Methylcellulose–Alginate Composite Bead Incorporating Ethanol and Clove Essential Oil: Properties and Its Application in Bakery Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Bead Formulations and Forming
2.3. Analysis of Essential Oils
2.4. Bead Properties
2.4.1. Determination of Size and Appearance
2.4.2. Determination of Fourier-Transform Infrared (FT-IR) Spectroscopy
2.4.3. Surface Determination
2.4.4. Pore Determination
2.5. Encapsulation and Release of Ethanol
2.6. Encapsulation and Release of CEO and Vanillin
2.7. Isolation of Aspergillus flavus and Rhizopus stolonifera
2.8. Antifungal Effect of Beads Against Aspergillus flavus and Rhizopus stolonifera on Potato Dextrose Agar
2.9. Shelf Life of the Butter Cake Packed with Beads
Statistical Analysis
3. Results and Discussion
3.1. Composition of Vanillin and Clove Essential Oil
3.2. Bead Properties
3.2.1. Size and Appearance
3.2.2. Fourier-Transform Infrared (FT-IR) Spectroscopy
3.2.3. The Surfaces and Pores of Beads
3.3. Encapsulation and Release of Ethanol
3.4. Encapsulation and Release of CEO and Vanillin
3.5. Antifungal Effect of Beads Against Aspergillus flavus and Rhizopus stolonifera on Potato Dextrose Agar
3.6. Shelf Life of Butter Cake Packed with Beads
3.6.1. Incidence of Mold
3.6.2. Texture
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CEO | Clove essential oil |
E | Methylcellulose–alginate beads containing ethanol |
EC | Methylcellulose–alginate beads containing ethanol and clove essential oil |
EV | Methylcellulose–alginate beads containing ethanol and vanillin |
EVC | Methylcellulose–alginate beads containing ethanol, vanillin, and clove essential oil |
EE | Encapsulation efficiency |
References
- Melini, V.; Melini, F. Strategies to Extend Bread and GF Bread Shelf-Life: From Sourdough to Antimicrobial Active Packaging and Nanotechnology. Fermentation 2018, 4, 9. [Google Scholar] [CrossRef]
- Marchese, A.; Barbieri, R.; Coppo, E.; Orhan, I.E.; Daglia, M.; Nabavi, S.F.; Izadi, M.; Abdollahi, M.; Nabavi, S.M.; Ajami, M. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit. Rev. Microbiol. 2017, 43, 668–689. [Google Scholar] [CrossRef] [PubMed]
- Sethunga, M.; Ranasinghe, M.M.K.D.; Ranaweera, K.K.D.S.; Munaweera, I.; Gunathilake, K.D.P.P. Synergistic antimicrobial activity of essential oils and oleoresins of cinnamon (Cinnamomum zeylanicum), clove bud (Syzygium aromaticum) and ginger (Zingiber officinale). Biocatal. Agric. Biotechnol. 2023, 51, 102800. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, X.; Xie, Y.; Zhong, Y. o-Vanillin, a promising antifungal agent, inhibits Aspergillus flavus by disrupting the integrity of cell walls and cell membranes. Appl. Microbiol. Biotechnol. 2021, 105, 5147–5158. [Google Scholar] [CrossRef] [PubMed]
- Radünz, M.; da Trindade, M.L.M.; Camargo, T.M.; Radünz, A.L.; Borges, C.D.; Gandra, E.A.; Helbig, E. Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum L.) essential oil. Food Chem. 2019, 276, 180–186. [Google Scholar] [CrossRef]
- Qiu, B.; Tian, H.; Yin, X.; Zhou, Y.; Zhu, L. Microencapsulation of 2-phenyl ethanol with methylcellulose/alginate/methylcellulose as the wall material and stability of the microcapsules. Polym. Bull. 2020, 77, 989–1001. [Google Scholar] [CrossRef]
