Forefront Research of Foaming Strategies on Biodegradable Polymers and Their Composites by Thermal or Melt-Based Processing Technologies: Advances and Perspectives
Abstract
:1. Introduction
2. Basics of Foaming Technology
3. Foaming Processes
3.1. Extrusion Foaming
3.2. Foam Injection Moulding
3.3. Batch Foaming
3.3.1. Temperature-Induced Batch Foaming
3.3.2. Pressure-Induced Batch Foaming
3.4. Compression Foaming
3.5. Baking
3.6. Ultrasound-Aided Foaming
3.7. Microwave Foaming
3.8. Foam 3D Printing
3.8.1. Foaming during Printing of Filaments Containing Blowing Agent
3.8.2. Post-Foaming 3D-Printed Structures
3.9. Bead Foaming
4. Biodegradable Polymers in Foaming
4.1. Poly (Lactic Acid) (PLA)
Objectives | Foaming Conditions | Key Features | Ref. |
---|---|---|---|
Investigate the influence of foaming temperature and foaming time on the crystallization behaviour and cell morphology of PLLA and Poly(L-lactic acid)/Poly(D-lactic acid) (PLLA/PDLA) foams. | The solid-state foaming using CO2 was carried out in a high-pressure vessel. After saturation, the saturated specimens were transferred to a glycerol oil bath to obtain microcellular foams. The foamed structure was fixed by quenching the foams in cold water. | PLLA and PLLA/PDLA blends were totally amorphous. CO2 saturation promoted the formation of the mesomorphic structure in PLLA and PLLA/PDLA blends. The foaming process induced the formation in situ of PLA homocrystal (HC) and PLA stereocomplex crystallites (SCs) in PLLA and PLLA/PDLA. The in situ formed PLA SC could stabilize cell structure and suppress cell coalescence, which facilitated the volume expansion of PLLA/PDLA foams. | [257] |
Effects of compressed CO2 and cotton fibres on the crystallization and foaming behaviours of PLA. | Batch foaming using CO2 as foaming agent carried out in a high-pressure vessel. After the saturation, the vessel pressure was quickly released to trigger foaming and the chamber with the sample was immediately dipped into a cold-water bath to freeze the foam structures. | CO2 saturation pressure, temperature, and fibre content significantly affected the crystallinity and foaming behaviours of PLA. A low CO2 pressure generated nonuniform foam and a large unfoamed area due to too high crystallinity with a close-packed structure. An intermediate pressure generated a fine cell structure due to the occurrence of numerous less closely packed crystals that served as cell nucleating agents. A high CO2 pressure also led to a uniform cell structure but with larger cell sizes due to cell deterioration. The morphology of cells was improved by the addition of low contents of cotton fibres due to transcrystals surrounding the fibres. | [256] |
Improve the hydrophilicity and foaming behaviour of PLA by blending with poly (ethylene glycol) (PEG). | Batch foaming using CO2 as foaming agent in a high-pressure autoclave. After gas saturation, the autoclave was quickly depressurized, which triggered foaming. After foaming, the specimens were cooled in ice water. | The introduction of PEG improved the foaming behaviour of PLA and promoted the formation of open cells through the reduction in the PLA matrix strength. The obtained PLA/PEG scaffolds exhibited a high expansion ratio, high open-cell content, and super-hydrophilicity. | [287] |
Fabricate oriented microcellular PLLA materials using solid hot drawing technology. Investigate the influence of orientation and foaming process on melting and crystallization behaviour and cellular morphology of PLLA foams. | Foaming is performed at a temperature slightly higher than the glass transition temperature to prevent the damage of the oriented structure. PLLA was saturated with CO2 using high pressure in an autoclave at 80 °C. Foam was triggered by depressurization to ambient pressure. The foam was then cooled to room temperature. | Highly ordered microfibrils are arranged in the stretching direction, inducing the formation of a dense and aligned shish-kebab-like structure, which enhanced crystallization and provided more sites for cell nucleation. The low-temperature supercritical CO2 foaming process induced the oriented PLLA to form a shish-kebab-like crystal structure, improving the overall mechanical properties. | [288] |
Improve the heat deflection temperature of PLA foams by annealing. | Single-screw extrusion foaming. Isopentane encapsulated in expandable microspheres and azodicarbonamide as foaming agents. Foam samples were annealed in a hot air oven. | D-lactide content affected the crystallinity of the foam structures. Annealing was shown to be effective in inducing cold crystallization. Lower D-lactide content resulted in a higher degree of crystallinity. | [289] |
Study the effect of CO2 on crystalline nucleation and spherulite growth of PLA crystals. | CO2 saturation in a high-pressure chamber. Isothermal crystallization of PLA underwent for four hours. After that, the sample underwent pressure quenching and was cooled down. | The crystalline nucleation at high temperature and spherulite growth rate at low temperature controlled the crystallization behaviour of PLA under CO2. The crystallization kinetics and crystallization morphology of PLA were influenced by the increased chain mobility, the decreased molecular chain density, and the weakened interchain interaction due to dissolved CO2. | [290] |
Modify the molecular weight, molecular chain structure, the crystallization, and rheological behaviours of PLA using an epoxy-based chain extension method to improve the foamability of PLA. | Batch foaming in a high-pressure vessel using supercritical CO2 as a blowing agent. CO2 saturation at high temperature. Foaming triggered by pressure drop. | The changes in crystallization and in the rheological properties showed an influence on the foaming behaviour. Cell density of modified PLA increased by nearly 4-fold with increasing chain extension. | [272] |
Addition of chemical modifiers (dicumyl peroxide and multifunctional epoxide) to change the rheological behaviour of PLA and improve its foamability in a foam extrusion process. | Foam extrusion using a tandem extrusion line; 8 wt.% CO2 was injected as the blowing agent in the twin-screw extruder. | The modifications in PLA structure led to an increase in melt strength that resulted in a more uniform cell morphology and an improved compression strength. Peroxide-modified PLA showed the highest expansion with a foam density of 32 kg/m3. The foamed peroxide-modified PLA doubled the compression strength compared to neat PLA foam even at a density 30% lower. | [20] |
Study the long-chain branched PLA structure prepared by UV-induced reaction extrusion with trimethylolpropane triacrylate on the cell morphologies of PLA foams. | The foams were produced by batch foaming in a high-pressure vessel using CO2 as a blowing agent. Samples were saturated at high pressure in the heated vessel. After saturation, foaming was triggered by a sudden pressure drop, which was followed by cooling to room temperature. | The modified PLA displayed higher complex viscosity and a higher melting point under super critical CO2. Crystal nucleation also improved with the long-chain branching structure. Long-chain branched PLA possesses better foaming behaviour at a high temperature and high pressure with improved cell morphology and reduced coalescence, no collapse, and uniform cell distribution originating in nanocells, while other samples showed microcells. | [243] |
Effect of back pressure on the morphology and on the mechanical properties of PLA foams. | Foam injection moulding. | By increasing the back pressure, the percentage of the blowing agent inside the injection chamber is smaller, and therefore foaming is less effective. | [291] |
Study the operating conditions of extrusion foaming assisted by supercritical CO2 in the production of PLA foams. | Foam extrusion using supercritical CO2 as a blowing agent. | The temperatures before and inside the die were the most important parameters that influenced the foam properties. Die temperature between 109 and 112 °C induces low crystallinity and promotes large and open cells. Die temperature below 107 °C induces higher levels of crystallinity resulting in closed cells. | [292] |
Filler | Objectives/Applications | Foaming Conditions | Main Achievements | Ref. |
---|---|---|---|---|
Graphite | Improve the electromagnetic interference (EMI) shielding effect | Foam injection moulding using N2 as blowing agent. | Foaming led to nanographite reorientation, which dramatically improved the electrical conductivity (by six orders of magnitude) of the microcellular PLA/graphite nanocomposite foam compared to the unfoamed material. A microcellular PLA/graphite foam, with a thickness of 2 mm and a density of 0.7 g.cm3 a, shows a total EMI shielding effectiveness of up to 45 dB. | [3] |
Carbon black (CB) and carbon nanotubes (CNTs) | Study of the synergistic effect of carbonaceous fillers on the electrical conductivity of PLA foams. | Foaming in an autoclave with supercritical CO2 as a blowing agent. Saturation with CO2 at 0 °C for 12 h. Samples were foamed by immersion in a water bath at 75 °C for 30 s. Finally, the foamed samples were quenched in a 0 °C water bath. | CB particles and CNTs are loosely entangled with each other in the PLA matrix, with no synergistic effect. The electrical conductivity of the CB/CNT/PLA composite is in between those of the CB/PLA and CNT/PLA composites. After foaming, the CB/CNT/PLA composite foam exhibits the synergistic effect of fillers due to the formation of PLA cells with an unbroken wall structure, which is favourable for the establishment of conductive filler networks with fewer defects, resulting in better electrical conductivity than both the CB/PLA and CNT/PLA composite foams. | [293] |
Wood Flour | Study the effect of a chain extender on the crystallization behaviour of the PLA/wood flour composites and on the cell morphology of the composite foams. | Batch foaming process in a high-pressure vessel. Samples saturated with CO2 at 180 °C and high pressure. Foaming was triggered by sudden pressure drop. | Incorporation of the chain extender improved the melt elasticity and decreased the crystallization rate and final crystallinity of the PLA/wood flour composites. A finer and more uniform cell structure and a much higher expansion ratio was observed in composite foams with increasing chain extender content. | [294] |
Cellulosic fibre | Study the crystallization behaviour of PLA/cellulosic fibre composite foams produced using foam injection moulding. | Foam injection moulding with N2 as blowing agent. | Cellulosic fibres acted as crystal-nucleating agents, increasing the crystallization temperature and the crystallinity. A finer and more uniform cell morphology was achieved in the cellulosic fibre composite foams compared to neat PLA foams. | [295] |
Pulp fibre | Investigate the effect of chain extension, fibre reinforcement, and blowing agent type on the viscosity behaviour and foam morphology of pulp fibre-reinforced PLA composites. | Extrusion foaming using CO2 and isobutane as blowing agents. | Isobutane produces foams with a smoother surface and better dimensional stability compared to CO2. Isobutane yielded a narrower cell size distribution compared to CO2. The addition of fibres reduced the viscosity of the chain-extended PLA. | [19] |
Carbon nanotubes (CNTs) | Use CNTs to increase the melt viscoelasticity and foamability of PLA and prepare PLA-based nanocomposite foams. | Batch foaming using supercritical CO2 in a high-pressure autoclave. Composite samples saturated at 170 °C and 15 MPa for 2 h. After cooling, foaming was triggered by sudden pressure drop. | The incorporation of CNTs in PLA had a distinct reinforcement influence on melt viscoelasticity. Biodegradable PLA/CNT nanocomposite foam showed a high volume expansion ratio of 49.6 times. | [296] |
