing Hydrophilic PVA and PAN Segments in Direct Ultrafiltration of Natural Rubber Effluent. Desalination 2015, 358, 49–60. [Google Scholar] [CrossRef]
- Keawmuangkham, S.; Sriring, M.; Rojruthai, P.; Sakdapipanich, J. Improvement of Recovery and Purification Method of The Rubber from Skim Natural Rubber Latex. In Proceedings of the Pure and Applied Chemistry International Conference, Toronto, ON, Canada, 31 August–1 September 2018; pp. 1520–1524. [Google Scholar]
- Suwatthanarak, T.; Than-ardna, B.; Danwanichakul, D. Synthesis of Silver Nanoparticles in Skim Natural Rubber Latex at Room Temperature. Mater. Lett. 2016, 168, 31–35. [Google Scholar] [CrossRef]
- Chan, A.J.; Steenkeste, K.; Eloy, M.; Brosson, D.; Gaboriaud, F.; Fontaine-Aupart, M.P. Lipid Content in Small and Large Natural Rubber Particles. Rubber Chem. Technol. 2015, 88, 248–257. [Google Scholar] [CrossRef]
- Ismail, N.I.N.; Veerasamy, D. Value-added Natural Rubber Skim Latex Concentrate/Montmorillonite as Environmentally- friendly Nanocomposite Materials. J. Rubber Res. 2011, 14, 216–229. [Google Scholar]
- Ibrahim, G.P.S.; Isloor, A.M.; Yuliwati, E.; Ismail, A.F. Carbon-based nanocomposite membranes for water and wastewater purification. In Advanced Nanomaterials for Membrane Synthesis and Its Applications; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Sonawane, S.; Thakur, P.; Sonawane, S.H.; Bhanvase, B.A. Nanomaterials for membrane synthesis: Introduction, mechanism, and challenges for wastewater treatment. In Handbook of Nanomaterials for Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Ahbab, N.; Naz, S.; Xu, T.B.; Zhang, S. A Comprehensive Review of Piezoelectric PVDF Polymer Fabrications and Characteristics. Micromachines 2025, 16, 386. [Google Scholar] [CrossRef] [PubMed]
- Abu-Zurayk, R.; Alnairat, N.; Waleed, H.; Al-Khaial, M.Q.; Khalaf, A.; Bozeya, A.; Abu-Dalo, D.; Al-Yousef, S.; Afaneh, R. Polyvinylidene Fluoride (PVDF) and Nanoclay Composites’ Mixed-Matrix Membranes: Exploring Structure, Properties, and Performance Relationships. Polymers 2025, 17, 1120. [Google Scholar] [CrossRef]
- Geleta, T.A.; Maggay, I.V.; Chang, Y.; Venault, A. Recent Advances on the Fabrication of Antifouling Phase-Inversion Membranes by Physical Blending Modification Method. Membranes 2023, 13, 58. [Google Scholar] [CrossRef]
- Choi, D.H.; Kwon, S.; Yoo, Y.; Kim, I.; Park, H.; Park, Y.; Yang, S.Y.; Nam, S.; Cho, Y.H. Isoporous Polyvinylidene Fluoride Membranes with Selective Skin Layers via a Thermal-Vapor Assisted Phase Separation Method for Industrial Purification Applications. Membranes 2022, 12, 250. [Google Scholar] [CrossRef] [PubMed]
- Yuliwati, E.; Porawati, H.; Elfidiah, E.; Melani, A. Performance of Composite Membrane for Palm Oil Wastewater Treatment. J. Appl. Membr. Sci. Technol. 2019, 23, 1–10. [Google Scholar] [CrossRef]
- Abdullah, A.; Peechmani, P.; Othman, M.H.D.; Puteh, M.H.; Jaafar, J.; Rahman, M.A.; Ismail, A.F. Removal of Organic Dye in Wastewater Using Polyethersulfone Hollow Fiber Membrane. J. Appl. Membr. Sci. Technol. 2022, 26, 29–42. [Google Scholar] [CrossRef]
- Vasileva, P.; Karadjova, I. Newly Designed Organic-Inorganic Nanocomposite Membrane for Simultaneous Cr and Mn Speciation in Waters. Gels 2025, 11, 205. [Google Scholar] [CrossRef] [PubMed]
- Gayatri, R.; Yuliwati, E.; Fizal, A.N.S.; Zailani, M.Z.; Jaafar, J.; Zulkifli, M.; Taweepreda, W.; Yahaya, A.N.A. Effect of TiO2 Concentration in PVDF-TiO2-PVP Mixed Matrix Membrane Performance using Ultrafiltration Process. Mater. Today Proc. 2023, 96, 1–8. [Google Scholar] [CrossRef]