- Ren, Y.; Jin, J.; Zheng, M.; Yang, Q.; Xing, F. Ethanol inhibits aflatoxin B1 biosynthesis in Aspergillus flavus by up-regulating oxidative stress-related genes. Front. Microbiol. 2020, 10, 2946. [Google Scholar] [CrossRef]
- Daifas, D.P.; Smith, J.P.; Tarte, I.; Blanchfield, B.; Austin, J.W. Effect of ethanol vapor on growth and toxin production by Clostridium botulinm in a high moisture bakery product. J. Food Saf. 2000, 20, 115–125. [Google Scholar] [CrossRef]
- Sangsuwan, J.; Pongsapakworawat, T.; Bangmo, P.; Sutthasupa, S. Effect of chitosan beads incorporated with lavender or red thyme essential oils in inhibiting Botrytis cinerea and their application in strawberry packaging system. LWT 2016, 74, 14–20. [Google Scholar] [CrossRef]
- Hosseini, S.F.; Zandi, M.; Rezaei, M.; Farahmandghavi, F. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydr. Polym. 2013, 95, 50–56. [Google Scholar] [CrossRef]
- Chang, B.; Liu, Y.; Peng, H.; Lin, Y.; Cai, K. Effects of ginger essential oil on physicochemical and structural properties of agar-sodium alginate bilayer film and its application to beef refrigeration. Meat Sci. 2023, 198, 109051. [Google Scholar] [CrossRef]
- El-Molla, M.M.; El-Ghorab, A.H. Extraction of eco-friendly essential oils and their utilization in finishing polyester fabrics for fragrant and medical textiles. J. Eng. Fiber Fabr. 2022, 17, 15589250221104475. [Google Scholar] [CrossRef]
- Gao, H.; Yang, H.; Wang, C. Controllable preparation and mechanism of nano-silver mediated by the microemulsion system of the clove oil. Results Phys. 2017, 7, 3130–3136. [Google Scholar] [CrossRef]
- Shekarforoush, E.; Mendes, A.C.; Baj, V.; Beeren, S.R.; Chronakis, I.S. Electrospun Phospholipid Fibers as Micro-Encapsulation and Antioxidant Matrices. Molecules 2017, 22, 1708. [Google Scholar] [CrossRef] [PubMed]
- Rezvanian, M.; Ahmad, N.; Mohd Amin, M.C.I.; Ng, S.-F. Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. Int. J. Biol. Macromol. 2017, 97, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Klangmuang, P.; Sothornvit, R. Barrier properties, mechanical properties and antimicrobial activity of hydroxypropyl methylcellulose-based nanocomposite films incorporated with Thai essential oils. Food Hydrocoll. 2016, 61, 609–616. [Google Scholar] [CrossRef]
- Mu, H.; Gao, H.; Chen, H.; Fang, X.; Han, Q. A novel controlled release ethanol emitter: Preparation and effect on some postharvest quality parameters of Chinese bayberry during storage. J. Sci. Food Agric. 2017, 97, 4929–4936. [Google Scholar] [CrossRef]
- Pitterou, I.; Kalogeropoulou, F.; Tzani, A.; Tsiantas, K.; Gatou, M.A.; Pavlatou, E.; Batrinou, A.; Fountzoula, C.; Kriebardis, A.; Zoumpoulakis, P.; et al. Development of Alginate Hydrogels Incorporating Essential Oils Loaded in Chitosan Nanoparticles for Biomedical Applications. Molecules 2024, 29, 5318. [Google Scholar] [CrossRef]
- Dobrucka, R.; Cierpiszewski, R. Active and Intelligent Packaging Food-Research and Development—A Review. Pol. J. Food Nutr. Sci. 2014, 64, 7–15. [Google Scholar] [CrossRef]
- Deng, L.; Xu, R.; Zhang, S.; Lu, J.; Wang, H.; Zhou, J.; Zhang, C.; Golding, J.; Jiang, W.; Wang, B. Calcium alginate-encapsulated propolis microcapsules: Optimization, characterization, and preservation effects on postharvest sweet cherry. Int. J. Biol. Macromol. 2024, 282, 137473. [Google Scholar] [CrossRef]