Calcium phosphate-based glass particulate | Fabrication and characterization of highly porous (up to 91%) composite foams for bone tissue engineering. | Solid-state foaming using high-pressure CO2 in an autoclave. CO2 saturation during 3 days at 2.4 MPa. Foaming was triggered by an abrupt temperature rise in an oven at 80 °C. | The porous composite systems showed improved elastic modulus and compressive strength as well as well-interconnected macropores (~ 78% open pores at 30 vol.% of filler) compared to neat PLA foam. The pore size of the composite foams decreased with increasing filler content from an average of 920 µm for neat PLA foam to 190 µm for PLA with 30 wt% of filler. | [297] |
Cellulose nanofibers (CNFs) | Addition of CNFs and study the processing conditions of foaming extrusion to accelerate the kinetic crystallization of nanocomposites. | Twin-screw extrusion with CO2 as a blowing agent. A static mixer was used before the die to improve the dissolution of the gas. | The extrusion induced the reduction in the molecular weight of PLA in the range from 20 to 28% due to the hydrolysis of the ester bond. Samples containing 1.5 wt.% of CNFs exhibited the highest foam expansion, while samples containing 2.0 wt.% of CNFs exhibited the most uniform cell distribution. | [298] |
Expanded graphite (EG) nanoplatelets | Improve the foamability of PLA melt through a twin-screw extrusion process by using different aspect ratios and loadings of EG. | Twin-screw extrusion with CFA azodicarbonamide as a blowing agent. | EG improved the melt strength and elasticity and prevented the diffusion of gas molecules from the matrix. The addition of EG yielded microcellular foams with higher void content and cell density and a higher uniformity in cell distribution within the matrix. | [69] |
4.2. Poly(ε-Caprolactone) (PCL)
Objectives | Foaming Conditions | Key Features | Ref. |
---|---|---|---|
Produce PCL-based porous scaffolds with improved osteoconductive and osteoinductive properties using PCL, silk fibroin, and nano-hydroxyapatite (nHA). | PCL, fibroin, and nHA were mixed and inserted in a high-pressure stainless-steel vessel and pressurized with CO2 at supercritical conditions. Foaming was triggered by depressurizing to ambient pressure. | Obtention of solid scaffolds with 67–70% porosity. The incorporation of fibroin and nHA in the scaffolds increased the compressive modulus, cellular adhesion, and calcium deposition. The implanted constructs induced endochondral bone formation and revealed the synergistic effect of silk fibroin and nHA on the bone repair extent. | [320] |
Evaluate the effect of soaking time on the preparation of PCL scaffolds by supercritical CO2 foaming. | PCL was pressurized with CO2 in a stainless-steel autoclave at 39 °C using different soaking periods. Foaming was triggered by depressurization of the system to atmospheric pressure. | Longer soaking times enabled higher quantities of CO2 to be dissolved in the polymeric matrix, resulting in more homogeneous scaffolds with a higher density of pores with lower sizes and a higher degree of pore interconnection. | [16] |
Evaluate the effects of foaming conditions, namely foaming temperature, pressure, soaking time, and depressurization rate, on the pore structure of PCL foams. | Batch foaming using supercritical CO2 in a stainless-steel high-pressure autoclave | Increasing soaking time decreases the pore size distribution. Astride the melting point (Tm) at a given CO2 pressure, the PCL shifted from solid-state to melt-state, which led to a broad pore size distribution above Tm and a dense and small pore morphology with narrow pore size distribution below Tm. Lowering the depressurization rate induces pores with higher and broader size distribution. | [321] |
Investigate the effect of processing conditions such as CO2 pressure, ratios of the PCL polymers with different molecular weight, and amount of added hydroxyapatite (HA) nanoparticles as filler on the scaffold properties. | Supercritical CO2 batch foaming in a high-pressure tank. | Porosity increased and average pore size decreased with increasing saturation pressure. Adding HA nanoparticles reinforced the mechanical properties but decreased both the porosity and the average pore size. Incrementing the ratio of the lower-molecular-weight PCL to the higher-molecular-weight PCL in the scaffolds resulted in less uniform and larger pores. | [322] |
Investigate the influence of foaming conditions such as saturation pressure, temperature, and time on the resulting foam’s properties. Investigate the application of various pore-forming substances, such as cellulose, carboxymethylcellulose, hydroxyapatite, and graphene oxide in the properties of foams. | Batch foaming process using supercritical CO2 in a high-pressure autoclave. | Decreasing the saturation pressure, temperature, and time results in structures with higher crystallinity. Decreasing the saturation time and pressure leads to a narrow pore distribution. The addition of a porogen unit results in an increase in the density of the nucleation sites and degree of crystallinity and a decrease in the pore size compared to the foam made of neat PCL. An increase in concentration of Hydroxyapatite grains at the microscale results in an increase in the pore diameter and a decrease in the pore density, while the opposite effect was obtained with Hydroxyapatite grains at the nanoscale. | [70] |
Study the effects of hydroxyapatite (HA) and halloysite nanotubes (HNTs) on the rheological behaviour, mechanical properties, and microstructure of PCL composite scaffolds. | Extrusion foaming using supercritical N2 and poly(ethylene oxide) (PEO) as a sacrificial material followed by water leaching of PEO. | PCL/HNT scaffolds showed lower average pore size compared to PCL/HA scaffolds due to higher viscosity and stronger nucleation effect caused by the smaller size and higher aspect ratio of HNTs. Mechanical performance of PCL/HNT scaffolds was higher compared to PCL/HA scaffolds with the same filler content. | [323] |
Fabricate interconnected porous PCL tissue engineering scaffolds by microcellular injection moulding. | Microcellular injection moulding, combining supercritical CO2 as PBA and sodium bicarbonate as CBA, followed by particulate leaching. | Sodium bicarbonate used both as a CBA and as a porogen improved pore interconnectivity. Scaffolds with higher porosity showed lower mechanical properties. | [324] |
Preparation of 3D PCL-based foam scaffolds combined with beta-tricalcium phosphate and dexamethasone as bioactive agents. | The 3D foams were obtained at 5 MPa and 45 °C and dense CO2 was used as the foaming agent without using supercritical conditions. | Foams showed a pore size range of 164–882 µm, 73–99% porosity, and 79–99% interconnectivity. Feasibility of using dense CO2 to produce in one step a porous matrix loaded with active agents aiming at new injectable systems for in situ foaming. | [14] |
4.3. Poly(Butylene Succinate) (PBS)
Objectives | Foaming Conditions | Main Results | Ref. |
---|---|---|---|
Investigate the foaming ability of PBS grades by single-screw extrusion using CBA. | Single-screw extrusion using an endothermic CBA (sodium bicarbonate) on an industrial extrusion line. | The influence of melt rheology on foam structure was established and cell sizes/density were efficiently adjusted by the melt viscosity. Low-viscosity polymers tend to produce foams with low cell density and higher average cell size, whereas the opposite effects are observed in high-viscosity polymers. Branched polymer structures with strain-hardening effects in extensional flows should be preferred over linear polymers as they promote the higher stabilization of the cell growth. PBS was shown to have high sensitivity to the residence time within the extruder due to interfacial tension between CO2 and the molten polymer. | [98] |
Study the effect of dicumyl peroxide on the crosslinking neat PBS foaming materials. | PBS, crosslinking agent dicumyl peroxide, and CBA azodicarbonamide were melt mixed in an intensive mixer. Foams were obtained by compression moulding at 120 °C. | Crosslinking degree, viscosity, and storage modulus of PBS increased with increasing content of crosslinking agent. PBS foams with an expansion ratio of 7.03, average cell size of 200 μm, and cell-closed porosity percentage of about 94% were obtained with 6 wt.% of crosslinking, 1 wt.% of CBA, and 160 °C as the foaming temperature. | [45] |
Fabricate microcellular PBS foams using chain extender (ethylene-glycidyl methacrylate). | Batch foaming in an autoclave at a saturation pressure of 20 MPa and temperature of 115 °C. Foaming triggered by sudden pressure drop. | Small spherocrystals were formed in modified PBS, which were positive to increase the cell density and decrease the average cell size. With increasing chain extender content, the average cell size and volume expansion ratio decreased, and the cell density increased due to enhanced melt strength and viscosity caused by the chain extension. | [336] |
Improvement in the conductivity of PBS/carbon nanotube (CNT) conductive polymer composites by supercritical CO2 foaming. | Batch solid-state foaming with supercritical CO2 in a high-pressure autoclave. Foaming was triggered by rapid depressurization. | Adding CNTs significantly improved the thermal and electrical conductivity as well as the crystallization, viscoelasticity, and mechanical properties. Foaming increased the electrical conductivity of the nanocomposite (foamed PBS with 5 wt.% CNTs with cell size of 15.6 μm and cell density of 1.03 × 107 cells/cm3) by 104% compared to solid PBS/CNT nanocomposite. | [338] |
Fabricate a porous PBS/cellulose nanocrystal (CNC) composite scaffold with a bimodal open-pore interconnected structure. | Two-step depressurization in a supercritical CO2 foaming process in a high-pressure autoclave. | Bimodal open-porous PBS scaffold with well-defined bimodal open-pore structure composed of small pores (around 11 μm in diameter) and large pores (about 68.9 μm in diameter), with high open porosity (approximately 95%). Scaffolds showed good biocompatibility, hydrophilicity, in vitro degradation rate, and good mechanical compressive properties (compressive strength of 2.8 MPa at 50% strain). | [15] |
Fabricate conductive polymer composites based on PBS and CNTs using different processing conditions. | Melt mixing with hot pressing (145 °C, 10 MPa). Solution mixing with hot pressing (100 °C, 60 MPa). | Composites prepared by solution mixing and hot pressing showed improved mechanical properties, electrical conductivity, and thermal conductivity compared to the composites prepared by melt mixing and hot pressing. | [342] |
4.4. Polyvinyl-Alcohol (PVA)
4.5. Poly-Hydroxyalkanoates (PHAs)
4.6. Polybutylene Adipate-Co-Terephthalate (PBAT)
4.7. Starch
4.8. Poly (Propylene Carbonate) (PPC)
4.9. Biodegradable Polymer Blends
5. Circular Economy and Market Aspects of Biodegradable Foams’ Production
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
Abbreviations
References
- Chauvet, M.; Sauceau, M.; Fages, J. Extrusion assisted by supercritical CO2: A review on its application to biopolymers. J. Supercrit. Fluids 2017, 120, 408–420. [Google Scholar] [CrossRef]
- Yan, Z.; Liao, X.; He, G.; Li, S.; Guo, F.; Zou, F.; Li, G. Green and High-Expansion PLLA/PDLA Foams with Excellent Thermal Insulation and Enhanced Compressive Properties. Ind. Eng. Chem. Res. 2020, 59, 19244–19251. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, G.; Wang, S.; Zhang, L.; Park, C.B. Injection-molded microcellular PLA/graphite nanocomposites with dramatically enhanced mechanical and electrical properties for ultra-efficient EMI shielding applications. J. Mater. Chem. C 2018, 6, 6847–6859. [Google Scholar] [CrossRef]
