Eugenol@Montmorillonite vs. Citral@Montmorillonite Nanohybrids for Gelatin-Based Extruded, Edible, High Oxygen Barrier, Active Packaging Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. EG@Mt and CT@Mt Nanohybrid Synthesis
2.3. Gel/Gl/xMt, Gel/Gl/xEG@Mt, and Gel/Gl/xCT@Mt Films Development
2.4. Physicochemical Characterization of EG@Mt and EG@Mt Nanohybrids and Gel/Gl/xMt, Gel/Gl/xEG@Mt, and Gel/Gl/xCT@Mt Films
2.5. Packaging Properties of Gel/Gl/xMt, Gel/Gl/xEG@Mt, and Gel/Gl/xCT@Mt Films
2.6. Packaging Preservation Test of Fresh Minced Pork Wrapped with Gel/Gl/10EG@Mt, Gel/Gl/10CT@Mt Active Films, and Commercial Film
2.7. Statistical Analysis
3. Results
3.1. Physicochemical Characterization of EG@Mt and CT@Mt Nanohybrids
3.1.1. EG and CT Release Kinetics
3.1.2. XRD Analysis of EG@Mt and CT@Mt Nanohybrids
3.1.3. FTIR Analysis of EG@Mt and CT@Mt Nanohybrids
3.1.4. SEM Images of EG@Mt and CT@Mt Nanohybrids
3.2. Physicochemical Characterization of Gel/Gl/xMt, Gel/Gl/xEG@Mt, and Gel/Gl/xCT@Mt Films
3.2.1. XRD Analysis of Gel/Gl/xMt, Gel/Gl/xEG@Mt, and Gel/Gl/xCT@Mt Films
3.2.2. FTIR Analysis of Gel/Gl/xMt, Gel/Gl/xEG@Mt, and Gel/Gl/xCT@Mt Films
3.2.3. HR-SEM Studies of Gel/Gl/xMt, Gel/Gl/xEG@Mt, and Gel/Gl/xCT@Mt Films
3.3. Tensile Properties of Gel/Gl/xMt, Gel/Gl/xEG@Mt, and Gel/Gl/xCT@Mt Films
3.4. Oxygen Barrier Properties of Gel/Gl/xMt, Gel/Gl/xEG@Mt, and Gel/Gl/xCT@Mt Films
3.5. Antioxidant Activity of Gel/Gl/xEG@Mt and Gel/Gl/xCT@Mt Active Films
3.6. In Vitro Biocompatibility Assessment of Gel/Gl/xEG@Mt and Gel/Gl/xCT@Mt Films
3.7. Antibacterial Activity of Gel/Gl/xEG@Mt and Gel/Gl/xCT@Mt Films
3.8. Packaging Test in Preservation of Fresh Minced Pork
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Otto, S.; Strenger, M.; Maier-Nöth, A.; Schmid, M. Food Packaging and Sustainability—Consumer Perception vs. Correlated Scientific Facts: A Review. J. Clean. Prod. 2021, 298, 126733. [Google Scholar] [CrossRef]
- Han, J.-W.; Ruiz-Garcia, L.; Qian, J.-P.; Yang, X.-T. Food Packaging: A Comprehensive Review and Future Trends. Compr. Rev. Food Sci. Food Saf. 2018, 17, 860–877. [Google Scholar] [CrossRef] [PubMed]
- Han, J.H. Chapter 1—A Review of Food Packaging Technologies and Innovations. In Innovations in Food Packaging, 2nd ed.; Han, J.H., Ed.; Food Science and Technology; Academic Press: San Diego, CA, USA, 2014; pp. 3–12. ISBN 978-0-12-394601-0. [Google Scholar]
- Ahmed, M.W.; Haque, M.A.; Mohibbullah, M.; Khan, M.S.I.; Islam, M.A.; Mondal, M.H.T.; Ahmmed, R. A Review on Active Packaging for Quality and Safety of Foods: Current Trends, Applications, Prospects and Challenges. Food Packag. Shelf Life 2022, 33, 100913. [Google Scholar] [CrossRef]
- Rontogianni, A.; Chalmpes, Ν.; Nikolaraki, E.; Botzolaki, G.; Androulakis, A.; Stratakis, A.; Zygouri, P.; Moschovas, D.; Avgeropoulos, A.; Karakassides, M.A.; et al. Efficient CO2 hydrogenation over mono- and bi-metallic RuNi/MCM-41 catalysts: Controlling CH4 and CO products distribution through the preparation method and/or partial replacement of Ni by Ru. J. Chem. Eng. 2023, 474, 145644. [Google Scholar] [CrossRef]
- Mangaraj, S.; Yadav, A.; Bal, L.M.; Dash, S.K.; Mahanti, N.K. Application of Biodegradable Polymers in Food Packaging Industry: A Comprehensive Review. J. Packag. Technol. Res. 2019, 3, 77–96. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Purohit, S.D.; Roy, S.; Ghosh, T.; Rhim, J.-W.; Han, S.S. Antiviral Biodegradable Food Packaging and Edible Coating Materials in the COVID-19 Era: A Mini-Review. Coatings 2022, 12, 577. [Google Scholar] [CrossRef]
- Silva-Weiss, A.; Ihl, M.; Sobral, P.J.A.; Gómez-Guillén, M.C.; Bifani, V. Natural Additives in Bioactive Edible Films and Coatings: Functionality and Applications in Foods. Food Eng. Rev. 2013, 5, 200–216. [Google Scholar] [CrossRef]