- Sangsuwan, J.; Sutthasupa, S. Effect of chitosan and alginate beads incorporated with lavender, clove essential oils, and vanillin against Botrytis cinerea and their application in fresh table grapes packaging system. Packag. Technol. Sci. 2019, 32, 595–605. [Google Scholar] [CrossRef]
- Pandey, R.K. Antifungal activity of seven essential oils against storage fungi aspergillus flavus. J. Post. Harvest Technol. 2022, 10, 113–124. [Google Scholar]
- Luesuwan, S.; Naradisorn, M.; Shiekh, K.A.; Rachtanapun, P.; Tongdeesoontorn, W. Effect of active packaging material fortified with clove essential oil on fungal growth and post-harvest quality changes in table grape during cold storage. Polymers 2021, 13, 3445. [Google Scholar] [CrossRef] [PubMed]
- Sukatta, U.; Haruthaithanasan, V.; Chantarapanont, W.; Dilokkunanant, U.; Suppakul, P. Antifungal activity of clove and cinnamon oil and their synergistic against postharvest decay fungi of grape in vitro. Agric. Nat. Resour. 2008, 42, 169–174. [Google Scholar]
- De Pilli, T. Development of a vegetable oil and egg proteins edible film to replace preservatives and primary packaging of sweet baked goods. Food Control 2020, 114, 107273. [Google Scholar] [CrossRef]
- Malathy, S.; Selvam, P.; Sadiku, E.R. Evaluation of Quality and Shelf-Life Extension of Pita Bread Prepared with Clove Essential. Food Sci. Technol. 2023, 11, 133–144. [Google Scholar]
- Axel, C.; Zannini, E.; Arendt, E.K. Mold spoilage of bread and its biopreservation: A review of current strategies for bread shelf-life extension. Crit. Rev. Food Sci. Nutr. 2017, 57, 3528–3542. [Google Scholar] [CrossRef]
Bead Formula | Pore Diameter (nm) | Specific Surface (m2/g) | Pore Volume (cc/g) |
---|---|---|---|
E | 870 | 0.975 | 2.122 × 10−2 |
EC | 89.6 | 19.743 | 4.422 × 10−2 |
EV | 674 | 1.437 | 2.423 × 10−2 |
EVC | 246 | 5.419 | 3.352 × 10−2 |
Time (hours) | Ethanol Content (mg) | |||
---|---|---|---|---|
E | EC | EV | EVC | |
0 | 204.15 ± 4.21 a | 237.44 ± 39.59 a | 162.12 ± 35.77 a | 279.02 ± 29.49 a |
3 | 150.07 ± 2.23 b | 127.96 ± 3.40 b | 95.73 ± 6.85 b | 165.52 ± 5.42 b |
6 | 78.62 ± 4.54 c | 117.07 ± 34.12 b | 66.46 ± 22.11 c | 130.78 ± 4.88 c |
12 | 62.61 ± 2.39 d | 65.68 ± 8.77 c | 38.84 ± 1.83 cd | 13.19 ± 0.28 d |
24 | 18.00 ± 3.55 e | 20.12 ± 2.30 cd | 11.70 ± 1.79 d | 0.77 ± 0.11 e |
48 | 0.00 ± 0.00 f | 8.96 ± 1.63 d | 2.65 ± 0.45 e | 0.10 ± 0.04 f |
72 | 0.00 ± 0.00 f | 2.30 ± 0.11 e | 0.27 ± 0.24 f | 0.00 ± 0.00 f |
96 | 0.00 ± 0.00 f | 0.00 ± 0.00 f | 0.05 ± 0.00 f | 0.00 ± 0.00 f |
Model | R2 Coefficients | |||
---|---|---|---|---|
E | EC | EV | EVC | |
Zero order | 0.847 | 0.789 | 0.852 | 0.658 |
First order | 0.932 | 0.901 | 0.945 | 0.874 |
Higuchi | 0.876 | 0.948 | 0.981 | 0.912 |
Korsmeyer–Peppas | 0.963 | 0.982 | 0.982 | 0.995 |
Formula | Clove or Vanillin Content (mg/g Bead) | |||
---|---|---|---|---|
Day 0 | Day 1 | Day 2 | Day 3 | |
C in EC | 9.35 ± 0.12 c | 6.42 ± 1.28 c | 5.47 ± 0.34 c | 5.05 ± 0.21 b |
C in EVC | 4.59 ± 0.57 d | 3.35 ± 0.53 d | 2.08 ± 0.01 d | 2.09 ± 0.64 c |
V in EV | 62.14 ± 15.4 b | 33.58 ± 2.12 b | 33.05 ± 0.01 b | 34.84 ± 3.63 a |
V in EVC | 100.83 ± 15.46 a | 62.65 ± 8.06 a | 47.82 ± 0.88 a | 31.02 ± 5.11 a |
Bead Formula | Area of Aspergillus flavus (cm2) | |||
---|---|---|---|---|
Day 1 | Day 2 | Day 3 | Day 4 | |
Control | 1.16 ± 0.26 c | 6.37 ± 0.54 d | 11.43 ± 2.61 d | 13.95 ± 1.26 d |