- Yin, D.; Mi, J.; Zhou, H.; Wang, X.; Tian, H. Fabrication of branching poly (butylene succinate)/cellulose nanocrystal foams with exceptional thermal insulation. Carbohydr. Polym. 2020, 247, 116708. [Google Scholar] [CrossRef] [PubMed]
- Forest, C.; Chaumont, P.; Cassagnau, P.; Swoboda, B.; Sonntag, P. Polymer nano-foams for insulating applications prepared from CO2 foaming. Prog. Polym. Sci. 2015, 41, 122–145. [Google Scholar] [CrossRef]
- Mort, R.; Vorst, K.; Curtzwiler, G.; Jiang, S. Biobased foams for thermal insulation: Material selection, processing, modelling, and performance. RSC Adv. 2021, 11, 4375–4394. [Google Scholar] [CrossRef] [PubMed]
- Tapia-Blácido, D.R.; Aguilar, G.J.; de Andrade, M.T.; Rodrigues-Júnior, M.F.; Guareschi-Martins, F.C. Trends and challenges of starch-based foams for use as food packaging and food container. Trends Food Sci. Technol. 2022, 119, 257–271. [Google Scholar] [CrossRef]
- Faba, S.; Arrieta, M.P.; Agüero, Á.; Torres, A.; Romero, J.; Rojas, A.; Galotto, M.J. Processing Compostable PLA/Organoclay Bionanocomposite Foams by Supercritical CO2 Foaming for Sustainable Food Packaging. Polymers 2022, 14, 4394. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guo, F.; Liao, X.; Li, S.; Yan, Z.; Zou, F.; Peng, Q.; Li, G. High-expansion-ratio PLLA/PDLA/HNT composite foams with good thermally insulating property and enhanced compression performance via supercritical CO2. Int. J. Biol. Macromol. 2023, 236, 123961. [Google Scholar] [CrossRef]
- Vorawongsagul, S.; Pratumpong, P.; Pechyen, C. Preparation and foaming behavior of poly (lactic acid)/poly (butylene succinate)/cellulose fiber composite for hot cups packaging application. Food Packag. Shelf Life 2021, 27, 100608. [Google Scholar] [CrossRef]
- Shaikh, S.; Yaqoob, M.; Aggarwal, P. An overview of biodegradable packaging in food industry. Curr. Res. Food Sci. 2021, 4, 503–520. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, Y.; Sun, J.; Jiao, Z. Controllable fabrication of multi-modal porous PLGA scaffolds with different sizes of SPIONs using supercritical CO2 foaming. J. Appl. Polym. Sci. 2022, 139, 52287. [Google Scholar] [CrossRef]
- Silva, S.S.; Rodrigues, L.C.; Fernandes, E.M.; Reis, R.L. Chapter 1—Fundamentals on biopolymers and global demand. In Biopolymer Membranes and Films; de Moraes, M.A., da Silva, C.F., Vieira, R.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–34. [Google Scholar]
- Duarte, R.M.; Correia-Pinto, J.; Reis, R.L.; Duarte, A.R.C. Subcritical carbon dioxide foaming of polycaprolactone for bone tissue regeneration. J. Supercrit. Fluids 2018, 140, 1–10. [Google Scholar] [CrossRef]
- Ju, J.; Gu, Z.; Liu, X.; Zhang, S.; Peng, X.; Kuang, T. Fabrication of bimodal open-porous poly (butylene succinate)/cellulose nanocrystals composite scaffolds for tissue engineering application. Int. J. Biol. Macromol. 2020, 147, 1164–1173. [Google Scholar] [CrossRef] [PubMed]
- Santos-Rosales, V.; Gallo, M.; Jaeger, P.; Alvarez-Lorenzo, C.; Gómez-Amoza, J.L.; García-González, C.A. New insights in the morphological characterization and modelling of poly(ε-caprolactone) bone scaffolds obtained by supercritical CO2 foaming. J. Supercrit. Fluids 2020, 166, 105012. [Google Scholar] [CrossRef]
- Duarte, R.M.; Correia-Pinto, J.; Reis, R.L.; Duarte, A.R.C. Advancing spinal fusion: Interbody stabilization by in situ foaming of a chemically modified polycaprolactone. J. Tissue Eng. Regen. Med. 2020, 14, 1465–1475. [Google Scholar] [CrossRef]
- Silva, S.S.; Fernandes, E.M.; Pina, S.; Silva-Correia, J.; Vieira, S.; Oliveira, J.M.; Reis, R.L. 2.11 Polymers of Biological Origin. In Comprehensive Biomaterials II; Ducheyne, P., Ed.; Elsevier: Oxford, UK, 2017; pp. 228–252. [Google Scholar]
- Rokkonen, T.; Peltola, H.; Sandquist, D. Foamability and viscosity behavior of extrusion foamed PLA–pulp fiber biocomposites. J. Appl. Polym. Sci. 2019, 136, 48202. [Google Scholar] [CrossRef]
- Standau, T.; Castellón, S.M.; Delavoie, A.; Bonten, C.; Altstädt, V. Effects of chemical modifications on the rheological and the expansion behavior of polylactide (PLA) in foam extrusion. E-Polymers 2019, 19, 297–304. [Google Scholar] [CrossRef]
- Kim, D.; Hikima, Y.; Ohshima, M. Millefeuille-like cellular structures of biopolymer blend foams prepared by the foam injection molding technique. J. Appl. Polym. Sci. 2022, 139, 51890. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, W.; Chang, E.; Chen, X.; Chen, J.; Park, C.B.; Shen, C. Foaming Behaviors and Mechanical Properties of Injection-Molded Polylactide/Cotton-Fiber Composites. Ind. Eng. Chem. Res. 2020, 59, 17885–17893. [Google Scholar] [CrossRef]
- Zhao, S.; Malfait, W.J.; Guerrero-Alburquerque, N.; Koebel, M.M.; Nyström, G. Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications. Angew. Chem.-Int. Ed. 2018, 57, 7580–7608. [Google Scholar] [CrossRef] [PubMed]
- Gama, N.; Ferreira, A.; Barros-Timmons, A. Polyurethane Foams: Past, Present, and Future. Materials 2018, 11, 1841. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.V.G.; Pakshirajan, K.; Pugazhenthi, G. Recent advances and future prospects of cellulose, starch, chitosan, polylactic acid and polyhydroxyalkanoates for sustainable food packaging applications. Int. J. Biol. Macromol. 2022, 221, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, S.K.; Kumar, M.; Kumar, V.; Sarsaiya, S.; Anerao, P.; Ghosh, P.; Singh, L.; Liu, H.; Zhang, Z.; Awasthi, M.K. A comprehensive review on recent advancements in biodegradation and sustainable management of biopolymers. Environ. Pollut. 2022, 307, 119600. [Google Scholar] [CrossRef] [PubMed]
- Iwata, T. Biodegradable and Bio-Based Polymers: Future Prospects of Eco-Friendly Plastics. Angew. Chem. Int. Ed. 2015, 54, 3210–3215. [Google Scholar] [CrossRef]
- Rosenboom, J.-G.; Langer, R.; Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 2022, 7, 117–137. [Google Scholar] [CrossRef] [PubMed]
- Di Bartolo, A.; Infurna, G.; Dintcheva, N.T. A Review of Bioplastics and Their Adoption in the Circular Economy. Polymers 2021, 13, 1229. [Google Scholar] [CrossRef] [PubMed]
- Pellis, A.; Malinconico, M.; Guarneri, A.; Gardossi, L. Renewable polymers and plastics: Performance beyond the green. New Biotechnol. 2021, 60, 146–158. [Google Scholar] [CrossRef]
- Lambert, S.; Wagner, M. Environmental performance of bio-based and biodegradable plastics: The road ahead. Chem. Soc. Rev. 2017, 46, 6855–6871. [Google Scholar] [CrossRef]
- Haider, T.P.; Völker, C.; Kramm, J.; Landfester, K.; Wurm, F.R. Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angew. Chem.-Int. Ed. 2019, 58, 50–62. [Google Scholar] [CrossRef]
- de França, J.O.C.; da Silva Valadares, D.; Paiva, M.F.; Dias, S.C.L.; Dias, J.A. Polymers Based on PLA from Synthesis Using D,L-Lactic Acid (or Racemic Lactide) and Some Biomedical Applications: A Short Review. Polymers 2022, 14, 2317. [Google Scholar] [CrossRef] [PubMed]
- Labet, M.; Thielemans, W. Synthesis of polycaprolactone: A review. Chem. Soc. Rev. 2009, 38, 3484–3504. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, Z.W.; Dong, Y.; Davies, I.J.; Barbhuiya, S. PVA, PVA Blends, and Their Nanocomposites for Biodegradable Packaging Application. Polym.-Plast. Technol. Eng. 2017, 56, 1307–1344. [Google Scholar] [CrossRef]
- Bangar, S.P.; Whiteside, W.S.; Ashogbon, A.O.; Kumar, M. Recent advances in thermoplastic starches for food packaging: A review. Food Packag. Shelf Life 2021, 30, 100743. [Google Scholar] [CrossRef]
- European Bioplastics. Bioplastics Market. 2023. Available online: https://www.european-bioplastics.org/bioplastics-market-development-update-2023-2/ (accessed on 29 December 2023).
- Standau, T.; Zhao, C.; Murillo Castellón, S.; Bonten, C.; Altstädt, V. Chemical Modification and Foam Processing of Polylactide (PLA). Polymers 2019, 11, 306. [Google Scholar] [CrossRef] [PubMed]
- Farhanmoghaddam, F.; Javadi, A. Fabrication of poly (lactic acid) foams using supercritical nitrogen. Cell. Polym. 2020, 39, 172–182. [Google Scholar] [CrossRef]
- Kmetty, Á.; Litauszki, K. Development of Poly (Lactide Acid) Foams with Thermally Expandable Microspheres. Polymers 2020, 12, 463. [Google Scholar] [CrossRef] [PubMed]
- Nofar, M.; Utz, J.; Geis, N.; Altstädt, V.; Ruckdäschel, H. Foam 3D Printing of Thermoplastics: A Symbiosis of Additive Manufacturing and Foaming Technology. Adv. Sci. 2022, 9, 2105701. [Google Scholar] [CrossRef] [PubMed]
- Di Maio, E.; Kiran, E. Foaming of polymers with supercritical fluids and perspectives on the current knowledge gaps and challenges. J. Supercrit. Fluids 2018, 134, 157–166. [Google Scholar] [CrossRef]
- Xue, K.; Chen, P.; Yang, C.; Xu, Z.; Zhao, L.; Hu, D. Low-shrinkage biodegradable PBST/PBS foams fabricated by microcellular foaming using CO2 & N2 as co-blowing agents. Polym. Degrad. Stab. 2022, 206, 110182. [Google Scholar] [CrossRef]
- Boonprasertpoh, A.; Pentrakoon, D.; Junkasem, J. Effect of crosslinking agent and branching agent on morphological and physical properties of poly(butylene succinate) foams. Cell. Polym. 2017, 36, 333–354. [Google Scholar] [CrossRef]
- Xia, B.; Wang, Y.; Jiang, J.; Zhang, X.; Li, T.; Ma, P.; Chen, M.; Dong, W. Effects of dicumyl peroxide on cross-linking pure poly(butylene succinate) foaming materials for high expansion and high mechanical strength. Polym. Adv. Technol. 2022, 33, 1706–1714. [Google Scholar] [CrossRef]
- Tsui, A.; Wright, Z.; Frank, C.W. Prediction of gas solubility in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) melt to inform process design and resulting foam microstructure. Polym. Eng. Sci. 2014, 54, 2683–2695. [Google Scholar] [CrossRef]
- Osman, M.A.; Virgilio, N.; Rouabhia, M.; Lorenzo, L.E.; Mighri, F. A novel foaming technique to develop functional open-cell polylactic acid scaffolds for bone tissue engineering. J. Appl. Polym. Sci. 2023, 140, e54240. [Google Scholar] [CrossRef]
- Guan, L.T.; Du, F.G.; Wang, G.Z.; Chen, Y.K.; Xiao, M.; Wang, S.J.; Meng, Y.Z. Foaming and chain extension of completely biodegradable poly(propylene carbonate) using DPT as blowing agent. J. Polym. Res. 2007, 14, 245–251. [Google Scholar] [CrossRef]
- Guan, L.T.; Xiao, M.; Meng, Y.Z.; Li, R.K.Y. Chemically foaming of biodegradable poly(propylene carbonate) derived from carbon dioxide and propylene oxide. Polym. Eng. Sci. 2006, 46, 153–159. [Google Scholar] [CrossRef]
- Villamil Jiménez, J.A.; Le Moigne, N.; Bénézet, J.-C.; Sauceau, M.; Sescousse, R.; Fages, J. Foaming of PLA Composites by Supercritical Fluid-Assisted Processes: A Review. Molecules 2020, 25, 3408. [Google Scholar] [CrossRef] [PubMed]
- Dugad, R.; Radhakrishna, G.; Gandhi, A. Recent advancements in manufacturing technologies of microcellular polymers: A review. J. Polym. Res. 2020, 27, 182. [Google Scholar] [CrossRef]
- Nofar, M.; Park, C.B. Poly (lactic acid) foaming. Prog. Polym. Sci. 2014, 39, 1721–1741. [Google Scholar] [CrossRef]
- Li, G.; Li, H.; Turng, L.S.; Gong, S.; Zhang, C. Measurement of gas solubility and diffusivity in polylactide. Fluid Phase Equilibria 2006, 246, 158–166. [Google Scholar] [CrossRef]
- Sato, Y.; Takikawa, T.; Takishima, S.; Masuoka, H. Solubilities and diffusion coefficients of carbon dioxide in poly(vinyl acetate) and polystyrene. J. Supercrit. Fluids 2001, 19, 187–198. [Google Scholar] [CrossRef]
- Zhang, Q.; Xanthos, M.; Dey, S.K. Parameters affecting the in-line measurement of gas solubility in thermoplastic melts during foam extrusion. J. Cell. Plast. 2001, 37, 284–292. [Google Scholar] [CrossRef]