- Kraemer, M.V.d.S.; Fernandes, A.C.; Chaddad, M.C.C.; Uggioni, P.L.; Rodrigues, V.M.; Bernardo, G.L.; Proença, R.P. da C. Food Additives in Childhood: A Review on Consumption and Health Consequences. Rev. Saúde Pública 2022, 56, 32. [Google Scholar] [CrossRef]
- Wonnacott, J.E.; Jukes, D.J. Chemical Additives in Food—A Review of the Regulatory Processes Governing Their Control and the Procedures for Evaluating Their Safety in Use. Food Chem. 1986, 19, 11–48. [Google Scholar] [CrossRef]
- Pressman, P.; Clemens, R.; Hayes, W.; Reddy, C. Food Additive Safety: A Review of Toxicologic and Regulatory Issues. Toxicol. Res. Appl. 2017, 1, 2397847317723572. [Google Scholar] [CrossRef]
- Cui, F.; Zheng, S.; Wang, D.; Tan, X.; Li, Q.; Li, J.; Li, T. Recent Advances in Shelf Life Prediction Models for Monitoring Food Quality. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1257–1284. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, A.; Daniel, S.; Kanthapazham, R.; Vanaraj, R.; Thambidurai, A.; Peter, L.S. A Critical Review on Food Waste Management for the Production of Materials and Biofuel. J. Hazard. Mater. Adv. 2023, 10, 100266. [Google Scholar] [CrossRef]
- Roy, P.; Mohanty, A.K.; Dick, P.; Misra, M. A Review on the Challenges and Choices for Food Waste Valorization: Environmental and Economic Impacts. ACS Environ. Au 2023, 3, 58–75. [Google Scholar] [CrossRef]
- Sarker, A.; Ahmmed, R.; Ahsan, S.M.; Rana, J.; Kumar Ghosh, M.; Nandi, R. A Comprehensive Review of Food Waste Valorization for the Sustainable Management of Global Food Waste. Sustain. Food Technol. 2024, 2, 48–69. [Google Scholar] [CrossRef]
- Gupta, S.; Sharma, S.; Kumar Nadda, A.; Saad Bala Husain, M.; Gupta, A. Biopolymers from Waste Biomass and Its Applications in the Cosmetic Industry: A Review. Mater. Today Proc. 2022, 68, 873–879. [Google Scholar] [CrossRef]
- Vieira, M.G.A.; da Silva, M.A.; dos Santos, L.O.; Beppu, M.M. Natural-Based Plasticizers and Biopolymer Films: A Review. Eur. Polym. J. 2011, 47, 254–263. [Google Scholar] [CrossRef]
- Giannakas, A.E. Plant Extracts-Based Food Packaging Films. In Natural Materials for Food Packaging Application; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2023; pp. 23–49. ISBN 978-3-527-83730-4. [Google Scholar]
- Al-Maqtari, Q.A.; Rehman, A.; Mahdi, A.A.; Al-Ansi, W.; Wei, M.; Yanyu, Z.; Phyo, H.M.; Galeboe, O.; Yao, W. Application of Essential Oils as Preservatives in Food Systems: Challenges and Future Prospectives—A Review. Phytochem. Rev. 2022, 21, 1209–1246. [Google Scholar] [CrossRef]
- Angane, M.; Swift, S.; Huang, K.; Butts, C.A.; Quek, S.Y. Essential Oils and Their Major Components: An Updated Review on Antimicrobial Activities, Mechanism of Action and Their Potential Application in the Food Industry. Foods 2022, 11, 464. [Google Scholar] [CrossRef]
- Kuai, L.; Liu, F.; Chiou, B.-S.; Avena-Bustillos, R.J.; McHugh, T.H.; Zhong, F. Controlled Release of Antioxidants from Active Food Packaging: A Review. Food Hydrocoll. 2021, 120, 106992. [Google Scholar] [CrossRef]
- Almasi, H.; Jahanbakhsh Oskouie, M.; Saleh, A. A Review on Techniques Utilized for Design of Controlled Release Food Active Packaging. Crit. Rev. Food Sci. Nutr. 2021, 61, 2601–2621. [Google Scholar] [CrossRef]
- Hou, T.; Ma, S.; Wang, F.; Wang, L. A Comprehensive Review of Intelligent Controlled Release Antimicrobial Packaging in Food Preservation. Food Sci. Biotechnol. 2023, 32, 1459–1478. [Google Scholar] [CrossRef]
- Luo, Q.; Hossen, M.A.; Zeng, Y.; Dai, J.; Li, S.; Qin, W.; Liu, Y. Gelatin-Based Composite Films and Their Application in Food Packaging: A Review. J. Food Eng. 2022, 313, 110762. [Google Scholar] [CrossRef]
- Said, N.S.; Howell, N.K.; Sarbon, N.M. A Review on Potential Use of Gelatin-Based Film as Active and Smart Biodegradable Films for Food Packaging Application. Food Rev. Int. 2023, 39, 1063–1085. [Google Scholar] [CrossRef]
