Mechanical Modification of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Addition of Crosslinked Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Particles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.2.1. Preparation of Crosslinked PHBH28
2.2.2. Preparation of Blend Samples
2.3. Measurements
3. Results and Discussion
3.1. Structure of Blends
3.2. Mechanical Properties
3.3. Biodegradability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Narancic, T.; Cerrone, F.; Beagan, N.; O’Connor, K.E. Recent advances in bioplastics: Application and biodegradation. Polymers 2020, 12, 920. [Google Scholar] [CrossRef] [PubMed]
- Sudesh, K.; Iwata, T. Sustainability of biobased and biodegradable plastics. Clean—Soil Air Water 2008, 36, 433–442. [Google Scholar] [CrossRef]
- Amasawa, E.; Yamanishi, T.; Nakatani, J.; Hirao, M.; Sato, S. Climate change implications of bio-based and marine-biodegradable plastic: Evidence from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Environ. Sci. Technol. 2021, 55, 3380–3388. [Google Scholar] [CrossRef] [PubMed]
- Moshood, T.D.; Nawanir, G.; Mahmud, F.; Mohamad, F.; Ahmad, M.H.; AbdulGhani, A. Biodegradable plastic applications towards sustainability: A recent innovation in the green product. Clean. Eng. Technol. 2022, 6, 100404. [Google Scholar] [CrossRef]
- Sudesh, K.; Abe, H.; Doi, Y. Synthesis, structure and properties of polyhydroxyalkanoates: Biological polyesters. Prog. Polym. Sci. 2000, 25, 1503–1555. [Google Scholar] [CrossRef]
- Anjum, A.; Zuber, M.; Zia, K.M.; Noreen, A.; Anjum, M.N.; Tabasum, S. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. Int. J. Biol. Macromol. 2016, 89, 161–174. [Google Scholar] [CrossRef]
- Sabapathy, P.C.; Devaraj, S.; Meixner, K.; Anburajan, P.; Kathirvel, P.; Ravikumar, Y.; Zabed, H.M.; Qi, X. Recent developments in polyhydroxyalkanoates (PHAs) production—A review. Bioresour. Technol. 2020, 306, 123132. [Google Scholar] [CrossRef]
- Taguchi, S.; Matsumoto, K. Evolution of polyhydroxyalkanoate synthesizing systems toward a sustainable plastic industry. Polym. J. 2021, 53, 67–79. [Google Scholar] [CrossRef]
- Numata, K.; Abe, H.; Iwata, T. Biodegradability of poly(hydroxyalkanoate) materials. Materials 2009, 2, 1104–1126. [Google Scholar] [CrossRef]
- Morohoshi, T.; Ogata, K.; Okura, T.; Sato, S. Molecular characterization of the bacterial community in biofilms for degradation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) films in seawater. Microbes Environ. 2018, 33, 19–25. [Google Scholar] [CrossRef]
- Nakayama, A.; Yamano, N.; Kawasaki, N. Biodegradation in seawater of aliphatic polyesters. Polym. Degrad. Stab. 2019, 166, 290–299. [Google Scholar] [CrossRef]
- Meereboer, K.W.; Misra, M.; Mohanty, A.K. Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chem. 2020, 22, 5519–5558. [Google Scholar] [CrossRef]
- Doi, Y.; Kitamura, S.; Abe, H. Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 1995, 28, 4822–4828. [Google Scholar] [CrossRef]
- Eraslan, K.; Aversa, C.; Nofar, M.; Barletta, M.; Gisario, A.; Salehiyan, R.; Goksu, Y.A. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH): Synthesis, properties, and applications-A Review. Eur. Polym. J. 2022, 167, 111044. [Google Scholar] [CrossRef]
- Tang, H.J.; Neoh, S.Z.; Sudesh, K. A review on poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] and genetic modifications that affect its production. Front. Bioeng. Biotechnol. 2022, 10, 1057067. [Google Scholar] [CrossRef]
- Genovesi, A.; Aversa, C.; Barletta, M. Polyhydroxyalkanoates-based cast film as bio-based packaging for fresh fruit and vegetables: Manufacturing and characterization. J. Polym. Environ. 2023, 31, 4522–4532. [Google Scholar] [CrossRef]
- Lee, J.; Hikima, Y.; Sekiguchi, T.; Ohshima, M. Thermal, rheological, and mechanical properties of cellulose nanofiber (CNF) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) biopolymer nanocomposites. Cellulose 2022, 29, 3901–3913. [Google Scholar] [CrossRef]
- Lalonde, J.N.; Pilania, G.; Marrone, B.L. Materials designed to degrade: Structure, properties, processing, and performance relationships in polyhydroxyalkanoate biopolymers. Polym. Chem. 2024, 16, 235–265. [Google Scholar] [CrossRef]