- Yuliwati, E.; Ismail, A.F.; Matsuura, T.; Kassim, M.A.; Abdullah, M.S. Effect of Modified Pvdf Hollow Fiber Submerged Ultrafiltration Membrane For Refinery Wastewater Treatment. Desalination 2011, 283, 214–220. [Google Scholar] [CrossRef]
- Regmi, C.; Kshetri, Y.K.; Wickramasinghe, S.R. Carbon-Based Nanocomposite Membranes for Membrane Distillation: Progress, Problems and Future Prospects. Membranes 2024, 14, 160. [Google Scholar] [CrossRef]
- Gayatri, R.; Yuliwati, E.; Jaafar, J.; Fizal, A.N.S.; Hossain, M.S.; Zulkifli, M.; Yahaya, A.N.A.; Taweepreda, W. Polymer-based nanocomposite membranes for industrial wastewater treatment: A review. J. Environ. Chem. Eng. 2024, 12, 113276. [Google Scholar] [CrossRef]
- Gayatri, R.; Fizal, A.N.S.; Yuliwati, E.; Zailani, M.Z.; Jaafar, J.; Hossain, M.S.; Zulkifli, M.; Taweepreda, W.; Yahaya, A.N.A. Effect of polyvinylidene fluoride concentration in PVDF-TiO2-PVP composite membranes properties and its performance in bovine serum albumin rejection. Case Stud. Chem. Environ. Eng. 2024, 9, 100620. [Google Scholar] [CrossRef]
- Kusworo, T.D.; Puspa, M.B. Performance of PVDF-La dope TiO2 Membrane Photocatalytic Under Visible Light Irradiation for Produced Water Treatment. E3S Web Conf. 2024, 503, 06006. [Google Scholar] [CrossRef]
- Akther, N.; Phuntsho, S.; Chen, Y.; Ghaffour, N.; Shon, H.K. Recent Advances In Nanomaterial-Modified Polyamide Thin-Film Composite Membranes for Forward Osmosis Processes. J. Memb. Sci. 2019, 584, 20–45. [Google Scholar] [CrossRef]
- Mohruni, A.S.; Yuliwati, E.; Sharif, S.; Ismail, A.F. Membrane Technology For Treating of Waste Nanofluids Coolant: A Review. AIP Conf. Proc. 2017, 1885, 020090. [Google Scholar] [CrossRef]
- Bilal, A.; Yasin, M.; Akhtar, F.H.; Gilani, M.A.; Alhmohamadi, H.; Younas, M.; Mushtaq, A.; Aslam, M.; Hassan, M.; Nawaz, R.; et al. Enhancing Water Purification by Integrating Titanium Dioxide Nanotubes into Polyethersulfone Membranes for Improved Hydrophilicity and Anti-Fouling Performance. Membranes 2024, 14, 116. [Google Scholar] [CrossRef]
- Gayatri, R.; Yuliwati, E.; Jaafar, J.; Zulkifli, M.; Naim, A.; Yahaya, A. Effect of PVP Concentration on PVDF-TiO2-PVP Mixed Matrix-Membrane Properties and Performance. In Proceedings of the International Conference on Engineering, Construction, Renewable Energy, and Advanced Materials, Ho Chi Minh City, Vietnam, 2–3 November 2024; pp. 1–6. [Google Scholar]
- Gayatri, R.; Fizal, A.N.S.; Yuliwati, E.; Hossain, M.S.; Jaafar, J.; Zulkifli, M.; Taweepreda, W.; Yahaya, A.N.A. Preparation and Characterization of PVDF–TiO2 Mixed-Matrix Membrane with PVP and PEG as Pore-Forming Agents for BSA Rejection. Nanomaterials 2023, 13, 1023. [Google Scholar] [CrossRef]
- Suksaeree, J.; Taweepreda, W.; Pichayakorn, W. Surfactant Treatment and Leaching Combination Process For Preparation of Deproteinized Natural Rubber Latex. Key Eng. Mater. 2015, 659, 500–504. [Google Scholar] [CrossRef]
- Ong, C.S.; Lau, W.J.; Goh, P.S.; Ng, B.C.; Ismail, A.F. Preparation And Characterization Of PVDF–PVP–TiO2 Composite Hollow Fiber Membranes for Oily Wastewater Treatment Using Submerged Membrane System. Desalin. Water Treat. 2013, 53, 1213–1223. [Google Scholar] [CrossRef]
- ISO 124:2014; International Standard. Latex, Rubber—Determination of Total Solid Content. ISO: Geneva, Switzerland, 2014.