- Lu, Y.; Luo, Q.; Chu, Y.; Tao, N.; Deng, S.; Wang, L.; Li, L. Application of Gelatin in Food Packaging: A Review. Polymers 2022, 14, 436. [Google Scholar] [CrossRef] [PubMed]
- Suderman, N.; Isa, M.I.N.; Sarbon, N.M. The Effect of Plasticizers on the Functional Properties of Biodegradable Gelatin-Based Film: A Review. Food Biosci. 2018, 24, 111–119. [Google Scholar] [CrossRef]
- Carpena, M.; Nuñez-Estevez, B.; Soria-Lopez, A.; Garcia-Oliveira, P.; Prieto, M.A. Essential Oils and Their Application on Active Packaging Systems: A Review. Resources 2021, 10, 7. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils—A Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Silva, M.V.; da Conceição Alves de Lima, A.; Silva, M.G.; Caetano, V.F.; de Andrade, M.F.; da Silva, R.G.C.; de Moraes Filho, L.E.P.T.; de Lima Silva, I.D.; Vinhas, G.M. Clove Essential Oil and Eugenol: A Review of Their Significance and Uses. Food Biosci. 2024, 62, 105112. [Google Scholar] [CrossRef]
- Ulanowska, M.; Olas, B. Biological Properties and Prospects for the Application of Eugenol—A Review. Int. J. Mol. Sci. 2021, 22, 3671. [Google Scholar] [CrossRef]
- Gutiérrez-Pacheco, M.M.; Torres-Moreno, H.; Flores-Lopez, M.L.; Guadarrama, N.V.; Ayala-Zavala, J.F.; Ortega-Ramírez, L.A.; López-Romero, J.C. Mechanisms and Applications of Citral’s Antimicrobial Properties in Food Preservation and Pharmaceuticals Formulations. Antibiotics 2023, 12, 1608. [Google Scholar] [CrossRef]
- Sharma, S.; Habib, S.; Sahu, D.; Gupta, J. Chemical Properties and Therapeutic Potential of Citral, a Monoterpene Isolated from Lemongrass. Med. Chem. 2021, 17, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Chat, O.A.; Bhat, P.A.; Nazir, N.; Dar, A.A. 15—Self-Assembled Systems Based on Surfactants and Polymers as Stabilizers for Citral in Beverages. In Value-Added Ingredients and Enrichments of Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 487–521. ISBN 978-0-12-816687-1. [Google Scholar]
- Saucedo-Zuñiga, J.N.; Sánchez-Valdes, S.; Ramírez-Vargas, E.; Guillen, L.; Ramos-deValle, L.F.; Graciano-Verdugo, A.; Uribe-Calderón, J.A.; Valera-Zaragoza, M.; Lozano-Ramírez, T.; Rodríguez-González, J.A.; et al. Controlled Release of Essential Oils Using Laminar Nanoclay and Porous Halloysite/Essential Oil Composites in a Multilayer Film Reservoir. Microporous Mesoporous Mater. 2021, 316, 110882. [Google Scholar] [CrossRef]
- de Oliveira, L.H.; Trigueiro, P.; Souza, J.S.N.; de Carvalho, M.S.; Osajima, J.A.; da Silva-Filho, E.C.; Fonseca, M.G. Montmorillonite with Essential Oils as Antimicrobial Agents, Packaging, Repellents, and Insecticides: An Overview. Colloids Surf. B Biointerfaces 2022, 209, 112186. [Google Scholar] [CrossRef]
- Villa, C.C.; Valencia, G.A.; López Córdoba, A.; Ortega-Toro, R.; Ahmed, S.; Gutiérrez, T.J. Zeolites for Food Applications: A Review. Food Biosci. 2022, 46, 101577. [Google Scholar] [CrossRef]
- Chaemsanit, S.; Matan, N.; Matan, N. Activated Carbon for Food Packaging Application: Review. Walailak J. Sci. Technol. WJST 2018, 15, 255–271. [Google Scholar] [CrossRef]
- Chalmpes, N.; Kouloumpis, A.; Zygouri, P.; Karouta, N.; Spyrou, K.; Stathi, P.; Tsoufis, T.; Georgakilas, V.; Gournis, D.; Rudolf, P. Layer-by-Layer Assembly of Clay−Carbon Nanotube Hybrid Superstructures. ACS Omega 2019, 4, 18100–18107. [Google Scholar] [CrossRef]
- Nath, D.; R, S.; Pal, K.; Sarkar, P. Nanoclay-Based Active Food Packaging Systems: A Review. Food Packag. Shelf Life 2022, 31, 100803. [Google Scholar] [CrossRef]
- Giannakas, A.; Patsaoura, A.; Barkoula, N.-M.; Ladavos, A. A Novel Solution Blending Method for Using Olive Oil and Corn Oil as Plasticizers in Chitosan Based Organoclay Nanocomposites. Carbohydr. Polym. 2017, 157, 550–557. [Google Scholar] [CrossRef]