- Colton, J.S.; Suh, N.P. Nucleation of microcellular foam: Theory and practice. Polym. Eng. Sci. 1987, 27, 500–503. [Google Scholar] [CrossRef]
- Pang, Y.; Cao, Y.; Zheng, W.; Park, C.B. A comprehensive review of cell structure variation and general rules for polymer microcellular foams. Chem. Eng. J. 2022, 430, 132662. [Google Scholar] [CrossRef]
- Raps, D.; Hossieny, N.; Park, C.B.; Altstädt, V. Past and present developments in polymer bead foams and bead foaming technology. Polymer 2015, 56, 5–19. [Google Scholar] [CrossRef]
- Leung, S.N.; Wong, A.; Wang, L.C.; Park, C.B. Mechanism of extensional stress-induced cell formation in polymeric foaming processes with the presence of nucleating agents. J. Supercrit. Fluids 2012, 63, 187–198. [Google Scholar] [CrossRef]
- Spitael, P.; Macosko, C.W. Strain hardening in polypropylenes and its role in extrusion foaming. Polym. Eng. Sci. 2004, 44, 2090–2100. [Google Scholar] [CrossRef]
- Henriques, I.R.; Rouleau, L.; Castello, D.A.; Borges, L.A.; Deü, J.F. Viscoelastic behavior of polymeric foams: Experiments and modeling. Mech. Mater. 2020, 148, 103506. [Google Scholar] [CrossRef]
- Chen, X.; Feng, J.J.; Bertelo, C.A. Plasticization effects on bubble growth during polymer foaming. Polym. Eng. Sci. 2006, 46, 97–107. [Google Scholar] [CrossRef]
- Gabriel, C.; Münstedt, H. Strain hardening of various polyolefins in uniaxial elongational flow. J. Rheol. 2003, 47, 619–630. [Google Scholar] [CrossRef]
- Stadler, F.J.; Nishioka, A.; Stange, J.; Koyama, K.; Münstedt, H. Comparison of the elongational behavior of various polyolefins in uniaxial and equibiaxial flows. Rheol. Acta 2007, 46, 1003–1012. [Google Scholar] [CrossRef]
- Münstedt, H. Rheological properties and molecular structure of polymer melts. Soft Matter 2011, 7, 2273–2283. [Google Scholar] [CrossRef]
- Tsuchiya, A.; Tateyama, H.; Kikuchi, T.; Takahashi, T.; Koyama, K. Influence of filler types and contents on foaming structures in ABS microcellular foams. Polym. J. 2007, 39, 514–523. [Google Scholar] [CrossRef]
- Tammaro, D.; Villone, M.M.; D’Avino, G.; Maffettone, P.L. An Experimental and Numerical Investigation on Bubble Growth in Polymeric Foams. Entropy 2022, 24, 183. [Google Scholar] [CrossRef] [PubMed]
- Kiran, E. Foaming strategies for bioabsorbable polymers in supercritical fluid mixtures. Part II. Foaming of poly(ε-caprolactone-co-lactide) in carbon dioxide and carbon dioxide + acetone fluid mixtures and formation of tubular foams via solution extrusion. J. Supercrit. Fluids 2010, 54, 296–307. [Google Scholar] [CrossRef]
- Khademi, S.M.H.; Hemmati, F.; Aroon, M.A. An insight into different phenomena involved in continuous extrusion foaming of biodegradable poly(lactic acid)/expanded graphite nanocomposites. Int. J. Biol. Macromol. 2020, 157, 470–483. [Google Scholar] [CrossRef] [PubMed]
- Kosowska, K.; Krzysztoforski, J.; Henczka, M. Foaming of PCL-Based Composites Using scCO2—Biocompatibility and Evaluation for Biomedical Applications. Materials 2022, 15, 3858. [Google Scholar] [CrossRef] [PubMed]
- Santos-Rosales, V.; Ardao, I.; Goimil, L.; Gomez-Amoza, J.L.; García-González, C.A. Solvent-Free Processing of Drug-Loaded Poly(ε-Caprolactone) Scaffolds with Tunable Macroporosity by Combination of Supercritical Foaming and Thermal Porogen Leaching. Polymers 2021, 13, 159. [Google Scholar] [CrossRef]
- Borkotoky, S.S.; Chakraborty, G.; Katiyar, V. Thermal degradation behaviour and crystallization kinetics of poly (lactic acid) and cellulose nanocrystals (CNC) based microcellular composite foams. Int. J. Biol. Macromol. 2018, 118, 1518–1531. [Google Scholar] [CrossRef]
- Sawicka, K.; Kosowska, K.; Henczka, M. Application of porogenes in production of porous polymers by supercritical foaming. Chem. Process Eng.-Inz. Chem. Proces. 2019, 40, 115–122. [Google Scholar] [CrossRef]
- Jing, X.; Mi, H.-Y.; Cordie, T.; Salick, M.; Peng, X.-F.; Turng, L.-S. Fabrication of Porous Poly(ε-caprolactone) Scaffolds Containing Chitosan Nanofibers by Combining Extrusion Foaming, Leaching, and Freeze-Drying Methods. Ind. Eng. Chem. Res. 2014, 53, 17909–17918. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, B.; Zhao, H.; Yu, P.; Fu, D.; Wen, J.; Peng, X. Processing and characterization of supercritical CO2 batch foamed poly(lactic acid)/poly(ethylene glycol) scaffold for tissue engineering application. J. Appl. Polym. Sci. 2013, 130, 3066–3073. [Google Scholar] [CrossRef]
- Nofar, M.; Tabatabaei, A.; Ameli, A.; Park, C.B. Comparison of melting and crystallization behaviors of polylactide under high-pressure CO2, N2, and He. Polymer 2013, 54, 6471–6478. [Google Scholar] [CrossRef]
- Frerich, S.C. Biopolymer foaming with supercritical CO2—Thermodynamics, foaming behaviour and mechanical characteristics. J. Supercrit. Fluids 2015, 96, 349–358. [Google Scholar] [CrossRef]
- Longo, A.; Di Maio, E.; Di Lorenzo, M.L. Heterogeneous Bubble Nucleation by Homogeneous Crystal Nuclei in Poly(L-Lactic Acid) Foaming. Macromol. Chem. Phys. 2022, 223, 2100428. [Google Scholar] [CrossRef]
- Reignier, J.; Gendron, R.; Champagne, M.F. Extrusion foaming of poly(lactic acid) blown with CO2: Toward 100% green material. Cell. Polym. 2007, 26, 83–115. [Google Scholar] [CrossRef]
- Santos-Rosales, V.; Magariños, B.; Starbird, R.; Suárez-González, J.; Fariña, J.B.; Alvarez-Lorenzo, C.; García-González, C.A. Supercritical CO2 technology for one-pot foaming and sterilization of polymeric scaffolds for bone regeneration. Int. J. Pharm. 2021, 605, 120801. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.J.; Zeng, C.; Cao, X.; Han, X.; Shen, J.; Xu, G. Polymer nanocomposite foams. Compos. Sci. Technol. 2005, 65, 2344–2363. [Google Scholar] [CrossRef]
- Antunes, M.; Velasco, J.I. Multifunctional polymer foams with carbon nanoparticles. Prog. Polym. Sci. 2014, 39, 486–509. [Google Scholar] [CrossRef]
- Notario, B.; Pinto, J.; Rodriguez-Perez, M.A. Nanoporous polymeric materials: A new class of materials with enhanced properties. Prog. Mater. Sci. 2016, 78–79, 93–139. [Google Scholar] [CrossRef]
- Rizvi, A.; Chu, R.K.M.; Park, C.B. Scalable Fabrication of Thermally Insulating Mechanically Resilient Hierarchically Porous Polymer Foams. ACS Appl. Mater. Interfaces 2018, 10, 38410–38417. [Google Scholar] [CrossRef] [PubMed]
- Buahom, P.; Wang, C.; Alshrah, M.; Wang, G.; Gong, P.; Tran, M.P.; Park, C.B. Wrong expectation of superinsulation behavior from largely-expanded nanocellular foams. Nanoscale 2020, 12, 13064–13085. [Google Scholar] [CrossRef] [PubMed]
- Tiwary, P.; Park, C.B.; Kontopoulou, M. Transition from microcellular to nanocellular PLA foams by controlling viscosity, branching and crystallization. Eur. Polym. J. 2017, 91, 283–296. [Google Scholar] [CrossRef]
- Wang, L.; Lee, R.E.; Wang, G.; Chu, R.K.M.; Zhao, J.; Park, C.B. Use of stereocomplex crystallites for fully-biobased microcellular low-density poly(lactic acid) foams for green packaging. Chem. Eng. J. 2017, 327, 1151–1162. [Google Scholar] [CrossRef]
- Yu, K.; Ni, J.; Zhou, H.; Wang, X.; Mi, J. Effects of in-situ crystallization on poly (lactic acid) microcellular foaming: Density functional theory and experiment. Polymer 2020, 200, 122539. [Google Scholar] [CrossRef]
- Yu, L.; Toikka, G.; Dean, K.; Bateman, S.; Yuan, Q.; Filippou, C.; Nguyen, T. Foaming behaviour and cell structure of poly(lactic acid) after various modifications. Polym. Int. 2013, 62, 759–765. [Google Scholar] [CrossRef]
- Najafi, N.; Heuzey, M.C.; Carreau, P.J.; Therriault, D.; Park, C.B. Rheological and foaming behavior of linear and branched polylactides. Rheol. Acta 2014, 53, 779–790. [Google Scholar] [CrossRef]
- Li, Y.; Mi, J.; Fu, H.; Zhou, H.; Wang, X. Nanocellular Foaming Behaviors of Chain-Extended Poly(lactic acid) Induced by Isothermal Crystallization. ACS Omega 2019, 4, 12512–12523. [Google Scholar] [CrossRef]
- Nofar, M. Effects of nano-/micro-sized additives and the corresponding induced crystallinity on the extrusion foaming behavior of PLA using supercritical CO2. Mater. Des. 2016, 101, 24–34. [Google Scholar] [CrossRef]
- Ema, Y.; Ikeya, M.; Okamoto, M. Foam processing and cellular structure of polylactide-based nanocomposites. Polymer 2006, 47, 5350–5359. [Google Scholar] [CrossRef]
- Keshtkar, M.; Nofar, M.; Park, C.B.; Carreau, P.J. Extruded PLA/clay nanocomposite foams blown with supercritical CO2. Polymer 2014, 55, 4077–4090. [Google Scholar] [CrossRef]
- Sauceau, M.; Fages, J.; Common, A.; Nikitine, C.; Rodier, E. New challenges in polymer foaming: A review of extrusion processes assisted by supercritical carbon dioxide. Prog. Polym. Sci. 2011, 36, 749–766. [Google Scholar] [CrossRef]
- Kuhnigk, J.; Standau, T.; Dörr, D.; Brütting, C.; Altstädt, V.; Ruckdäschel, H. Progress in the development of bead foams—A review. J. Cell. Plast. 2022, 58, 707–735. [Google Scholar] [CrossRef]
- Park, C.B.; Baldwin, D.F.; Suh, N.P. Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers. Polym. Eng. Sci. 1995, 35, 432–440. [Google Scholar] [CrossRef]
- Duborper, C.; Samuel, C.; Akue-Asseko, A.C.; Loux, C.; Lacrampe, M.F.; Krawczak, P. Design of biobased poly(butylene succinate) foams by single-screw extrusion: Identification of relevant rheological parameters controlling foam morphologies. Polym. Eng. Sci. 2018, 58, 503–512. [Google Scholar] [CrossRef]
- Okolieocha, C.; Raps, D.; Subramaniam, K.; Altstädt, V. Microcellular to nanocellular polymer foams: Progress (2004-2015) and future directions—A review. Eur. Polym. J. 2015, 73, 500–519. [Google Scholar] [CrossRef]
- Lee, R.E.; Guo, Y.; Tamber, H.; Planeta, M.; Leung, S.N.S. Thermoforming of Polylactic Acid Foam Sheets: Crystallization Behaviors and Thermal Stability. Ind. Eng. Chem. Res. 2016, 55, 560–567. [Google Scholar] [CrossRef]
- Tabatabaei, A.; Park, C.B. In-situ visualization of PLA crystallization and crystal effects on foaming in extrusion. Eur. Polym. J. 2017, 96, 505–519. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, W.; Zhang, H.; Park, C.B. Continuous processing of low-density, microcellular poly(lactic acid) foams with controlled cell morphology and crystallinity. Chem. Eng. Sci. 2012, 75, 390–399. [Google Scholar] [CrossRef]
- Tor-Świątek, A.; Garbacz, T.; Sedlarik, V.; Stloukal, P.; Kucharczyk, P. Influence of Polylactide Modification with Blowing Agents on Selected Mechanical Properties. Adv. Sci. Technol. Res. J. 2017, 11, 206–214. [Google Scholar] [CrossRef]
- Ludwiczak, J.; Kozlowski, M. Foaming of Polylactide in the Presence of Chain Extender. J. Polym. Environ. 2015, 23, 137–142. [Google Scholar] [CrossRef]
- Zhang, R.; Cai, C.; Liu, Q.; Hu, S. Enhancing the Melt Strength of Poly(Lactic Acid) via Micro-Crosslinking and Blending with Poly(Butylene Adipate-co-Butylene Terephthalate)for the Preparation of Foams. J. Polym. Environ. 2017, 25, 1335–1341. [Google Scholar] [CrossRef]
- Ludwiczak, J.; Kozlowski, M. Dynamic mechanical properties of foamed polylactide and polylactide/wood flour composites. J. Biobased Mater. Bioenergy 2015, 9, 227–230. [Google Scholar] [CrossRef]
- Julien, J.M.; Quantin, J.C.; Bénézet, J.C.; Bergeret, A.; Lacrampe, M.F.; Krawczak, P. Chemical foaming extrusion of poly(lactic acid) with chain-extenders: Physical and morphological characterizations. Eur. Polym. J. 2015, 67, 40–49. [Google Scholar] [CrossRef]
- Larsen, Å.; Neldin, C. Physical extruder foaming of poly(lactic acid)-processing and foam properties. Polym. Eng. Sci. 2013, 53, 941–949. [Google Scholar] [CrossRef]
- Matuana, L.M.; Diaz, C.a. Study of Cell Nucleation in Microcellular Poly(lactic acid) Foamed with Supercritical CO2 through a Continuous-Extrusion Process. Ind. Eng. Chem. Res. 2010, 49, 2186–2193. [Google Scholar] [CrossRef]
- Matuana, L.M. Solid state microcellular foamed poly(lactic acid): Morphology and property characterization. Bioresour. Technol. 2008, 99, 3643–3650. [Google Scholar] [CrossRef] [PubMed]