- ISO 125:2011; International Standard. Natural Rubber Latex Concentrate—Determination of Alkalinity. ISO: Geneva, Switzerland, 2011.
- ISO 1652:2011; International Standard. Rubber Latex—Determination of Apparent Viscosity by the Brookfield Test Method. ISO: Geneva, Switzerland, 2011.
- Alex, R.; Kim, M.J.; Lee, Y.S.; Nah, C. Preparation and Characterization of Rubber/Clay Nanocomposite Using Skim Natural Rubber Latex. Elastomer 2006, 41, 252–259. [Google Scholar]
- Danwanichakul, D.; Rattanaphan, O.; Srisatjang, J.; Danwanichakul, P. Extraction of Protein from Skim Natural Rubber Latex Using PEG as a Surfactant via Low Speed Centrifugation and Continuous Flow. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Danteravanich, S.; Chalermpong, I.; Sridang, P.; Winsunthorn, S. Preliminary Concentration of Skim Latex and Its Wastewater Use Plate Sheet Microfiltration. J. Appl. Membr. Sci. Technol. 2007, 34, 27–34. [Google Scholar] [CrossRef]
- Veerasamy, D.; Supurmaniam, A.; Nor, Z.M. Evaluating The Use of In-Situ Ultrasonication to Reduce Fouling During Natural Rubber Skim Latex (Waste Latex) Recovery by Ultrafiltration. Desalination 2009, 236, 202–207. [Google Scholar] [CrossRef]
- Thongmak, N.; Sridang, P.; Puetpaiboon, U.; Grasmick, A. Concentration of Field and Skim Latex By Microfiltration—Membrane Fouling and Biochemical Methane Potential of Serum. Environ. Technol. 2015, 36, 2459–2467. [Google Scholar] [CrossRef] [PubMed]
- Santipanusopon, S.; Riyajan, S. Effect of Field Natural Rubber Latex with Different Ammonia Contents and Storage Period on Physical Properties of Latex Concentrate, Stability of Skim Latex and Dipped Film. Phys. Procedia 2009, 2, 127–134. [Google Scholar] [CrossRef]
- Narongwongwattana, S.; Rittiron, R.; Hock, L.C. Rapid determination of alkalinity (ammonia content) in Para rubber latex using portable and Fourier transform-near infrared spectrometers. J. Near Infrared Spectrosc. 2015, 23, 181–188. [Google Scholar] [CrossRef]
- Yusof, N.H.; Singh, M.; Mohd Rasdi, F.R.; Tan, K.S. Properties of concentrated skim rubber latex using membrane separation process and its comparison with other natural rubber latexes. J. Rubber Res. 2023, 26, 169–177. [Google Scholar] [CrossRef]
- Fainleib, A.; Pires, R.V.; Lucas, E.F.; Soares, B.G. Degradation of non-vulcanized natural rubber—Renewable resource for fine chemicals used in polymer synthesis. Polimeros 2013, 23, 441–450. [Google Scholar] [CrossRef]
- Rooshenass, P.; Yahya, R.; Gan, S.N. Preparation of Liquid Epoxidized Natural Rubber by Oxidative Degradations Using Periodic Acid, Potassium Permanganate and UV-Irradiation. J. Polym. Environ. 2018, 26, 1378–1392. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Wang, Q.; Pan, C.; Wu, Z. Comparison of Antifouling Behaviours of Modified PVDF Membranes by TiO2 Sols with Different Nanoparticle Size: Implications of Casting Solution Stability. J. Memb. Sci. 2017, 525, 378–386. [Google Scholar] [CrossRef]
- Qi, N.L.; Li, P.W.; Zeng, X.H.; Huang, H.H.; Yang, Z.M.; Gong, X. Comparison of Kjeldahl and the elemental analysis methods for determination of nitrogen content in raw natural rubber. Adv. Mater. Res. 2013, 815, 722–726. [Google Scholar] [CrossRef]
- Sharifuddin, H.A.; Zaharah, A.R. Utilization of Organic Wastes and Natural Systems in Malaysian Agriculture Adaptive Speed Estimation of Induction Motor Based on Neural Network Inverse Control View Project Evaluation of Phoshate Rock Sources on Oil Palm View Project. 2009. Available online: https://www.researchgate.net/publication/237473627 (accessed on 4 June 2024).