- Essifi, K.; Hammani, A.; Berraaouan, D.; El Bachiri, A.; Fauconnier, M.-L.; Tahani, A. Montmorillonite Nanoclay Based Formulation for Controlled and Selective Release of Volatile Essential Oil Compounds. Mater. Chem. Phys. 2022, 277, 125569. [Google Scholar] [CrossRef]
- Deshmukh, R.K.; Kumar, L.; Gaikwad, K.K. Halloysite Nanotubes for Food Packaging Application: A Review. Appl. Clay Sci. 2023, 234, 106856. [Google Scholar] [CrossRef]
- Giannakas, A. Na-Montmorillonite Vs. Organically Modified Montmorillonite as Essential Oil Nanocarriers for Melt-Extruded Low-Density Poly-Ethylene Nanocomposite Active Packaging Films with a Controllable and Long-Life Antioxidant Activity. Nanomaterials 2020, 10, 1027. [Google Scholar] [CrossRef] [PubMed]
- Kechagias, A.; Salmas, C.E.; Chalmpes, N.; Leontiou, A.A.; Karakassides, M.A.; Giannelis, E.P.; Giannakas, A.E. Laponite vs. Montmorillonite as Eugenol Nanocarriers for Low Density Polyethylene Active Packaging Films. Nanomaterials 2024, 14, 1938. [Google Scholar] [CrossRef] [PubMed]
- Saleh, T.A. Chapter 3—Kinetic Models and Thermodynamics of Adsorption Processes: Classification. In Interface Science and Technology; Saleh, T.A., Ed.; Surface Science of Adsorbents and Nanoadsorbents; Elsevier: Amsterdam, The Netherlands, 2022; Volume 34, pp. 65–97. [Google Scholar]
- Asimakopoulos, G.; Baikousi, M.; Salmas, C.; Bourlinos, A.B.; Zboril, R.; Karakassides, M.A. Advanced Cr(VI) Sorption Properties of Activated Carbon Produced via Pyrolysis of the “Posidonia oceanica” Seagrass. J. Hazard. Mater. 2021, 405, 124274. [Google Scholar] [CrossRef]
- Frenkel, J. Theorie der Adsorption und verwandter Erscheinungen. Z. Für Phys. 1924, 26, 117–138. [Google Scholar] [CrossRef]
- Knopf, D.A.; Ammann, M. Technical Note: Adsorption and Desorption Equilibria from Statistical Thermodynamics and Rates from Transition State Theory. Atmos. Chem. Phys. 2021, 21, 15725–15753. [Google Scholar] [CrossRef]
- Arrhenius, S. Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte. Z. Für Phys. Chem. 1889, 4U, 96–116. [Google Scholar] [CrossRef]
- Nuchuchua, O.; Sakulku, U.; Uawongyart, N.; Puttipipatkhachorn, S.; Soottitantawat, A.; Ruktanonchai, U. In Vitro Characterization and Mosquito (Aedes Aegypti) Repellent Activity of Essential-Oils-Loaded Nanoemulsions. AAPS PharmSciTech 2009, 10, 1234–1242. [Google Scholar] [CrossRef]
- Pramod, K.; Suneesh, C.V.; Shanavas, S.; Ansari, S.H.; Ali, J. Unveiling the Compatibility of Eugenol with Formulation Excipients by Systematic Drug-Excipient Compatibility Studies. J. Anal. Sci. Technol. 2015, 6, 34. [Google Scholar] [CrossRef]
- Chalmpes, N.; Tantis, I.; Bakandritsos, A.; Bourlinos, A.B.; Karakassides, M.A.; Gournis, D. Rapid Carbon Formation from Spontaneous Reaction of Ferrocene and Liquid Bromine at Ambient Conditions. Nanomaterials 2020, 10, 1564. [Google Scholar] [CrossRef]
- Chalmpes, N.; Bourlinos, A.B.; Talande, S.; Bakandritsos, A.; Moschovas, D.; Avgeropoulos, A.; Karakassides, M.A.; Gournis, D. Nanocarbon from Rocket Fuel Waste: The Case of Furfuryl Alcohol-Fuming Nitric Acid Hypergolic Pair. Nanomaterials 2021, 11, 1. [Google Scholar] [CrossRef]
- Ma, H.; Zhao, Y.; Lu, Z.; Xing, R.; Yao, X.; Jin, Z.; Wang, Y.; Yu, F. Citral-Loaded Chitosan/Carboxymethyl Cellulose Copolymer Hydrogel Microspheres with Improved Antimicrobial Effects for Plant Protection. Int. J. Biol. Macromol. 2020, 164, 986–993. [Google Scholar] [CrossRef] [PubMed]
- Panáček, D.; Zdražil, L.; Langer, M.; Šedajová, V.; Baďura, Z.; Zoppellaro, G.; Yang, Q.; Nguyen, E.P.; Álvarez-Diduk, R.; Hrubý, V.; et al. Graphene Nanobeacons with High-Affinity Pockets for Combined, Selective, and Effective Decontamination and Reagentless Detection of Heavy Metals. Small 2022, 18, 2201003. [Google Scholar] [CrossRef]
- Liu, F.; Chiou, B.-S.; Avena-Bustillos, R.J.; Zhang, Y.; Li, Y.; McHugh, T.H.; Zhong, F. Study of Combined Effects of Glycerol and Transglutaminase on Properties of Gelatin Films. Food Hydrocoll. 2017, 65, 1–9. [Google Scholar] [CrossRef]