- Mihai, M.; Huneault, M.A.; Favis, B.D. Rheology and extrusion foaming of chain-branched poly(lactic acid). Polym. Eng. Sci. 2010, 50, 629–642. [Google Scholar] [CrossRef]
- Pilla, S.; Kim, S.G.; Auer, G.K.; Gong, S.; Park, C.B. Microcellular extrusion foaming of poly(lactide)/poly(butylene adipate-co-terephthalate) blends. Mater. Sci. Eng. C 2010, 30, 255–262. [Google Scholar] [CrossRef]
- Lee, J.W.S.; Lee, R.E.; Wang, J.; Jung, P.U.; Park, C.B. Study of the foaming mechanisms associated with gas counter pressure and mold opening using the pressure profiles. Chem. Eng. Sci. 2017, 167, 105–119. [Google Scholar] [CrossRef]
- Xie, P.; Wu, G.; Cao, Z.; Han, Z.; Zhang, Y.; An, Y.; Yang, W. Effect of Mold Opening Process on Microporous Structure and Properties of Microcellular Polylactide–Polylactide Nanocomposites. Polymers 2018, 10, 554. [Google Scholar] [CrossRef] [PubMed]
- Volpe, V.; De Filitto, M.; Klofacova, V.; De Santis, F.; Pantani, R. Effect of mold opening on the properties of PLA samples obtained by foam injection molding. Polym. Eng. Sci. 2018, 58, 475–484. [Google Scholar] [CrossRef]
- Ameli, A.; Jahani, D.; Nofar, M.; Jung, P.U.; Park, C.B. Development of high void fraction polylactide composite foams using injection molding: Mechanical and thermal insulation properties. Compos. Sci. Technol. 2014, 90, 88–95. [Google Scholar] [CrossRef]
- Ameli, A.; Nofar, M.; Jahani, D.; Rizvi, G.; Park, C.B. Development of high void fraction polylactide composite foams using injection molding: Crystallization and foaming behaviors. Chem. Eng. J. 2015, 262, 78–87. [Google Scholar] [CrossRef]
- Hou, J.; Zhao, G.; Wang, G.; Dong, G.; Xu, J. A novel gas-assisted microcellular injection molding method for preparing lightweight foams with superior surface appearance and enhanced mechanical performance. Mater. Des. 2017, 127, 115–125. [Google Scholar] [CrossRef]
- Seo, J.H.; Han, J.; Lee, K.S.; Cha, S.W. Combined Effects of Chemical and Microcellular Foaming on Foaming Characteristics of PLA (Poly Lactic Acid) in Injection Molding Process. Polym.-Plast. Technol. Eng. 2012, 51, 455–460. [Google Scholar] [CrossRef]
- Najafi, N.; Heuzey, M.C.; Carreau, P.J.; Therriault, D.; Park, C.B. Mechanical and morphological properties of injection molded linear and branched-polylactide (PLA) nanocomposite foams. Eur. Polym. J. 2015, 73, 455–465. [Google Scholar] [CrossRef]
- Hwang, S.-S.; Hsu, P.P.; Yeh, J.-M.; Chang, K.-C.; Lai, Y.-Z. The mechanical/thermal properties of microcellular injection-molded poly-lactic-acid nanocomposites. Polym. Compos. 2009, 30, 1625–1630. [Google Scholar] [CrossRef]
- Kramschuster, A.; Turng, L.S. An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds. J. Biomed. Mater. Res.-Part B Appl. Biomater. 2010, 92, 366–376. [Google Scholar] [CrossRef]
- Ameli, A.; Jahani, D.; Nofar, M.; Jung, P.U.; Park, C.B. Processing and characterization of solid and foamed injection-molded polylactide with talc. J. Cell. Plast. 2013, 49, 351–374. [Google Scholar] [CrossRef]
- Pantani, R.; Sorrentino, A.; Volpe, V.; Titomanlio, G. Foam injection molding of poly(lactic acid) with physical blowing agents. In Proceedings of the 29th International Conference of the Polymer Processing Society—Conference Papers, Nuremberg, Germany, 15–19 July 2013; American Institute of Physics: College Park, MD, USA, 2014; Volume 1593, pp. 397–400. [Google Scholar] [CrossRef]
- Volpe, V.; De Filitto, M.; Klofacova, V.; De Santis, F.; Pantani, R. Effect of processing conditions on the cell morphology distribution in foamed injection molded PLA samples. In Proceedings of the 32nd International Conference of the Polymer Processing Society—Conference Papers, Lyon, France, 25–29 July 2016; AIP Publishing: College Park, MD, USA, 2017; p. 060007. [Google Scholar]
- Lee, J.; Moriyama, K.; Hikima, Y.; Ohshima, M. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) microcellular foams using a melt memory effect as bubble nucleation sites. J. Appl. Polym. Sci. 2023, 140, e54386. [Google Scholar] [CrossRef]
- Pradeep, S.A.; Kharbas, H.; Turng, L.-S.S.; Avalos, A.; Lawrence, J.G.; Pilla, S. Investigation of thermal and thermomechanical properties of biodegradable PLA/PBSA composites processed via supercritical fluid-assisted foam injection molding. Polymers 2017, 9, 22. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Kharbas, H.; Peng, J.; Turng, L.-S. A novel method of producing lightweight microcellular injection molded parts with improved ductility and toughness. Polymer 2015, 56, 102–110. [Google Scholar] [CrossRef]
- Ding, Y.F.; Hassan, M.H.; Bakker, O.; Hinduja, S.; Bártolo, P. A Review on Microcellular Injection Moulding. Materials 2021, 14, 4209. [Google Scholar] [CrossRef] [PubMed]
- Martini-Vvedensky, J.E.; Suh, N.P.; Church, F.; Waldman, F.A. Microcellular Closed Cell Foams and Their Method of Manufacture. U.S. Patent 4,473,665, 25 September 1984. [Google Scholar]
- Pantani, R.; Volpe, V.; Titomanlio, G. Foam injection molding of poly(lactic acid) with environmentally friendly physical blowing agents. J. Mater. Process. Technol. 2014, 214, 3098–3107. [Google Scholar] [CrossRef]
- Kramschuster, A.; Gong, S.; Turng, L.-S.; Li, T.; Li, T. Injection-Molded Solid and Microcellular Polylactide and Polylactide Nanocomposites. J. Biobased Mater. Bioenergy 2007, 1, 37–45. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, G. Mechanical and thermal properties of conventional and microcellular injection molded poly (lactic acid)/poly (ε-caprolactone) blends. J. Mech. Behav. Biomed. Mater. 2016, 53, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Sur, G.S.; Mark, J.E. Microcellular foams from polyethersulfone and polyphenylsulfone: Preparation and mechanical properties. Eur. Polym. J. 2002, 38, 2373–2381. [Google Scholar] [CrossRef]
- Goswami, J.; Bhatnagar, N.; Mohanty, S.; Ghosh, A.K. Processing and characterization of poly(lactic acid) based bioactive composites for biomedical scaffold application. Express Polym. Lett. 2013, 7, 767–777. [Google Scholar] [CrossRef]
- Ludwiczak, J.; Frackowiak, S.; Łuzny, R. Effect of recycling on the cellular structure of polylactide in a batch process. Cell. Polym. 2018, 37, 69–79. [Google Scholar] [CrossRef]
- Shi, X.; Wang, L.; Kang, Y.; Qin, J.; Li, J.; Zhang, H.; Fan, X.; Liu, Y.; Zhang, G. Effect of poly(butylenes succinate) on the microcellular foaming of polylactide using supercritical carbon dioxide. J. Polym. Res. 2018, 25, 229. [Google Scholar] [CrossRef]
- Wang, J.; Zhai, W.; Ling, J.; Shen, B.; Zheng, W.; Park, C.B. Ultrasonic irradiation enhanced cell nucleation in microcellular poly(lactic acid): A novel approach to reduce cell size distribution and increase foam expansion. Ind. Eng. Chem. Res. 2011, 50, 13840–13847. [Google Scholar] [CrossRef]
- Brütting, C.; Dreier, J.; Bonten, C.; Altstädt, V.; Ruckdäschel, H. Amorphous polylactide bead foam–effect of talc and chain extension on foaming behavior and compression properties. J. Renew. Mater. 2021, 9, 1859–1868. [Google Scholar] [CrossRef]
- Bao, D.; Liao, X.; He, T.; Yang, Q.; Li, G. Preparation of nanocellular foams from polycarbonate/poly(lactic acid) blend by using supercritical carbon dioxide. J. Polym. Res. 2013, 20, 290. [Google Scholar] [CrossRef]
- Zimnyakov, D.; Zdrajevsky, R.; Minaev, N.; Epifanov, E.; Popov, V.; Ushakova, O. Extreme Foaming Modes for SCF-Plasticized Polylactides: Quasi-Adiabatic and Quasi-Isothermal Foam Expansion. Polymers 2020, 12, 1055. [Google Scholar] [CrossRef]
- Dippold, M.; Ruckdäschel, H. Influence of pressure-induced temperature drop on the foaming behavior of amorphous polylactide (PLA) during autoclave foaming with supercritical CO2. J. Supercrit. Fluids 2022, 190, 105734. [Google Scholar] [CrossRef]
- Standau, T.; Long, H.; Murillo Castellón, S.; Brütting, C.; Bonten, C.; Altstädt, V. Evaluation of the Zero Shear Viscosity, the D-Content and Processing Conditions as Foam Relevant Parameters for Autoclave Foaming of Standard Polylactide (PLA). Materials 2020, 13, 1371. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yang, L.; Chen, D.; Mai, Q.; Wang, M.; Wu, L.; Kong, P. Cell structure and mechanical properties of microcellular PLA foams prepared via autoclave constrained foaming. Cell. Polym. 2021, 40, 101–118. [Google Scholar] [CrossRef]
- Athanasoulia, I.G.; Louli, V.; Schinas, P.; Rinotas, V.; Douni, E.; Tarantili, P.; Magoulas, K. The effect of foaming process with supercritical CO2 on the morphology and properties of 3D porous polylactic acid scaffolds. Polym. Eng. Sci. 2022, 62, 2459–2475. [Google Scholar] [CrossRef]
- Tammaro, D.; Loianno, V.; Errichiello, F.; Di Maio, E. Matricial foaming. Polym. Test. 2022, 111, 107590. [Google Scholar] [CrossRef]
- Dreier, J.; Brütting, C.; Ruckdäschel, H.; Altstädt, V.; Bonten, C. Investigation of the Thermal and Hydrolytic Degradation of Polylactide during Autoclave Foaming. Polymers 2021, 13, 2624. [Google Scholar] [CrossRef]
- Li, P.; Zhu, X.; Kong, M.; Lv, Y.; Huang, Y.; Yang, Q.; Li, G. Fully biodegradable polylactide foams with ultrahigh expansion ratio and heat resistance for green packaging. Int. J. Biol. Macromol. 2021, 183, 222–234. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, R.; Ray, S.S. Foamability and Special Applications of Microcellular Thermoplastic Polymers: A Review on Recent Advances and Future Direction. Macromol. Mater. Eng. 2020, 305, 2000366. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, B.; Lv, F.; Guo, W.; Ji, J.; Chu, P.K.; Zhang, C. Effect of processing conditions on poly(butylene succinate) foam materials. J. Appl. Polym. Sci. 2012, 126, 756–761. [Google Scholar] [CrossRef]
- Li, G.; Qi, R.; Lu, J.; Hu, X.; Luo, Y.; Jiang, P. Rheological properties and foam preparation of biodegradable poly(butylene succinate). J. Appl. Polym. Sci. 2013, 127, 3586–3594. [Google Scholar] [CrossRef]
- Yue, J.-F.F.; Gan, L.; Liu, C.-H.H.; Ma, X.-Z.Z.; Wang, D.; Huang, J. Heat-counteracted strategy for tailoring the cell structure and properties of sustainable poly(butylene succinate) foams. Polymer 2018, 155, 50–57. [Google Scholar] [CrossRef]
- Soykeabkaew, N.; Thanomsilp, C.; Suwantong, O. A review: Starch-based composite foams. Compos. Part A Appl. Sci. Manuf. 2015, 78, 246–263. [Google Scholar] [CrossRef]
- Bergel, B.F.; Leite Araujo, L.; dos Santos da Silva, A.L.; Campomanes Santana, R.M. Effects of silylated starch structure on hydrophobization and mechanical properties of thermoplastic starch foams made from potato starch. Carbohydr. Polym. 2020, 241, 116274. [Google Scholar] [CrossRef]
- Glenn, G.M.; Orts, W.J.; Nobes, G.A.R. Starch, fiber and CaCo3 effects on the physical properties of foams made by a baking process. Ind. Crops Prod. 2001, 14, 201–212. [Google Scholar] [CrossRef]
- Vercelheze, A.E.S.; Fakhouri, F.M.; Dall’Antônia, L.H.; Urbano, A.; Youssef, E.Y.; Yamashita, F.; Mali, S. Properties of baked foams based on cassava starch, sugarcane bagasse fibers and montmorillonite. Carbohydr. Polym. 2012, 87, 1302–1310. [Google Scholar] [CrossRef]
- Perez-Puyana, V.; Jiménez-Rosado, M.; Romero, A.; Guerrero, A. Polymer-Based Scaffolds for Soft-Tissue Engineering. Polymers 2020, 12, 1566. [Google Scholar] [CrossRef] [PubMed]
- Soleymani Eil Bakhtiari, S.; Karbasi, S.; Toloue, E.B. Modified poly(3-hydroxybutyrate)-based scaffolds in tissue engineering applications: A review. Int. J. Biol. Macromol. 2021, 166, 986–998. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.; Ma, Q.; Zhao, B.; Zhang, D. Ultrasound-assisted permeability improvement and acoustic characterization for solid-state fabricated PLA foams. Ultrason. Sonochem. 2013, 20, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, A.; Asija, N.; Chauhan, H.; Bhatnagar, N. Ultrasound-induced nucleation in microcellular polymers. J. Appl. Polym. Sci. 2014, 131, 40742. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Kumar, V. A method for solvent-free fabrication of porous polymer using solid-state foaming and ultrasound for tissue engineering applications. Biomaterials 2006, 27, 1924–1929. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, W.; Kumar, V. Creating Open-celled Solid-state Foams Using Ultrasound. J. Cell. Plast. 2009, 45, 353–369. [Google Scholar] [CrossRef]