E 0.5 g | 0.49 ± 0.23 b | 1.75 ± 1.02 ab | 2.64 ± 1.78 ab | 3.23 ± 0.77 b |
E 1 g | 0.47 ± 0.03 b | 2.37 ± 0.99 b | 3.19 ± 0.88 b | 3.15 ± 0.89 b |
EC 0.5 g | 0.65 ± 0.34 b | 3.04 ± 2.20 c | 3.80 ± 1.65 b | 3.86 ± 1.29 b |
EC 1 g | 0.05 ± 0.05 a | 0.23 ± 0.09 a | 0.26 ± 0.07 a | 0.86 ± 0.32 a |
EV 0.5 g | 0.58 ± 0.04 b | 3.75 ± 0.35 c | 6.18 ± 1.07 c | 8.16 ± 2.17 c |
EV 1 g | 0.10 ± 0.06 a | 0.70 ± 0.40 a | 1.42 ± 1.05 ab | 1.81 ± 0.92 ab |
EVC 0.5 g | 0.50 ± 0.10 b | 3.26 ± 0.40 c | 4.83 ± 0.83 b | 7.36 ± 1.07 c |
EVC 1 g | 0.07 ± 0.09 a | 0.32 ± 0.17 a | 0.77 ± 0.20 a | 1.60 ± 0.50 ab |
Bead Formula | Area of Rhizopus stolonifera (cm2) | ||
---|---|---|---|
Day 1 | Day 2 | Day 3 | |
Control | 0.98 ± 0.16 e | 8.07 ± 1.21 e | 16.88 ± 5.55 d |
E 0.5 g | 0.73 ± 0.11 d | 6.74 ± 1.18 d | 13.27 ± 3.23 c |
E 1 g | 0.51 ± 0.06 bc | 3.85 ± 0.80 b | 10.30 ± 3.20 b |
EC 0.5 g | 0.61 ± 0.14 c | 5.75 ± 0.31 c | 14.12 ± 3.19 c |
EC 1 g | 0.36 ± 0.10 ab | 2.90 ± 0.90 ab | 5.10 ± 1.34 a |
EV 0.5 g | 0.50 ± 0.13 bc | 5.94 ± 0.42 c | 17.08 ± 2.50 d |
EV 1 g | 0.41 ± 0.09 b | 2.81 ± 0.45 ab | 10.23 ± 1.83 b |
EVC 0.5 g | 0.61 ± 0.21 cd | 4.33 ± 1.54 bc | 11.94 ± 1.98 bc |
EVC 1 g | 0.23 ± 0.03 a | 1.67 ± 0.91 a | 4.44 ± 0.01 a |
Bead Formula | Mold Growth (Spots) | |||
---|---|---|---|---|
Day 0–4 | Day 5 | Day 6 | Day 7 | |
Control | 0 a | 14.4 ± 5.2 c | 104.6 ± 14.7 d | 186.0 ± 16.7 d |
E 0.5 g | 0 a | 0.60 ± 0.55 b | 26.2 ± 5.3 c | 72.8 ± 17.0 bc |
E 1 g | 0 a | 0 a | 8.4 ± 2.3 b | 38.4 ± 11.4 b |
EC 0.5 g | 0 a | 0 a | 26.2 ± 3.7 c | 53.8 ± 11.9 b |
EC 1 g | 0 a | 0 a | 0 a | 3.0 ± 1.2 a |
EV 0.5 g | 0 a | 0 a | 30.6 ± 6.2 c | 63.4 ± 18.6 c |
EV 1 g | 0 a | 0 a | 2.4 ± 0.9 ab | 5.6 ± 2.3 a |
EVC 0.5 g | 0 a | 0 a | 5.0 ± 1.0 ab | 46.4 ± 12.2 b |
EVC 1 g | 0 a | 0 a | 0 a | 9.4 ± 3.8 a |
Bead Formula | Force (kN) | |||
---|---|---|---|---|
Day 1 | Day 3 | Day 5 | Day 7 | |
Control | 1.7 ± 0.02 a | 1.7 ± 0.02 a | 1.9 ± 0.05 a | 1.9 ± 0.05 a |
E | 1.5 ± 0.02 a | 1.6 ± 0.07 a | 1.7 ± 0.04 a | 1.8 ± 0.08 a |
EC | 1.5 ± 0.02 a | 1.6 ± 0.06 a | 1.8 ± 0.07 a | 1.9 ± 0.03 a |
EV | 1.5 ± 0.12 a | 1.7 ± 0.02 a | 1.7 ± 0.29 a | 1.8 ± 0.09 a |
EVC | 1.5 ± 0.14 a | 1.6 ± 0.10 a | 1.7 ± 0.24 a | 1.8 ± 0.15 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sangsuwan, J.; Thongchai, P.; Nalampang, K. Methylcellulose–Alginate Composite Bead Incorporating Ethanol and Clove Essential Oil: Properties and Its Application in Bakery Products. Polymers 2025, 17, 1377. https://doi.org/10.3390/polym17101377
Sangsuwan J, Thongchai P, Nalampang K. Methylcellulose–Alginate Composite Bead Incorporating Ethanol and Clove Essential Oil: Properties and Its Application in Bakery Products. Polymers. 2025; 17(10):1377. https://doi.org/10.3390/polym17101377
Chicago/Turabian StyleSangsuwan, Jurmkwan, Prem Thongchai, and Kanarat Nalampang. 2025. "Methylcellulose–Alginate Composite Bead Incorporating Ethanol and Clove Essential Oil: Properties and Its Application in Bakery Products" Polymers 17, no. 10: 1377. https://doi.org/10.3390/polym17101377
APA StyleSangsuwan, J., Thongchai, P., & Nalampang, K. (2025). Methylcellulose–Alginate Composite Bead Incorporating Ethanol and Clove Essential Oil: Properties and Its Application in Bakery Products. Polymers, 17(10), 1377. https://doi.org/10.3390/polym17101377