- Bergo, P.; Carvalho, R.A.; Vadala, A.C.S.; Guevara, V.C.I.; Sobral, P.J.A. Physical Properties of Gelatin Films Plasticized with Glycerol, Studied by Spectroscopic Methods. Mater. Sci. Forum 2010, 636–637, 753–758. [Google Scholar] [CrossRef]
- Al-Kahlout, A.; Vieira, D.; Avellaneda, C.O.; Leite, E.R.; Aegerter, M.A.; Pawlicka, A. Gelatin-Based Protonic Electrolyte for Electrochromic Windows. Ionics 2010, 16, 13–19. [Google Scholar] [CrossRef]
- Chalmpes, N.; Tantis, I.; Alsmaeil, A.W.; Aldakkan, B.S.; Dimitrakou, A.; Karakassides, M.A.; Salmas, C.E.; Giannelis, E.P. Elevating Waste Biomass: Supercapacitor Electrode Materials Derived from Spent Coffee Grounds. Energy Fuels 2025, 39, 1305–1315. [Google Scholar] [CrossRef]
- Chalmpes, N.; Patila, M.; Kouloumpis, A.; Alatzoglou, C.; Spyrou, K.; Subrati, M.; Polydera, A.C.; Bourlinos, A.B.; Stamatis, H.; Gournis, D. Graphene Oxide–Cytochrome c Multilayered Structures for Biocatalytic Applications: Decrypting the Role of Surfactant in Langmuir–Schaefer Layer Deposition. ACS Appl. Mater. Interfaces 2022, 14, 26204–26215. [Google Scholar] [CrossRef] [PubMed]
- Baikousi, M.; Chalmpes, N.; Spyrou, K.; Bourlinos, A.B.; Avgeropoulos, A.; Gournis, D.; Karakassides, M.A. Direct production of carbon nanosheets by self-ignition of pyrophoric lithium dialkylamides in air. Mater. Lett. 2019, 254, 58–61. [Google Scholar] [CrossRef]
- Chalmpes, N.; Spyrou, K.; Vasilopoulos, K.C.; Bourlinos, A.B.; Moschovas, D.; Avgeropoulos, A.; Gioti, C.; Karakassides, M.A.; Gournis, D. Hypergolics in Carbon Nanomaterials Synthesis: New Paradigms and Perspectives. Molecules 2020, 25, 2207. [Google Scholar] [CrossRef]
- Giannakas, A.E.; Salmas, C.E.; Moschovas, D.; Baikousi, M.; Kollia, E.; Tsigkou, V.; Karakassides, A.; Leontiou, A.; Kehayias, G.; Avgeropoulos, A.; et al. Nanocomposite Film Development Based on Chitosan/Polyvinyl Alcohol Using ZnO@Montmorillonite and ZnO@Halloysite Hybrid Nanostructures for Active Food Packaging Applications. Nanomaterials 2022, 12, 1843. [Google Scholar] [CrossRef]
- Pires, J.; de Paula, C.D.; Souza, V.G.L.; Fernando, A.L.; Coelhoso, I. Understanding the Barrier and Mechanical Behavior of Different Nanofillers in Chitosan Films for Food Packaging. Polymers 2021, 13, 721. [Google Scholar] [CrossRef] [PubMed]
- Hasanin, M.S.; Hassan, Y.R.; Youssef, A.M. Active Packaging Films Based on the Nanoform of Chitin, Alginate, and Layered Double Hydroxides: Characterization, Mechanical Properties, Permeability, and Bioactive Properties. RSC Adv. 2024, 14, 37380–37391. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, H.; Sogut, E. Functional Biobased Composite Polymers for Food Packaging Applications. In Reactive and Functional Polymers Volume One: Biopolymers, Polyesters, Polyurethanes, Resins and Silicones; Gutiérrez, T.J., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 95–136. ISBN 978-3-030-43403-8. [Google Scholar]
- Baddigam, K.R.; Chee, B.S.; Guilloud, E.; Venkatesh, C.; Koninckx, H.; Windey, K.; Fournet, M.B.; Hedenqvist, M.; Svagan, A.J. High Oxygen Barrier Packaging Materials from Protein-Rich Single-Celled Organisms. ChemRxiv 2025. [Google Scholar] [CrossRef]
- Chang, Y.; Joo, E.; Song, H.; Choi, I.; Yoon, C.S.; Choi, Y.J.; Han, J. Development of Protein-Based High-Oxygen Barrier Films Using an Industrial Manufacturing Facility. J. Food Sci. 2019, 84, 303–310. [Google Scholar] [CrossRef]
- Khin, M.N.; Ahammed, S.; Kamal, M.M.; Saqib, M.N.; Liu, F.; Zhong, F. Investigating Next-Generation Edible Packaging: Protein-Based Films and Coatings for Delivering Active Compounds. Food Hydrocoll. Health 2024, 6, 100182. [Google Scholar] [CrossRef]