- Lopez-Gil, A.; Silva-Bellucci, F.; Velasco, D.; Ardanuy, M.; Rodriguez-Perez, M.A.A. Cellular structure and mechanical properties of starch-based foamed blocks reinforced with natural fibers and produced by microwave heating. Ind. Crops Prod. 2015, 66, 194–205. [Google Scholar] [CrossRef]
- Zhao, J.; Zheng, S.; Xu, Z.-b.; Huang, X.J.J.o.M.S. Microwave foaming of polymers. J. Mater. Sci. 2021, 56, 15491–15498. [Google Scholar] [CrossRef]
- Srinivas Sundarram, S.; Ibekwe, N.; Prado, S.; Rotonto, C.; Feeney, S.J.P.E. Science. Microwave foaming of carbon dioxide saturated poly lactic acid. Polym. Eng. Sci. 2022, 62, 929–938. [Google Scholar] [CrossRef]
- Ligon, S.C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 2017, 117, 10212–10290. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.W.; Stucker, B. Additive Manufacturing Technologies; Springer: Boston, MA, USA, 2010. [Google Scholar]
- Cano-Vicent, A.; Tambuwala, M.M.; Hassan, S.S.; Barh, D.; Aljabali, A.A.A.; Birkett, M.; Arjunan, A.; Serrano-Aroca, Á. Fused deposition modelling: Current status, methodology, applications and future prospects. Addit. Manuf. 2021, 47, 102378. [Google Scholar] [CrossRef]
- Pérez, M.; Medina-Sánchez, G.; García-Collado, A.; Gupta, M.; Carou, D. Surface Quality Enhancement of Fused Deposition Modeling (FDM) Printed Samples Based on the Selection of Critical Printing Parameters. Materials 2018, 11, 1382. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Yang, K.; Wang, K.; Pei, X.; Dong, Z.; Hong, Y.; Zhang, X. Combination of fused deposition modeling and gas foaming technique to fabricated hierarchical macro/microporous polymer scaffolds. Mater. Des. 2016, 109, 415–424. [Google Scholar] [CrossRef]
- Alduais, A.; Özerinç, S. Tunable mechanical properties of thermoplastic foams produced by additive manufacturing. Express Polym. Lett. 2023, 17, 317–333. [Google Scholar] [CrossRef]
- de Freitas, F.; Pegado, H. Impact of nozzle temperature on dimensional and mechanical characteristics of low-density PLA. Int. J. Adv. Manuf. Technol. 2023, 126, 1629–1638. [Google Scholar] [CrossRef]
- Sarikhani, K.; Jeddi, K.; Thompson, R.B.; Park, C.B.; Chen, P. Effect of pressure and temperature on interfacial tension of poly lactic acid melt in supercritical carbon dioxide. Thermochim. Acta 2015, 609, 1–6. [Google Scholar] [CrossRef]
- Mahmood, S.H.; Ameli, A.; Hossieny, N.; Park, C.B. The interfacial tension of molten polylactide in supercritical carbon dioxide. J. Chem. Thermodyn. 2014, 75, 69–76. [Google Scholar] [CrossRef]
- Nofar, M.; Salehiyan, R.; Sinha Ray, S. Rheology of poly (lactic acid)-based systems. Polym. Rev. 2019, 59, 465–509. [Google Scholar] [CrossRef]
- Marascio, M.G.M.; Antons, J.; Pioletti, D.P.; Bourban, P.-E. 3D Printing of Polymers with Hierarchical Continuous Porosity. Adv. Mater. Technol. 2017, 2, 1700145. [Google Scholar] [CrossRef]
- Choi, W.J.; Hwang, K.S.; Kwon, H.J.; Lee, C.; Kim, C.H.; Kim, T.H.; Heo, S.W.; Kim, J.-H.; Lee, J.-Y. Rapid development of dual porous poly(lactic acid) foam using fused deposition modeling (FDM) 3D printing for medical scaffold application. Mater. Sci. Eng. C 2020, 110, 110693. [Google Scholar] [CrossRef]
- Damanpack, A.R.; Sousa, A.; Bodaghi, M. Porous PLAs with Controllable Density by FDM 3D Printing and Chemical Foaming Agent. Micromachines 2021, 12, 866. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Li, M.; Jiang, J.; Zhai, W. Development of microcellular thermoplastic polyurethane honeycombs with tailored elasticity and energy absorption via CO2 foaming. Int. J. Mech. Sci. 2021, 197, 106324. [Google Scholar] [CrossRef]
- Kakumanu, V.; Srinivas Sundarram, S. Dual pore network polymer foams for biomedical applications via combined solid state foaming and additive manufacturing. Mater. Lett. 2018, 213, 366–369. [Google Scholar] [CrossRef]
- Azdast, T.; Hasanzadeh, R. Polylactide scaffold fabrication using a novel combination technique of fused deposition modeling and batch foaming: Dimensional accuracy and structural properties. Int. J. Adv. Manuf. Technol. 2021, 114, 1309–1321. [Google Scholar] [CrossRef]
- Park, B.; Hwang, D.; Kwon, D.; Yoon, T.; Lee, Y.-W. Fabrication and Characterization of Multiscale PLA Structures Using Integrated Rapid Prototyping and Gas Foaming Technologies. Nanomaterials 2018, 8, 575. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Zhou, C.; Fan, H.; Zhang, B.; Pei, X.; Fan, Y.; Jiang, Q.; Bao, R.; Yang, Q.; Dong, Z.; et al. Novel 3D porous biocomposite scaffolds fabricated by fused deposition modeling and gas foaming combined technology. Compos. Part B Eng. 2018, 152, 151–159. [Google Scholar] [CrossRef]
- Loffredo, F.; Villani, F.; Choy Buentello, D.; Trujillo-de Santiago, G.; Alvarez, M.M.; Miscioscia, R.; Di Maio, E. Bubble-Patterned Films by Inkjet Printing and Gas Foaming. Coatings 2022, 12, 806. [Google Scholar] [CrossRef]
- Sanz-Horta, R.; Elvira, C.; Gallardo, A.; Reinecke, H.; Rodríguez-Hernández, J. Fabrication of 3D-Printed Biodegradable Porous Scaffolds Combining Multi-Material Fused Deposition Modeling and Supercritical CO2 Techniques. Nanomaterials 2020, 10, 1080. [Google Scholar] [CrossRef]
- Backes, E.H.; Fernandes, E.M.; Diogo, G.S.; Marques, C.F.; Silva, T.H.; Costa, L.C.; Passador, F.R.; Reis, R.L.; Pessan, L.A. Engineering 3D printed bioactive composite scaffolds based on the combination of aliphatic polyester and calcium phosphates for bone tissue regeneration. Mater. Sci. Eng. C 2021, 122, 111928. [Google Scholar] [CrossRef]
- Ribeiro, J.F.M.; Oliveira, S.M.; Alves, J.L.; Pedro, A.J.; Reis, R.L.; Fernandes, E.M.; Mano, J.F. Structural monitoring and modeling of the mechanical deformation of three-dimensional printed poly(ε-caprolactone) scaffolds. Biofabrication 2017, 9, 025015. [Google Scholar] [CrossRef]
- Lepcio, P.; Svatík, J.; Režnáková, E.; Zicha, D.; Lesser, A.J.; Ondreáš, F. Anisotropic solid-state PLA foaming templated by crystal phase pre-oriented with 3D printing: Cell supporting structures with directional capillary transfer function. J. Mater. Chem. B 2022, 10, 2889–2898. [Google Scholar] [CrossRef] [PubMed]
- Simpson, A.; Rattigan, I.G.; Kalavsky, E.; Parr, G. Thermal conductivity and conditioning of grey expanded polystyrene foams. Cell. Polym. 2020, 39, 238–262. [Google Scholar] [CrossRef]
- Huang, P.; Su, Y.; Luo, H.; Lan, X.; Chong, Y.; Wu, F.; Zheng, W. Facile one-step method to manufacture polypropylene bead foams with outstanding thermal insulation and mechanical properties via supercritical CO2 extrusion foaming. J. CO2 Util. 2022, 64, 102167. [Google Scholar] [CrossRef]
- Parker, K.; Garancher, J.P.; Shah, S.; Fernyhough, A. Expanded polylactic acid—An eco-friendly alternative to polystyrene foam. J. Cell. Plast. 2011, 47, 233–243. [Google Scholar] [CrossRef]
- Doroudiani, S.; Park, C.B.; Kortschot, M.T. Effect of the crystallinity and morphology on the microcellular foam structure of semicrystalline polymers. Polym. Eng. Sci. 1996, 36, 2645–2662. [Google Scholar] [CrossRef]
- Kenji, H.; Hajime, O. Expandable Polylactic Acid Resin Particles, Expanded Polylactic Acid Resin Beads and Molded Article Obtained from Expanded Polylactic Acid Resin Beads. U.S. Patent 7,863,343, 4 January 2011. [Google Scholar]
- Britton, R.N.; Van Doormalen, F.A.H.C.; Noordegraaf, J.; Molenveld, K.; Schennink, G.G.J. Coated Particulate Expandable Polylactic Acid. U.S. Patent 8,268,901, 18 September 2012. [Google Scholar]
- Lohmann, J.; Sampath, B.D.S.; Gutmann, P.; Künkel, A.; Hahn, K.; Füßl, A. Process for Producing Expandable Pelletized Material Which Comprises Polylactic Acid. U.S. Patent 13/926,252, 26 December 2013. [Google Scholar]
- Rossacci, J.; Shivkumar, S. Bead fusion in polystyrene foams. J. Mater. Sci. 2003, 38, 201–206. [Google Scholar] [CrossRef]
- Höhne, C.C.; Schmidt, R.; Berner, V.; Metzsch-Zilligen, E.; Westphal, E.; Pfaendner, R.; Mack, C. Intrinsic flame retardancy of poly(lactic acid) bead foams. J. Appl. Polym. Sci. 2021, 138, 50856. [Google Scholar] [CrossRef]
- Nofar, M.; Ameli, A.; Park, C.B. Development of polylactide bead foams with double crystal melting peaks. Polymer 2015, 69, 83–94. [Google Scholar] [CrossRef]
- Nofar, M.; Ameli, A.; Park, C.B. A novel technology to manufacture biodegradable polylactide bead foam products. Mater. Des. 2015, 83, 413–421. [Google Scholar] [CrossRef]
- Nofar, M.; Tabatabaei, A.; Sojoudiasli, H.; Park, C.B.; Carreau, P.J.; Heuzey, M.C.; Kamal, M.R. Mechanical and bead foaming behavior of PLA-PBAT and PLA-PBSA blends with different morphologies. Eur. Polym. J. 2017, 90, 231–244. [Google Scholar] [CrossRef]
- Xu, D.; Liu, P.; Wang, Q. An ultrafast and clean method to manufacture poly(vinyl alcohol) bead foam products. Polym. Adv. Technol. 2021, 32, 210–219. [Google Scholar] [CrossRef]
- Gumede, T.P.; Luyt, A.S.; Müller, A.J. Review on PCL, PBS, AND PCL/PBS blends containing carbon nanotubes. Express Polym. Lett. 2018, 12, 505–529. [Google Scholar] [CrossRef]
- Gurunathan, T.; Mohanty, S.; Nayak, S.K. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos. Part A Appl. Sci. Manuf. 2015, 77, 1–25. [Google Scholar] [CrossRef]
- Rajeshkumar, G.; Arvindh Seshadri, S.; Devnani, G.L.; Sanjay, M.R.; Siengchin, S.; Prakash Maran, J.; Al-Dhabi, N.A.; Karuppiah, P.; Mariadhas, V.A.; Sivarajasekar, N.; et al. Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites—A comprehensive review. J. Clean. Prod. 2021, 310, 127483. [Google Scholar] [CrossRef]
- Nakajima, H.; Dijkstra, P.; Loos, K. The Recent Developments in Biobased Polymers toward General and Engineering Applications: Polymers that are Upgraded from Biodegradable Polymers, Analogous to Petroleum-Derived Polymers, and Newly Developed. Polymers 2017, 9, 523. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Liao, X.; He, G.; Li, S.; Guo, F.; Li, G. Green Method to Widen the Foaming Processing Window of PLA by Introducing Stereocomplex Crystallites. Ind. Eng. Chem. Res. 2019, 58, 21466–21475. [Google Scholar] [CrossRef]
- Li, B.; Zhao, G.; Wang, G.; Zhang, L.; Hou, J.; Gong, J. A green strategy to regulate cellular structure and crystallization of poly(lactic acid) foams based on pre-isothermal cold crystallization and CO2 foaming. Int. J. Biol. Macromol. 2019, 129, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chai, J.; Wang, G.; Zhao, J.; Zhang, D.; Li, B.; Zhao, H.; Zhao, G. Strong and thermally insulating polylactic acid/glass fiber composite foam fabricated by supercritical carbon dioxide foaming. Int. J. Biol. Macromol. 2019, 138, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, X.; Zhang, Q.; Xia, C.; Chen, C.; Chen, X.; Yu, P. Foaming of poly(lactic acid) with supercritical CO2: The combined effect of crystallinity and crystalline morphology on cellular structure. J. Supercrit. Fluids 2019, 145, 122–132. [Google Scholar] [CrossRef]
- Kuska, R.; Milovanovic, S.; Frerich, S.; Ivanovic, J. Thermal analysis of polylactic acid under high CO2 pressure applied in supercritical impregnation and foaming process design. J. Supercrit. Fluids 2019, 144, 71–80. [Google Scholar] [CrossRef]