- Feng, L.; Watanabe, T.; He, Y.; Wang, Y.; Kichise, T.; Fukuchi, T.; Chen, G.Q.; Doi, Y.; Inoue, Y. Phase behavior and thermal properties for binary blends of bacterial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)s with narrow-comonomer-unit compositional distribution. Macromol. Chem. 2003, 3, 310–319. [Google Scholar] [CrossRef]
- Liao, Q.; Noda, I.; Frank, C.W. Melt viscoelasticity of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymers. Polymer 2009, 50, 6139–6148. [Google Scholar] [CrossRef]
- Ivorra-Martinez, J.; Verdu, I.; Fenollar, O.; Sanchez-Nacher, L.; Balart, R.; Quiles-Carrillo, L. Manufacturing and properties of binary blend from bacterial polyester poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and poly(caprolactone) with improved toughness. Polymers 2020, 12, 1118. [Google Scholar] [CrossRef] [PubMed]
- Sabalina, A.; Platnieks, O.; Gaidukova, G.; Aunins, A.; Eiduks, T.V.; Gaidukovs, S. Thermomechanical and mechanical analysis of polylactic acid/polyhydroxyalkanoate/poly(butylene succinate-co-adipate) binary and ternary blends. RSC Adv. 2025, 15, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Beber, V.C.; de Barros, S.; Banea, M.D.; Brede, M.; de Carvalho, L.H.; Hoffmann, R.; Costa, A.R.M.; Bezerra, E.B.; Silva, I.D.S.; Haag, K.; et al. Effect of babassu natural filler on PBAT/PHB biodegradable blends: An investigation of thermal, mechanical, and morphological behavior. Materials 2018, 11, 820. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Xu, K.; Chen, G.Q. Study of miscibility, crystallization, mechanical properties, and thermal stability of blends of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-4- hydroxybutyrate). J. Appl. Polym. Sci. 2007, 105, 3402–3408. [Google Scholar] [CrossRef]
- Donald, A.M.; Kramer, E.J. Internal structure of rubber particles and craze break-down in high-impact polystyrene (HIPS). J. Mater. Sci. 1982, 17, 2351–2358. [Google Scholar] [CrossRef]
- Wu, S. Phase structure and adhesion in polymer blends: A criterion for rubber toughening. Polymer 1985, 26, 1855–1863. [Google Scholar] [CrossRef]
- Choudhary, V.; Varma, H.S.; Varma, I.K. Polyolefin blends: Effect of EPDM rubber on crystallization, morphology and mechanical properties of polypropylene/EPDM blends. 1. Polymer 1991, 32, 2534–2540. [Google Scholar] [CrossRef]
- Dompas, D.; Groeninckx, G.; Isogawa, M.; Hasegawa, T.; Kadokura, M. Toughening behaviour of rubber-modified thermoplastic polymers involving very small rubber particles: 2. Rubber cavitation behaviour in poly(vinyl chloride)/methyl methacrylate-butadiene styrene graft copolymer blends. Polymer 1994, 35, 4750–4759. [Google Scholar] [CrossRef]
- Sue, H.J.; Yee, A.F. Micromechanical modeling of crack-tip rubber particle cavitational process in polymer toughening. Polym. Eng. Sci. 1996, 36, 2320–2326. [Google Scholar] [CrossRef]
- Takaki, A.; Narisawa, I.; Kuriyama, T. Izod impact strength of a product molded of poly(vinyl chloride)/impact modifier containing voids (void MOD). Polym. Eng. Sci. 2001, 41, 575–583. [Google Scholar] [CrossRef]
- Parulekar, Y.; Mohanty, A.K. Biodegradable toughened polymers from renewable resources: Blends of polyhydroxybutyrate with epoxidized natural rubber and maleated polybutadiene. Green Chem. 2006, 8, 206–213. [Google Scholar] [CrossRef]
- Tomano, N.; Boondamnoen, O.; Aumnate, C.; Potiyaraj, P. Enhancing impact resistance and biodegradability of PHBV by melt blending with ENR. Sci. Rep. 2022, 12, 22633. [Google Scholar] [CrossRef] [PubMed]
- Sonoyama, A. Crosslinked Resin Particles and Method for Producing Same. EP4506395A1, 24 March 2023. [Google Scholar]
- Yamaguchi, M.; Arakawa, K. Effect of thermal degradation on rheological properties for poly(3-hydroxybutyrate). Eur. Polym. J. 2006, 42, 1479–1486. [Google Scholar] [CrossRef]
- Barham, P.J.; Keller, A.; Otun, E.L.; Wills, H.H.; Holmes, P.A. Crystallization and morphology of a bacterial thermoplastic: Poly-3-hydroxybutyrate. J. Mater. Sci. 1984, 19, 2781–2794. [Google Scholar] [CrossRef]
- Nanni, A.; Messori, M. Effect of the wine lees wastes as cost-advantage and natural fillers on the thermal and mechanical properties of poly(3-hydroxybutyrate-co-hydroxyhexanoate) (PHBH) and poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV). J. Appl. Polym. Sci. 2020, 137, 48869. [Google Scholar] [CrossRef]