- Nur Hanani, Z.A.; McNamara, J.; Roos, Y.H.; Kerry, J.P. Effect of Plasticizer Content on the Functional Properties of Extruded Gelatin-Based Composite Films. Food Hydrocoll. 2013, 31, 264–269. [Google Scholar] [CrossRef]
- Krishna, M.; Nindo, C.I.; Min, S.C. Development of Fish Gelatin Edible Films Using Extrusion and Compression Molding. J. Food Eng. 2012, 108, 337–344. [Google Scholar] [CrossRef]
- Nur Hanani, Z.A.; O’Mahony, J.A.; Roos, Y.H.; Oliveira, P.M.; Kerry, J.P. Extrusion of Gelatin-Based Composite Films: Effects of Processing Temperature and pH of Film Forming Solution on Mechanical and Barrier Properties of Manufactured Films. Food Packag. Shelf Life 2014, 2, 91–101. [Google Scholar] [CrossRef]
- Xu, B.; Zheng, Q.; Song, Y.; Shangguan, Y. Calculating Barrier Properties of Polymer/Clay Nanocomposites: Effects of Clay Layers. Polymer 2006, 47, 2904–2910. [Google Scholar] [CrossRef]
- Grigoriadi, K.; Giannakas, A.; Ladavos, A.K.; Barkoula, N.-M. Interplay between Processing and Performance in Chitosan-Based Clay Nanocomposite Films. Polym. Bull. 2015, 72, 1145–1161. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, Y.; Tian, G.; Zhu, C.; Zhang, Y. Toxicological Evaluation toward Refined Montmorillonite with Human Colon Associated Cells and Human Skin Associated Cells. J. Funct. Biomater. 2024, 15, 75. [Google Scholar] [CrossRef] [PubMed]
- de Araújo Lopes, A.; da Fonseca, F.N.; Rocha, T.M.; de Freitas, L.B.; Araújo, E.V.O.; Wong, D.V.T.; Lima Júnior, R.C.P.; Leal, L.K.A.M. Eugenol as a Promising Molecule for the Treatment of Dermatitis: Antioxidant and Anti-Inflammatory Activities and Its Nanoformulation. Oxid. Med. Cell. Longev. 2018, 2018, 8194849. [Google Scholar] [CrossRef]
- Chilamakuri, S.N.; Kumar, A.; Nath, A.G.; Gupta, A.; Selvaraju, S.; Basrani, S.; Jadhav, A.; Gulbake, A. Development and In-Vitro Evaluation of Eugenol-Based Nanostructured Lipid Carriers for Effectual Topical Treatment Against C. albicans. J. Pharm. Sci. 2024, 113, 772–784. [Google Scholar] [CrossRef] [PubMed]
- Mokhtar, A.; Ahmed, A.B.; Asli, B.; Boukoussa, B.; Hachemaoui, M.; Sassi, M.; Abboud, M. Recent Advances in Antibacterial Metallic Species Supported on Montmorillonite Clay Mineral: A Review. Minerals 2023, 13, 1268. [Google Scholar] [CrossRef]
- Jeyakumar, G.E.; Lawrence, R. Mechanisms of Bactericidal Action of Eugenol against Escherichia Coli. J. Herb. Med. 2021, 26, 100406. [Google Scholar] [CrossRef]
- Wang, N.; Jin, Y.; He, G.; Yuan, L. Intraspecific and Interspecific Extracellular Metabolites Remodel Biofilms Formed by Thermophilic Spoilage Bacteria. J. Appl. Microbiol. 2022, 133, 2096–2106. [Google Scholar] [CrossRef]
- Cao, J.; Liu, H.; Wang, Y.; He, X.; Jiang, H.; Yao, J.; Xia, F.; Zhao, Y.; Chen, X. Antimicrobial and Antivirulence Efficacies of Citral against Foodborne Pathogen Vibrio Parahaemolyticus RIMD2210633. Food Control 2021, 120, 107507. [Google Scholar] [CrossRef]
- Zheng, S.; Jing, G.; Wang, X.; Ouyang, Q.; Jia, L.; Tao, N. Citral Exerts Its Antifungal Activity against Penicillium Digitatum by Affecting the Mitochondrial Morphology and Function. Food Chem. 2015, 178, 76–81. [Google Scholar] [CrossRef]
- Burt, S. Essential Oils: Their Antibacterial Properties and Potential Applications in Foods—A Review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards (BIOHAZ); Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bover-Cid, S.; Chemaly, M.; De Cesare, A.; Herman, L.; Hilbert, F.; Lindqvist, R.; et al. Microbiological Safety of Aged Meat. EFSA J. 2023, 21, e07745. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, J.; Chen, Q.; Zhang, Y. Rapid Detection of Total Viable Count (TVC) in Pork Meat by Hyperspectral Imaging. Food Res. Int. 2013, 54, 821–828. [Google Scholar] [CrossRef]
- Tang, J.Y.H. Chapter 38—Detection of Microbiological Hazards. In Food Safety Management, 2nd ed.; Andersen, V., Lelieveld, H., Motarjemi, Y., Eds.; Academic Press: San Diego, CA, USA, 2023; pp. 835–850. ISBN 978-0-12-820013-1. [Google Scholar]