- Milovanovic, S.; Markovic, D.; Mrakovic, A.; Kuska, R.; Zizovic, I.; Frerich, S.; Ivanovic, J. Supercritical CO2-assisted production of PLA and PLGA foams for controlled thymol release. Mater. Sci. Eng. C 2019, 99, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Yin, D.; Xiang, A.; Li, Y.; Qi, H.; Tian, H.; Fan, G. Effect of Plasticizer on the Morphology and Foaming Properties of Poly(vinyl alcohol) Foams by Supercritical CO2 Foaming Agents. J. Polym. Environ. 2019, 27, 2878–2885. [Google Scholar] [CrossRef]
- Liu, P.; Chen, W.; Liu, C.; Tian, M.; Liu, P. A novel poly (vinyl alcohol)/poly (ethylene glycol) scaffold for tissue engineering with a unique bimodal open-celled structure fabricated using supercritical fluid foaming. Sci. Rep. 2019, 9, 9534. [Google Scholar] [CrossRef] [PubMed]
- Manavitehrani, I.; Le, T.Y.L.; Daly, S.; Wang, Y.; Maitz, P.K.; Schindeler, A.; Dehghani, F. Formation of porous biodegradable scaffolds based on poly(propylene carbonate) using gas foaming technology. Mater. Sci. Eng. C 2019, 96, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Hu, J.; Gao, F.; Cao, H.; Zhou, Q.; Wang, X. Biodegradable and resilient poly (propylene carbonate)based foam from high pressure CO2 foaming. Polym. Degrad. Stab. 2019, 165, 12–19. [Google Scholar] [CrossRef]
- Zhou, H.; Song, J.; Ding, X.; Qu, Z.; Wang, X.; Mi, J.; Wang, J. Cellular morphology evolution of chain extended poly(butylene succinate)/organic montmorillonite nanocomposite foam. J. Appl. Polym. Sci. 2019, 136, 47107. [Google Scholar] [CrossRef]
- Chen, Z.; Hu, J.; Ju, J.; Kuang, T. Fabrication of Poly(butylene succinate)/Carbon Black Nanocomposite Foams with Good Electrical Conductivity and High Strength by a Supercritical CO2 Foaming Process. Polymers 2019, 11, 1852. [Google Scholar] [CrossRef]
- García-Casas, I.; Montes, A.; Valor, D.; Pereyra, C.; Martínez de la Ossa, E.J. Foaming of Polycaprolactone and Its Impregnation with Quercetin Using Supercritical CO2. Polymers 2019, 11, 1390. [Google Scholar] [CrossRef]
- Chen, C.X.; Peng, H.H.; Guan, Y.X.; Yao, S.J. Morphological study on the pore growth profile of poly(ε-caprolactone) bi-modal porous foams using a modified supercritical CO2 foaming process. J. Supercrit. Fluids 2019, 143, 72–81. [Google Scholar] [CrossRef]
- Salerno, A.; Domingo, C. Polycaprolactone foams prepared by supercritical CO2 batch foaming of polymer/organic solvent solutions. J. Supercrit. Fluids 2019, 143, 146–156. [Google Scholar] [CrossRef]
- Song, C.; Li, S.; Zhang, J.; Xi, Z.; Lu, E.; Zhao, L.; Cen, L. Controllable fabrication of porous PLGA/PCL bilayer membrane for GTR using supercritical carbon dioxide foaming. Appl. Surf. Sci. 2019, 472, 82–92. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Y.; Jiang, J.; Wang, X.; Hou, J.; Sun, S.; Li, Q. Fabrication of highly interconnected porous poly(ɛ-caprolactone) scaffolds with supercritical CO2 foaming and polymer leaching. J. Mater. Sci. 2019, 54, 5112–5126. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, J.; Wang, G.; Xu, Z.; Zhang, A.; Dong, G.; Zhao, G. Lightweight, low-shrinkage and high elastic poly(butylene adipate-co-terephthalate) foams achieved by microcellular foaming using N2 & CO2 as co-blowing agents. J. CO2 Util. 2022, 64, 102149. [Google Scholar] [CrossRef]
- Wu, R.; Wang, S.; Leng, Y.; Li, Q. Preparation, structure, and properties of poly(ethyleneoxide)/lignin composites used for UV absorption. J. Appl. Polym. Sci. 2020, 137, 48593. [Google Scholar] [CrossRef]
- Ventura, H.; Laguna-Gutiérrez, E.; Rodriguez-Perez, M.A.; Ardanuy, M. Effect of chain extender and water-quenching on the properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) foams for its production by extrusion foaming. Eur. Polym. J. 2016, 85, 14–25. [Google Scholar] [CrossRef]
- Panaitescu, D.M.; Trusca, R.; Gabor, A.R.; Nicolae, C.A.; Casarica, A. Biocomposite foams based on polyhydroxyalkanoate and nanocellulose: Morphological and thermo-mechanical characterization. Int. J. Biol. Macromol. 2020, 164, 1867–1878. [Google Scholar] [CrossRef] [PubMed]
- Asikainen, S.; Paakinaho, K.; Kyhkynen, A.K.; Hannula, M.; Malin, M.; Ahola, N.; Kellomäki, M.; Seppälä, J. Hydrolysis and drug release from poly(ethylene glycol)-modified lactone polymers with open porosity. Eur. Polym. J. 2019, 113, 165–175. [Google Scholar] [CrossRef]
- Van Wouwe, P.; Dusselier, M.; Vanleeuw, E.; Sels, B. Lactide Synthesis and Chirality Control for Polylactic acid Production. ChemSusChem 2016, 9, 907–921. [Google Scholar] [CrossRef]
- Lim, L.T.; Auras, R.; Rubino, M. Processing technologies for poly(lactic acid). Prog. Polym. Sci. 2008, 33, 820–852. [Google Scholar] [CrossRef]
- Auras, R.; Harte, B.; Selke, S. An overview of polylactides as packaging materials. Macromol. Biosci. 2004, 4, 835–864. [Google Scholar] [CrossRef]
- Nofar, M.; Sacligil, D.; Carreau, P.J.; Kamal, M.R.; Heuzey, M.-C. Poly (lactic acid) blends: Processing, properties and applications. Int. J. Biol. Macromol. 2019, 125, 307–360. [Google Scholar] [CrossRef] [PubMed]
- Litauszki, K.; Gere, D.; Czigany, T.; Kmetty, Á. Environmentally friendly packaging foams: Investigation of the compostability of poly(lactic acid)-based syntactic foams. Sustain. Mater. Technol. 2023, 35, e00527. [Google Scholar] [CrossRef]
- Wang, K.; Wang, J.; Zhao, D.; Zhai, W. Preparation of microcellular poly(lactic acid) composites foams with improved flame retardancy. Cell. Plast. 2017, 53, 45–63. [Google Scholar] [CrossRef]
- Wang, J.; Ren, Q.; Zheng, W.; Zhai, W. Improved flame-retardant properties of poly(lactic acid) foams using starch as a natural charring agent. Ind. Eng. Chem. Res. 2014, 53, 1422–1430. [Google Scholar] [CrossRef]
- Suparanon, T.; Phetwarotai, W. Fire-extinguishing characteristics and flame retardant mechanism of polylactide foams: Influence of tricresyl phosphate combined with natural flame retardant. Int. J. Biol. Macromol. 2020, 158, 1090–1101. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Huang, W.; Zhao, Y.; Wen, S.; Yu, Z.; Zhang, Z. Ultra-light polylactic acid/combination composite foam: A fully biodegradable flame retardant material. Int. J. Biol. Macromol. 2022, 220, 754–765. [Google Scholar] [CrossRef]
- Milovanovic, S.; Lukic, I.; Horvat, G.; Novak, Z.; Frerich, S.; Petermann, M.; García-González, C.A. Green Processing of Neat Poly(lactic acid) Using Carbon Dioxide under Elevated Pressure for Preparation of Advanced Materials: A Review (2012–2022). Polymers 2023, 15, 860. [Google Scholar] [CrossRef]
- Garancher, J.P.J.P.; Fernyhough, A. Expansion and dimensional stability of semi-crystalline polylactic acid foams. Polym. Degrad. Stab. 2014, 100, 21–28. [Google Scholar] [CrossRef]
- Li, B.; Ma, X.; Zhao, G.; Wang, G.; Zhang, L.; Gong, J. Green fabrication method of layered and open-cell polylactide foams for oil-sorption via pre-crystallization and supercritical CO2-induced melting. J. Supercrit. Fluids 2020, 162, 104854. [Google Scholar] [CrossRef]
- Peng, Q.; Li, S.; Liu, F.; Liao, X.; Li, G. Effect of CO2 on the crystallization of poly(lactic acid) homo-crystallites via influencing the crystal structure of stereocomplex crystallites. CrystEngComm 2023, 25, 473–483. [Google Scholar] [CrossRef]
- Vatansever, E.; Arslan, D.; Nofar, M. Polylactide cellulose-based nanocomposites. Int. J. Biol. Macromol. 2019, 137, 912–938. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, S.; Han, S.; Yu, K.; Wang, L. Regulating cell morphology of poly (lactic acid) foams from microcellular to nanocellular by crystal nucleating agent. Polym. Degrad. Stab. 2022, 204, 110117. [Google Scholar] [CrossRef]
- Li, S.; He, G.; Liao, X.; Park, C.B.; Yang, Q.; Li, G. Introduction of a long-chain branching structure by ultraviolet-induced reactive extrusion to improve cell morphology and processing properties of polylactide foam. RSC Adv. 2017, 7, 6266–6277. [Google Scholar] [CrossRef]
- Zhou, M.; Zhou, P.; Xiong, P.; Qian, X.; Zheng, H. Crystallization, rheology and foam morphology of branched PLA prepared by novel type of chain extender. Macromol. Res. 2015, 23, 231–236. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, H.; Liu, B.; Du, Z.; Li, H. Chain Extension and Foaming Behavior of Poly(lactic acid) by Functionalized Multiwalled Carbon Nanotubes and Chain Extender. Adv. Polym. Technol. 2014, 33, 21444. [Google Scholar] [CrossRef]
- Ni, J.; Yu, K.; Zhou, H.; Mi, J.; Chen, S.; Wang, X. Morphological evolution of PLA foam from microcellular to nanocellular induced by cold crystallization assisted by supercritical CO2. J. Supercrit. Fluids 2020, 158, 104719. [Google Scholar] [CrossRef]
- Narmon, A.S.; Dewaele, A.; Bruyninckx, K.; Sels, B.F.; Van Puyvelde, P.; Dusselier, M. Boosting PLA melt strength by controlling the chirality of co-monomer incorporation. Chem. Sci. 2021, 12, 5672–5681. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yang, L.; Mai, Q.; Li, M.; Wu, L.; Kong, P. Foaming behavior of poly(lactic acid) with different D-isomer content based on supercritical CO2-induced crystallization. J. Cell. Plast. 2021, 57, 675–694. [Google Scholar] [CrossRef]
- Yu, K.; Wu, Y.; Zhang, X.; Hou, J.; Chen, J. Microcellular open-cell poly(l-lactic acid)/poly(d-lactic acid) foams for oil-water separation prepared via supercritical CO2 foaming. J. CO2 Util. 2022, 65, 102219. [Google Scholar] [CrossRef]
- Zhao, H.; Yan, X.; Zhao, G.; Guo, Z. Microcellular injection molded polylactic acid/poly (ε-caprolactone) blends with supercritical CO2: Correlation between rheological properties and their foaming behavior. Polym. Eng. Sci. 2016, 56, 939–946. [Google Scholar] [CrossRef]
- Zhao, H.; Cui, Z.; Sun, X.; Turng, L.S.; Peng, X. Morphology and properties of injection molded solid and microcellular polylactic acid/polyhydroxybutyrate-valerate (PLA/PHBV) blends. Ind. Eng. Chem. Res. 2013, 52, 2569–2581. [Google Scholar] [CrossRef]
- Matuana, L.M.; Diaz, C.A. Strategy to produce microcellular foamed poly(lactic acid)/wood-flour composites in a continuous extrusion process. Ind. Eng. Chem. Res. 2013, 52, 12032–12040. [Google Scholar] [CrossRef]
- Liu, W.; Wang, X.; Li, H.; Du, Z.; Zhang, C. Study on rheological and extrusion foaming behaviors of chain-extended poly (lactic acid)/clay nanocomposites. J. Cell. Plast. 2013, 49, 535–554. [Google Scholar] [CrossRef]
- Hou, Y.; Pan, Y.; Zhou, Z.; Liu, C.; Shen, C.; Liu, X. Review on Cell Structure Regulation and Performances Improvement of Porous Poly(Lactic Acid). Macromol. Rapid Commun. 2023, 44, 2300065. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.Q.; Huang, H.X. Foaming of poly(lactic acid) using supercritical carbon dioxide as foaming agent: Influence of crystallinity and spherulite size on cell structure and expansion ratio. Ind. Eng. Chem. Res. 2014, 53, 2277–2286. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, W.; Zhao, N.; Chen, J.; Park, C.B. Effects of Compressed CO2 and Cotton Fibers on the Crystallization and Foaming Behaviors of Polylactide. Ind. Eng. Chem. Res. 2018, 57, 2094–2104. [Google Scholar] [CrossRef]
- Xue, S.; Jia, P.; Ren, Q.; Liu, X.; Lee, R.E.; Zhai, W. Improved expansion ratio and heat resistance of microcellular poly(L-lactide) foam via in-situ formation of stereocomplex crystallites. J. Cell. Plast. 2018, 54, 103–119. [Google Scholar] [CrossRef]
- Xiang, P.; Gou, L.; Zou, Y.; Chen, B.; Bi, S.; Chen, X.; Yu, P. A facile strategy for preparation of strong tough poly(lactic acid) foam with a unique microfibrillated bimodal micro/nano cellular structure. Int. J. Biol. Macromol. 2022, 199, 264–274. [Google Scholar] [CrossRef]
- Nofar, M.; Tabatabaei, A.; Park, C.B. Effects of nano-/micro-sized additives on the crystallization behaviors of PLA and PLA/CO2 mixtures. Polymer 2013, 54, 2382–2391. [Google Scholar] [CrossRef]
- Chen, P.; Wang, W.; Wang, Y.; Yu, K.; Zhou, H.; Wang, X.; Mi, J. Crystallization-induced microcellular foaming of poly (lactic acid) with high volume expansion ratio. Polym. Degrad. Stab. 2017, 144, 231–240. [Google Scholar] [CrossRef]