- Ward, I.M.; Sweeney, J. Mechanical Properties of Solid Polymers, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Rietsch, F.; Daveloose, D.; Froelich, D. Glass transition temperature of ideal polymeric networks. Polymer 1976, 17, 859–863. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Miyata, H. Strain Hardening Behavior in elongational viscosity for binary blends of linear polymer and crosslinked polymer. Polym. J. 2000, 32, 164–170. [Google Scholar] [CrossRef]
- Yamaguchi, M. Rheological properties of linear and crosslinked polymer blends: Relation between crosslink density and enhancement of elongational viscosity. J. Polym. Sci. Part B Polym. Phys. 2001, 39, 228–235. [Google Scholar] [CrossRef]
- Arakawa, K.; Yokohara, T.; Yamaguchi, M. Enhancement of melt elasticity for poly(3-hydroxybutyrate-co-3- hydroxyvalerate) by addition of weak gel. J. Appl. Polym. Sci. 2008, 107, 1320–1324. [Google Scholar] [CrossRef]
- Mahmood, H.; Pegoretti, A.; Brusa, R.S.; Ceccato, R.; Penasa, L.; Tarter, S.; Checchetto, R. Molecular transport through 3-hydroxybutyrate co-3-hydroxyhexanoate biopolymer films with dispersed graphene oxide nanoparticles: Gas barrier, structural and mechanical properties. Polym. Test. 2020, 81, 106181. [Google Scholar] [CrossRef]
- Argon, A.S. The Physics of Deformation and Fracture of Polymers; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Kinloch, A.J.; Young, R.J. Fracture Behaviour of Polymers; Springer Science+Business Media: Berlin, Germany, 1995. [Google Scholar]
- Bucknall, C.B. Deformation mechanisms in rubber-toughened polymers. In Polymer Blends; Paul, D.R., Bucknall, C.B., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000; Chapter 22. [Google Scholar]
- Yamaguchi, M. Mechanical properties and structure of rubber-toughened immiscible blends. In Encyclopedia of Polymeric Nanomaterials; Kobayashi, S., Muellen, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1214–1218. [Google Scholar]
- Manas-Zloczower, I. Mixing and Compounding of Polymers: Theory and Practice, 2nd ed.; Hanser Publications: Munich, Germany, 2009. [Google Scholar]
- Fukuda, Y.; Janchai, K.; Sunagawa, T.; Yamaguchi, M. Anomalous mechanical response of stretched film of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate). J. Polym. Environ. 2024, 33, 1185–1195. [Google Scholar] [CrossRef]
- Zhou, Q.; Xanthos, M. Nanoclay and crystallinity effects on the hydrolytic degradation of polylactides. Polym. Degrad. Stab. 2008, 93, 1450–1459. [Google Scholar] [CrossRef]
- Tarazona, N.A.; Machatschek, R.; Lendlein, A. Unraveling the interplay between abiotic hydrolytic degradation and crystallization of bacterial polyesters comprising short and medium side-chain-length polyhydroxyalkanoates. Biomacromolecules 2020, 21, 761–771. [Google Scholar] [CrossRef] [PubMed]
Sample | Tensile Modulus (MPa) | Yield Stress (MPa) | Fracture Stress (MPa) | Elongation at Break (%) |
---|---|---|---|---|
PHBH6 | 3030 | 33 | 32 | 2 |
PHBH6/uPHBH28 (90/10) | 2460 | 28 | 20 | 17 |
PHBH6/uPHBH28 (85/15) | 2130 | 27 | 16 | 21 |
PHBH6/uPHBH28 (70/30) | 1590 | 16 | 15 | 100 |
PHBH6/uPHBH28 (55/45) | 1110 | 12 | 14 | 125 |
PHBH6/xPHBH28 (90/10) | 2260 | 26 | 18 | 13 |
PHBH6/xPHBH28 (85/15) | 2120 | 26 | 17 | 22 |
PHBH6/xPHBH28 (70/30) | 1580 | 18 | 18 | 140 |
PHBH6/xPHBH28 (55/45) | 960 | 11 | 17 | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sonoyama, A.; Yamaguchi, M. Mechanical Modification of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Addition of Crosslinked Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Particles. Polymers 2025, 17, 1318. https://doi.org/10.3390/polym17101318
Sonoyama A, Yamaguchi M. Mechanical Modification of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Addition of Crosslinked Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Particles. Polymers. 2025; 17(10):1318. https://doi.org/10.3390/polym17101318
Chicago/Turabian StyleSonoyama, Arisa, and Masayuki Yamaguchi. 2025. "Mechanical Modification of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Addition of Crosslinked Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Particles" Polymers 17, no. 10: 1318. https://doi.org/10.3390/polym17101318
APA StyleSonoyama, A., & Yamaguchi, M. (2025). Mechanical Modification of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Addition of Crosslinked Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Particles. Polymers, 17(10), 1318. https://doi.org/10.3390/polym17101318