- Cabeza de Vaca, M.; Ramírez, R.; Rocha-Pimienta, J.; Tejerina, D.; Delgado-Adámez, J. Effects of Gelatin/Chitosan and Chitosan Active Films with Rice Bran Extract for the Preservation of Fresh Pork Meat. Gels 2025, 11, 338. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Ezati, P.; Rhim, J.-W. Chitosan/Gelatin-Based Multifunctional Film Integrated with Green Tea Carbon Dots to Extend the Shelf Life of Pork. Food Packag. Shelf Life 2023, 37, 101075. [Google Scholar] [CrossRef]
- Kaewprachu, P.; Ben Amara, C.; Oulahal, N.; Gharsallaoui, A.; Joly, C.; Tongdeesoontorn, W.; Rawdkuen, S.; Degraeve, P. Gelatin Films with Nisin and Catechin for Minced Pork Preservation. Food Packag. Shelf Life 2018, 18, 173–183. [Google Scholar] [CrossRef]
- Kalita, S.; Kumar, S.; Dutta, J.; Mukherjee, A. Chitosan and Gelatin Based Antimicrobial Composite Coatings Functionalized with Natural Active Agents for Preservation of Pork Meat. Future Foods 2025, 11, 100607. [Google Scholar] [CrossRef]
Sample Name | Gel (g) | Gl (g) | H2O (g) | Mt (g) | EG@Mt (g) | CT@Mt (g-wt.%) |
---|---|---|---|---|---|---|
Gel/Gl | 4 | 1 | 1.6 | - | - | - |
Gel/Gl/5Mt | 4 | 1 | 1.6 | 0.347 | - | - |
Gel/Gl/10Mt | 4 | 1 | 1.6 | 0.733 | - | - |
Gel/Gl/5EG@Mt | 4 | 1 | 1.6 | - | 0.347 | - |
Gel/Gl/10EG@Mt | 4 | 1 | 1.6 | - | 0.733 | - |
Gel/Gl/15EG@Mt | 4 | 1 | 1.6 | - | 1.160 | - |
Gel/Gl/5CT@Mt | 4 | 1 | 1.6 | - | - | 0.347 |
Gel/Gl/10CT@Mt | 4 | 1 | 1.6 | - | - | 0.733 |
EG@Mt | CT@Mt | |||||
---|---|---|---|---|---|---|
T (°C) | k2 (×10−4) | qe (%) | R2 | k2 (×10−4) | qe (%) | R2 |
70 °C | 3.61 ± 0.265 | 68.87 ± 5.174 | 0.948 ± 0.0001 | 40.87 ± 3.035 | 38.70 ± 2.907 | 0.802 ± 0.0257 |
90 °C | 11.15 ± 2.420 | 77.16 ± 3.820 | 0.953 ± 0.0057 | 57.87 ± 18.516 | 40.72 ± 2.958 | 0.906 ± 0.0163 |
110 °C | 19.80 ± 4.386 | 97.26 ± 7.350 | 0.982 ± 0.0031 | 52.50 ± 9.193 | 51.38 ± 2.602 | 0.949 ± 0.0189 |
Sample Code Name | Elastic Modulus | σuts (MPa) | Elongation (%ε) |
---|---|---|---|
Gel/Gl | 417.15 ± 38.567 a | 14.73 ± 1.616 a | 70.94 ± 13.149 a |
Gel/Gl/5Mt | 2161.43 ± 386.371 b | 36.17 ± 3.403 b | 2.48 ± 0.972 b,d |
Gel/Gl/10Mt | 1897 ± 320.391 b | 31.50 ± 3.724 b,c | 2.24 ± 0.741 b,d |
Gel/Gl/5EG@Mt | 968.57 ± 16.946 c,d | 18.36 ± 2.146 a | 2.38 ± 0.225 b,d |
Gel/Gl/10EG@Mt | 1030.40 ± 113.342 d | 32.28 ± 2.936 b | 28.73 ± 12.14 c |
Gel/Gl/15EG@Mt | 1065.00 ± 48.280 d | 25.90 ± 2.030 c,d | 31.70 ± 10.551 c |
Gel/Gl/5CT@Mt | 690.13 ± 89.073 a,d | 20.69 ± 0.964 a,d | 3.60 ± 0.508 d |
Gel/Gl/10CT@Mt | 870.77 ± 126.432 a,d | 20.45 ± 2.509 a,d | 2.75 ± 0.254 d |
Thickness (mm) | OTR (mL·m−2·day−1) | EC60 (mg/L) | EC50 (mg/L) | |
---|---|---|---|---|
Gel/Gl | 0.08 ± 0.01 | 0 | - | - |
Gel/Gl/5Mt | 0.12 ± 0.04 | 0 | - | - |
Gel/Gl/10Mt | 0.15 ± 0.01 | 0 | - | - |
Gel/Gl/5EG@Mt | 0.13 ± 0.01 | 0 | 11.5 ± 0.60 | 8.37 ± 0.37 |
Gel/Gl/10EG@Mt | 0.14 ± 0.02 | 0 | 9.86 ± 0.40 | 6.80 ± 0.82 |
Gel/Gl/15EG@Mt | 0.11 ± 0.01 | 0 | 9.78 ± 0.47 | 1.67 ± 0.99 |
Gel/Gl/5CT@Mt | 0.12 ± 0.01 | 0 | 406.46 ± 17.63 | 336.69 ± 14.74 |
Gel/Gl/10CT@Mt | 0.13 ± 0.01 | 0 | 329.45 ± 42.63 | 289.52 ± 8.87 |
Sample Code | log CFU/g | |||
---|---|---|---|---|
Day 0 | Day 2 | Day 4 | Day 6 | |
Control | 4.24 ± 0.20 a | 5.64 ± 0.11 a | 6.89 ± 0.07 a | 8.14 ± 0.13 a |
Gel/Gl/10CT@Mt | 4.24 ± 0.20 a | 5.75 ± 0.12 a,b | 6.12 ± 0.08 c | 7.76 ± 0.07 b |
Gel/Gl/15EG@Mt | 4.24 ± 0.20 a | 4.81 ± 0.04 b | 5.88 ± 0.06 | 7.25 ± 0.03 c |
pH Mean Values | |||
---|---|---|---|
Control | Gel/Gl/10CT@Mt | Gel/Gl/15EG@Mt | |
Day 0 | 5.65 ± 0.031 a,c | 5.65 ± 0.031 a,c | 5.65 ± 0.031 a,f,g |
Day 2 | 5.66 ± 0.021 a | 5.57 ± 0.006 c,d,f | 5.61 ± 0.040 a,c |
Day 4 | 5.67 ± 0.026 a | 5.52 ± 0.012 d,h | 5.58 ± 0.006 c,d,g |
Day 6 | 5.43 ± 0.04 b,c,d | 5.55 ± 0.02 e | 5.58 ± 0.010 c,h,g |