- Eifediyi, E.K.; Ihenyen, J.O.; Ojiekpon, I.F. Evaluation of The Effects of Rubber Effluent on Soil Nutrients, Growth and Yield of Cucumber (Cucumis sativus L). Niger. Ann. Nat. Sci. 2014, 12, 21–28. [Google Scholar]
- Rippel, M.M.; Lee, L.T.; Leite, C.A.P.; Galembeck, F. Skim and Cream Natural Rubber Particles: Colloidal Properties, Coalescence and Film Formation. J. Colloid Interface Sci. 2003, 268, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Veerasamy, D.; Ismail, A.F. Rehabilitation of Fouled Membrane from Natural Rubber Skim Latex Concentration Through Membrane Autopsy and Ultrasonication Enhanced Membrane Cleaning Procedure. Desalination 2012, 286, 235–241. [Google Scholar] [CrossRef]
- Tahir, H.; Misran, M. Natural rubber latex (NRL) waste protein purified at various pH condition and metal extraction studies. J. Phys. Conf. Ser. 2019, 1349, 012062. [Google Scholar] [CrossRef]
- Watthanaphanit, A.; Rujiravanit, R. Sericin-binded-deprotenized natural rubber film containing chitin whiskers as elasto-gel dressing. Int. J. Biol. Macromol. 2017, 101, 417–426. [Google Scholar] [CrossRef]
- Dontsova, T.A.; Nahirniak, S.V.; Astrelin, I.M. Metaloxide nanomaterials and nanocomposites of ecological purpose. J. Nanomater. 2019, 2019, 5942194. [Google Scholar] [CrossRef]
- Lim, Y.P.; El-Harbawi, M.; Yin, C. Treatment of effluent (skim latex serum) from a rubber processing plant with fenton’s reagent. Environ. Prot. Eng. 2017, 43, 247–254. [Google Scholar] [CrossRef]
- Mahmoudi, E.; Ng, L.Y.; Ang, W.L.; Teow, Y.H.; Mohammad, A.W. Improving membrane bioreactor performance through the synergistic effect of silver-decorated graphene oxide in composite membranes. J. Water Process Eng. 2020, 34, 101169. [Google Scholar] [CrossRef]
- Liu, F.; Li, Y.; Han, L.; Xu, Z.; Zhou, Y.; Deng, B.; Xing, J. A Facile Strategy Toward the Preparation of a High-Performance Polyamide TFC Membrane with a CA/PVDF Support Layer. Nanomaterials 2022, 12, 4496. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; Kamel Hamdan, S. Functionalization of Magnetic Nano Particles: Synthesis, Characterization and Their Application in Water Purification. Am. J. Nanosci. 2016, 2, 26–40. [Google Scholar] [CrossRef]
- Gul, A.; Hruza, J.; Yalcinkaya, F. Fouling and chemical cleaning of microfiltration membranes: A mini-review. Polymers 2021, 13, 846. [Google Scholar] [CrossRef] [PubMed]
- Teow, Y.H.; Ooi, B.S.; Ahmad, A.L.; Lim, J.K. Investigation of Anti-Fouling And UV-Cleaning Properties of PVDF/TiO2 Mixed-Matrix Membrane For Humic Acid Removal. Membranes 2021, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- Abdelrasoul, A.; Doan, H.; Lohi, A. Membrane fouling remediation in ultrafiltration of latex contaminated wastewater. Water Qual. Res. J. Can. 2016, 51, 256–269. [Google Scholar] [CrossRef]
- Haan, T.Y.; Yee, W.S.; Mohammad, A.W. Studies on the surface properties and fabrication method of mixed-matrix membrane for textile industry wastewater treatment. Desalin. Water Treat. 2018, 135, 303–313. [Google Scholar] [CrossRef]