Sample | Day | L (Mean ± SD) | a (Mean ± SD) | b (Mean ± SD) | ΔL (Mean ± SD) | Δa (Mean ± SD) | Δb (Mean ± SD) | ΔE (Mean ± SD) |
---|---|---|---|---|---|---|---|---|
Control | 0 | 49.50 ± 1.20 | 21.30 ± 1.00 | 13.40 ± 0.90 | 0 a | 0 a | 0 a | 0 a |
2 | 47.20 ± 1.30 | 18.50 ± 1.10 | 14.70 ± 1.00 | –2.30 ± 0.50 Cb | –2.80 ± 0.60 Cb | 1.30 ± 0.50 Cb | 3.85 ± 0.60 Cb | |
4 | 44.80 ± 1.40 | 15.20 ± 1.20 | 15.60 ± 1.10 | –4.70 ± 0.60 Cc | –6.10 ± 0.70 Cc | 2.20 ± 0.60 Cc | 8.01 ± 0.70 Cc | |
6 | 42.30 ± 1.50 | 12.00 ± 1.30 | 16.80 ± 1.30 | –7.20 ± 0.70 Cd | –9.30 ± 0.80 Cd | 3.30 ± 1.42 Cd | 6.75 ± 3.19 Cd | |
Gel/Gl/10CT@Mt | 0 | — | — | — | — | — | — | — |
2 | 51.20 ± 1.10 | 18.80 ± 1.00 | 13.00 ± 0.90 | –0.80 ± 0.40 Bb | –1.40 ± 0.50 Bb | 0.30 ± 0.40 Bb | 1.77 ± 0.50 Bb | |
4 | 50.30 ± 1.20 | 17.10 ± 1.10 | 13.40 ± 0.90 | –1.70 ± 0.50 Bc | –3.10 ± 0.60 Bc | 0.70 ± 0.50 Bc | 2.99 ± 0.60 Bc | |
6 | 48.90 ± 1.30 | 15.50 ± 1.10 | 13.80 ± 1.00 | –3.10 ± 0.60 Bd | –5.55 ± 1.27 Bd | 0.73 ± 0.94 Bd | 3.69 ± 1.72 Bd | |
Gel/Gl/15EG@Mt | 0 | — | — | — | — | — | — | — |
2 | 53.70 ± 1.00 | 19.90 ± 0.90 | 12.40 ± 0.80 | –0.60 ± 0.30 Ab | –0.90 ± 0.30 Ab | 0.30 ± 0.30 Ab | 1.16 ± 0.40 Ab | |
4 | 52.90 ± 1.10 | 18.60 ± 0.90 | 12.70 ± 0.80 | –1.40 ± 0.40 Ac | –2.20 ± 0.40 Ac | 0.60 ± 0.30 Ac | 2.41 ± 0.50 Ac | |
6 | 52.00 ± 1.20 | 17.80 ± 0.90 | 12.90 ± 0.90 | –2.30 ± 0.50 Ad | –4.48 ± 1.12Ad | 0.55 ± 0.98 Ad | 2.64 ± 0.78 Ad |
Day | Color | Odor | Taste | |
---|---|---|---|---|
control | 0 | 5.00 ± 0.000 a | 5.00 ± 0.000 a | 5.00 ± 0.000 a |
2 | 4.58 ± 0.330 a,d | 4.18 ± 0.538 a,b | 4.70 ± 0.183 a,b | |
4 | 3.90 ± 0.271 b,g | 3.50 ± 0.735 b,c | 3.98 ± 0.340 b,c | |
6 | 2.98 ± 0.330 c | 3.00 ± 0.812 c | 3.15 ± 0.520 c | |
Gel/Gl/10CT | 0 | 5.00 ± 0.000 a | 5.00 ± 0.000 a | 5.00 ± 0.000 a |
2 | 4.73 ± 0.250 a,f | 4.63 ± 0.206 a,d | 4.75 ± 0.238 a,b | |
4 | 4.08 ± 0.222 b,d | 4.08 ± 0.150 a,c | 4.05 ± 0.265 b,c | |
6 | 3.10 ± 0.337 c | 3.55 ± 0.404 b,c,d | 3.43 ± 0.675 c,d | |
Gel/Gl/15EG@Mt | 0 | 5.00 ± 0.000 a | 5.00 ± 0.000 a | 5.00 ± 0.000 a |
2 | 4.70 ± 0.216 a,f | 4.88 ± 0.096 a | 4.68 ± 0.150 a,b | |
4 | 4.18 ± 0.236 b,d,f | 4.45 ± 0.443 a,b | 4.23 ± 0.386 a,b,d | |
6 | 3.50 ± 0.000 c,g | 4.08 ± 0.690 a,c | 3.88 ± 0.660 b,c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kechagias, A.; Leontiou, A.A.; Oliinychenko, Y.K.; Stratakos, A.C.; Zaharioudakis, K.; Proestos, C.; Giannelis, E.P.; Chalmpes, N.; Salmas, C.E.; Giannakas, A.E. Eugenol@Montmorillonite vs. Citral@Montmorillonite Nanohybrids for Gelatin-Based Extruded, Edible, High Oxygen Barrier, Active Packaging Films. Polymers 2025, 17, 1518. https://doi.org/10.3390/polym17111518
Kechagias A, Leontiou AA, Oliinychenko YK, Stratakos AC, Zaharioudakis K, Proestos C, Giannelis EP, Chalmpes N, Salmas CE, Giannakas AE. Eugenol@Montmorillonite vs. Citral@Montmorillonite Nanohybrids for Gelatin-Based Extruded, Edible, High Oxygen Barrier, Active Packaging Films. Polymers. 2025; 17(11):1518. https://doi.org/10.3390/polym17111518
Chicago/Turabian StyleKechagias, Achilleas, Areti A. Leontiou, Yelyzaveta K. Oliinychenko, Alexandros Ch. Stratakos, Konstatninos Zaharioudakis, Charalampos Proestos, Emmanuel P. Giannelis, Nikolaos Chalmpes, Constantinos E. Salmas, and Aris E. Giannakas. 2025. "Eugenol@Montmorillonite vs. Citral@Montmorillonite Nanohybrids for Gelatin-Based Extruded, Edible, High Oxygen Barrier, Active Packaging Films" Polymers 17, no. 11: 1518. https://doi.org/10.3390/polym17111518
APA StyleKechagias, A., Leontiou, A. A., Oliinychenko, Y. K., Stratakos, A. C., Zaharioudakis, K., Proestos, C., Giannelis, E. P., Chalmpes, N., Salmas, C. E., & Giannakas, A. E. (2025). Eugenol@Montmorillonite vs. Citral@Montmorillonite Nanohybrids for Gelatin-Based Extruded, Edible, High Oxygen Barrier, Active Packaging Films. Polymers, 17(11), 1518. https://doi.org/10.3390/polym17111518