- Souza, E.; Follmann, H.V.D.M.; Dalri-Cecato, L.; Battistelli, A.A.; Lobo-Recio, M.A.; Belli, T.J.; Lapolli, F.R. Membrane fouling suppression using intermittent electric current with low exposure time in a sequencing batch membrane bioreactor. J. Environ. Chem. Eng. 2020, 8, 104018. [Google Scholar] [CrossRef]
- Ho, K.C.; Teow, Y.H.; Ang, W.L.; Mohammad, A.W. Novel GO/OMWCNTs mixed-matrix membrane with enhanced antifouling property for palm oil mill effluent treatment. Sep. Purif. Technol. 2017, 177, 337–349. [Google Scholar] [CrossRef]
- Teow, Y.H.; Mohammad, A.W. New generation nanomaterials for water desalination: A review. Desalination 2019, 451, 2–17. [Google Scholar] [CrossRef]
- Maximous, N.; Nakhla, G.; Wan, W. Comparative assessment of hydrophobic and hydrophilic membrane fouling in wastewater applications. J. Memb. Sci. 2009, 339, 93–99. [Google Scholar] [CrossRef]
- Iewkittayakorn, J.; Chungsiriporn, J.; Rakmak, N. Utilization of waste from concentrated rubber latex industry for composting with addition of natural activators. Songklanakarin J. Sci. Technol. 2018, 40, 114–120. [Google Scholar]
- Rathnayake, I.; Ismail, H.; Azahari, B.; Bandara, C.; Rajapakse, S. Novel Method of Incorporating Silver Nanoparticles into Natural Rubber Latex Foam. Polym. Plast. Technol. Eng. 2013, 52, 885–891. [Google Scholar] [CrossRef]
Properties | Unit | Results |
---|---|---|
Total Solid Content | (%) | 6.996 |
pH | 9.590 | |
Alkalinity | (%) | 0.244 |
Latex Type | TSC (wt %) | Alkalinity | pH | Brookfield Viscosity (cPs) |
---|---|---|---|---|
Skim Latex | 6.996 | 0.244 | 9.590 | 50 |
Concentrate Skim Latex | 7.67 | 0.546 | 9.34 | 133.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gayatri, R.; Yuliwati, E.; Agustina, T.E.; Khalil, N.A.; Hossain, M.S.; Taweepreda, W.; Zulkifli, M.; Yahaya, A.N.A. Treatment of Natural Rubber Skim Latex Using Ultrafiltration Process with PVDF-TiO2 Mixed-Matrix Membranes. Polymers 2025, 17, 1598. https://doi.org/10.3390/polym17121598
Gayatri R, Yuliwati E, Agustina TE, Khalil NA, Hossain MS, Taweepreda W, Zulkifli M, Yahaya ANA. Treatment of Natural Rubber Skim Latex Using Ultrafiltration Process with PVDF-TiO2 Mixed-Matrix Membranes. Polymers. 2025; 17(12):1598. https://doi.org/10.3390/polym17121598
Chicago/Turabian StyleGayatri, Rianyza, Erna Yuliwati, Tuty Emilia Agustina, Nor Afifah Khalil, Md Sohrab Hossain, Wirach Taweepreda, Muzafar Zulkifli, and Ahmad Naim Ahmad Yahaya. 2025. "Treatment of Natural Rubber Skim Latex Using Ultrafiltration Process with PVDF-TiO2 Mixed-Matrix Membranes" Polymers 17, no. 12: 1598. https://doi.org/10.3390/polym17121598
APA StyleGayatri, R., Yuliwati, E., Agustina, T. E., Khalil, N. A., Hossain, M. S., Taweepreda, W., Zulkifli, M., & Yahaya, A. N. A. (2025). Treatment of Natural Rubber Skim Latex Using Ultrafiltration Process with PVDF-TiO2 Mixed-Matrix Membranes. Polymers, 17(12), 1598. https://doi.org/10.3390/polym17121598