- Zhou, G.; Liu, W.; Yin, H.; Zhang, Y.; Huang, C. Effect of nano-sized zinc citrate on the supercritical carbon dioxide-assisted extrusion foaming behavior of poly(lactic acid). J. Appl. Polym. Sci. 2023, 140, e53561. [Google Scholar] [CrossRef]
- Li, W.; Ren, Q.; Zhu, X.; Wu, M.; Weng, Z.; Wang, L.; Zheng, W. Enhanced heat resistance and compression strength of microcellular poly (lactic acid) foam by promoted stereocomplex crystallization with added D-Mannitol. J. CO2 Util. 2022, 63, 102118. [Google Scholar] [CrossRef]
- Cho, S.Y.; Park, H.H.; Yun, Y.S.; Jin, H.J. Influence of cellulose nanofibers on the morphology and physical properties of poly(lactic acid) foaming by supercritical carbon dioxide. Macromol. Res. 2013, 21, 529–533. [Google Scholar] [CrossRef]
- Qiu, Y.; Lv, Q.; Wu, D.; Xie, W.; Peng, S.; Lan, R.; Xie, H. Cyclic tensile properties of the polylactide nanocomposite foams containing cellulose nanocrystals. Cellulose 2018, 25, 1795–1807. [Google Scholar] [CrossRef]
- Ren, Q.; Li, W.; Cui, S.; Ma, W.; Zhu, X.; Wu, M.; Wang, L.; Zheng, W.; Semba, T.; Ohshima, M. Improved thermal insulation and compressive property of bimodal poly (lactic acid)/cellulose nanocomposite foams. Carbohydr. Polym. 2023, 302, 120419. [Google Scholar] [CrossRef]
- Wang, B.; Qi, Z.; Chen, X.; Sun, C.; Yao, W.; Zheng, H.; Liu, M.; Li, W.; Qin, A.; Tan, H.; et al. Preparation and mechanism of lightweight wood fiber/poly(lactic acid) composites. Int. J. Biol. Macromol. 2022, 217, 792–802. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Y.X.; Lin, J.; Liu, Y.; Wang, G.L.; Quan, D.; Guan, Y.J.; Zhao, G.Q.; Ji, S.C. Environmentally-friendly, sustainable ScCO2-assisted fabrication of poly (lactic acid)/ramie fiber composite foams. J. Clean. Prod. 2023, 425, 138952. [Google Scholar] [CrossRef]
- Moutinho, L.G.; Soares, E.; Oliveira, M. Development of bio-based expanded cork polymer composites (eCPC) with poly(lactic acid) (PLA). Mater. Sci. Eng. B 2023, 298, 116873. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, Z.; Pang, Y.; Liu, J.; Zhang, W.; Wang, B.; Xu, L.; Guo, H.; Liu, Y. The Facile and Efficient Fabrication of Rice Husk/poly (lactic acid) Foam Composites by Coordinated the Interface Combination and Bubble Hole Structure. Int. J. Biol. Macromol. 2023, 234, 123734. [Google Scholar] [CrossRef]
- Haham, H.; Riscoe, A.; Frank, C.W.; Billington, S.L. Effect of bubble nucleating agents derived from biochar on the foaming mechanism of poly lactic acid foams. Appl. Surf. Sci. Adv. 2021, 3, 100059. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, G.; Turng, L.S.; Peng, X. Enhancing Nanofiller Dispersion Through Prefoaming and Its Effect on the Microstructure of Microcellular Injection Molded Polylactic Acid/Clay Nanocomposites. Ind. Eng. Chem. Res. 2015, 54, 7122–7130. [Google Scholar] [CrossRef]
- Kuang, T.R.; Mi, H.Y.; Fu, D.J.; Jing, X.; Chen, B.Y.; Mou, W.J.; Peng, X.F. Fabrication of poly(lactic acid)/graphene oxide foams with highly oriented and elongated cell structure via unidirectional foaming using supercritical carbon dioxide. Ind. Eng. Chem. Res. 2015, 54, 758–768. [Google Scholar] [CrossRef]
- Soleimanpour, A.; Khonakdar, H.; Mousavi, S.R.; Banaei, N.; Hemmati, F.; Arjmand, M.; Ruckdäschel, H.; Khonakdar, H.A. Continuous extrusion foaming process of biodegradable nanocomposites based on poly(lactic acid)/carbonaceous nanoparticles with different geometric shapes: An insight into involved physical, chemical and rheological phenomena. J. Appl. Polym. Sci. 2023, 140, e53822. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, Y.; Chen, S.; Wang, X. Fabrication of low-density poly(lactic acid) microcellular foam by self-assembly crystallization nucleating agent. Polym. Degrad. Stab. 2022, 198, 109891. [Google Scholar] [CrossRef]
- Mort, R.; Peters, E.; Curtzwiler, G.; Jiang, S.; Vorst, K. Biofillers Improved Compression Modulus of Extruded PLA Foams. Sustainability 2022, 14, 5521. [Google Scholar] [CrossRef]
- Abu Hassan, N.A.; Ahmad, S.; Chen, R.S.; Shahdan, D. Cells analyses, mechanical and thermal stability of extruded polylactic acid/kenaf bio-composite foams. Constr. Build. Mater. 2020, 240, 117884. [Google Scholar] [CrossRef]
- Rojas, A.; Torres, A.; López de Dicastillo, C.; Velásquez, E.; Villegas, C.; Faba, S.; Rivera, P.; Guarda, A.; Romero, J.; Galotto, M. Foaming with scCO2 and Impregnation with Cinnamaldehyde of PLA Nanocomposites for Food Packaging. Processes 2022, 10, 376. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, K.; Zhang, X.; Hou, J.; Chen, J. Lightweight electromagnetic interference shielding poly(L-lactic acid)/poly(D-lactic acid)/carbon nanotubes composite foams prepared by supercritical CO2 foaming. Int. J. Biol. Macromol. 2022, 210, 11–20. [Google Scholar] [CrossRef]
- Kuang, T.; Ju, J.; Chen, F.; Liu, X.; Zhang, S.; Liu, T.; Peng, X. Coupled effect of self-assembled nucleating agent, Ni-CNTs and pressure-driven flow on the electrical, electromagnetic interference shielding and thermal conductive properties of poly (lactic acid) composite foams. Compos. Sci. Technol. 2022, 230, 109736. [Google Scholar] [CrossRef]
- Standau, T.; Goettermann, S.; Weinmann, S.; Bonten, C.; Altstädt, V. Autoclave foaming of chemically modified polylactide. J. Cell. Plast. 2017, 53, 481–489. [Google Scholar] [CrossRef]
- Fang, F.; Niu, D.; Xu, P.; Liu, T.; Yang, W.; Wang, Z.; Li, X.; Ma, P. A Quantitative Study on Branching Density Dependent Behavior of Polylactide Melt Strength. Macromol. Rapid Commun. 2023, 44, 2200858. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, H.; Wen, B.; Chen, Y.; Wang, X. A Facile and Efficient Method for Preparing Chain Extended Poly(lactic acid) Foams with High Volume Expansion Ratio. J. Polym. Environ. 2020, 28, 17–31. [Google Scholar] [CrossRef]
- Venkatesan, K.B.; Karkhanis, S.S.; Matuana, L.M. Microcellular foaming of poly(lactic acid) branched with food-grade chain extenders. J. Appl. Polym. Sci. 2021, 138, 50686. [Google Scholar] [CrossRef]
- Li, P.; Zhang, W.; Zhu, X.; Kong, M.; Lv, Y.; Huang, Y.; Gong, P.; Li, G. Simultaneous Improvement of the Foaming Property and Heat Resistance in Polylactide via One-step Branching Reaction Initiated by Cyclic Organic Peroxide. Ind. Eng. Chem. Res. 2020, 59, 2934–2945. [Google Scholar] [CrossRef]
- Li, D.; Zhang, S.; Zhao, Z.; Miao, Z.; Zhang, G.; Shi, X. High-Expansion Open-Cell Polylactide Foams Prepared by Microcellular Foaming Based on Stereocomplexation Mechanism with Outstanding Oil–Water Separation. Polymers 2023, 15, 1984. [Google Scholar] [CrossRef]
- Li, P.; Zhang, W.; Kong, M.; Lv, Y.; Huang, Y.; Yang, Q.; Li, G. Ultrahigh performance polylactide achieved by the design of molecular structure. Mater. Des. 2021, 206, 109779. [Google Scholar] [CrossRef]
- Ren, Q.; Zhu, X.; Li, W.; Wu, M.; Cui, S.; Ling, Y.; Ma, X.; Wang, G.; Wang, L.; Zheng, W. Fabrication of super-hydrophilic and highly open-porous poly (lactic acid) scaffolds using supercritical carbon dioxide foaming. Int. J. Biol. Macromol. 2022, 205, 740–748. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, W.; Hu, Z.; Gao, X.; Ye, J.; Song, X.; Chen, B.; Li, Z. Preparation and properties of oriented microcellular Poly(L-lactic acid) foaming material. Int. J. Biol. Macromol. 2022, 211, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Péter, T.; Litauszki, K.; Kmetty, Á. Improving the heat deflection temperature of poly(lactic acid) foams by annealing. Polym. Degrad. Stab. 2021, 190, 109646. [Google Scholar] [CrossRef]
- Li, S.; Chen, T.; Liao, X.; Han, W.; Yan, Z.; Li, J.; Li, G. Effect of Macromolecular Chain Movement and the Interchain Interaction on Crystalline Nucleation and Spherulite Growth of Polylactic Acid under High-Pressure CO2. Macromolecules 2020, 53, 312–322. [Google Scholar] [CrossRef]
- Volpe, V.; Pantani, R. Foam injection molding of poly(lactic) acid: Effect of back pressure on morphology and mechanical properties. J. Appl. Polym. Sci. 2015, 132, 42612. [Google Scholar] [CrossRef]
- Chauvet, M.; Sauceau, M.; Baillon, F.; Fages, J. Mastering the structure of PLA foams made with extrusion assisted by supercritical CO2. J. Appl. Polym. Sci. 2017, 134, 45067. [Google Scholar] [CrossRef]
- Wu, D.; Lv, Q.; Feng, S.; Chen, J.; Chen, Y.; Qiu, Y.; Yao, X. Polylactide composite foams containing carbon nanotubes and carbon black: Synergistic effect of filler on electrical conductivity. Carbon 2015, 95, 380–387. [Google Scholar] [CrossRef]
- Wang, Y.; Song, Y.; Du, J.; Xi, Z.; Wang, Q. Preparation of Desirable Porous Cell Structure Polylactide/Wood Flour Composite Foams Assisted by Chain Extender. Materials 2017, 10, 999. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Jahani, D.; Chang, E.; Alemdar, A.; Park, C.B.; Sain, M. Development of PLA/cellulosic fiber composite foams using injection molding: Crystallization and foaming behaviors. Compos. Part A Appl. Sci. Manuf. 2016, 83, 130–139. [Google Scholar] [CrossRef]
- Li, Y.; Yin, D.; Liu, W.; Zhou, H.; Zhang, Y.; Wang, X. Fabrication of biodegradable poly (lactic acid)/carbon nanotube nanocomposite foams: Significant improvement on rheological property and foamability. Int. J. Biol. Macromol. 2020, 163, 1175–1186. [Google Scholar] [CrossRef] [PubMed]
- Shah Mohammadi, M.; Rezabeigi, E.; Bertram, J.; Marelli, B.; Gendron, R.; Nazhat, S.N.; Bureau, M.N. Poly(d,l-Lactic acid) Composite Foams Containing Phosphate Glass Particles Produced via Solid-State Foaming Using CO2 for Bone Tissue Engineering Applications. Polymers 2020, 12, 231. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, B.; Sadeghi, P.; Marfavi, Y.; Kowsari, E.; Zareiyazd, A.A.; Ramakrishna, S. Impacts of cellulose nanofibers on the morphological behavior and dynamic mechanical thermal properties of extruded polylactic acid/cellulose nanofibril nanocomposite foam. J. Appl. Polym. Sci. 2022, 139, 51673. [Google Scholar] [CrossRef]
- Jian, J.; Xiangbin, Z.; Xianbo, H. An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)–PBAT. Adv. Ind. Eng. Polym. Res. 2020, 3, 19–26. [Google Scholar] [CrossRef]
- Houbben, M.; Thomassin, J.M.; Jérôme, C. Supercritical CO2 blown poly(ε-caprolactone) covalent adaptable networks towards unprecedented low density shape memory foams. Mater. Adv. 2022, 3, 2918–2926. [Google Scholar] [CrossRef]
- Huang, A.; Jiang, Y.; Napiwocki, B.; Mi, H.; Peng, X.; Turng, L.S. Fabrication of poly(ε-caprolactone) tissue engineering scaffolds with fibrillated and interconnected pores utilizing microcellular injection molding and polymer leaching. RSC Adv. 2017, 7, 43432–43444. [Google Scholar] [CrossRef]
- Hou, J.; Jiang, J.; Guo, H.; Guo, X.; Wang, X.; Shen, Y.; Li, Q. Fabrication of fibrillated and interconnected porous poly(ε-caprolactone) vascular tissue engineering scaffolds by microcellular foaming and polymer leaching. RSC Adv. 2020, 10, 10055–10066. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, H.; Zhou, H.; Jiang, J.; Wang, X.; Li, Q. Fabrication of Highly Interconnected Poly(ε-caprolactone)/cellulose Nanofiber Composite Foams by Microcellular Foaming and Leaching Processes. ACS Omega 2021, 6, 22672–22680. [Google Scholar] [CrossRef]
- Goimil, L.; Jaeger, P.; Ardao, I.; Gómez-Amoza, J.L.; Concheiro, A.; Alvarez-Lorenzo, C.; García-González, C.A. Preparation and stability of dexamethasone-loaded polymeric scaffolds for bone regeneration processed by compressed CO2 foaming. J. CO2 Util. 2018, 24, 89–98. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, H.; Wang, X.; Mi, J. Mechanism of bubble nucleation in poly(ε-caprolactone) foaming at low temperature. Polymer 2015, 79, 47–55. [Google Scholar] [CrossRef]
- Zhong, X.; Dehghani, F. Fabrication of biomimetic poly(propylene carbonate) scaffolds by using carbon dioxide as a solvent, monomer and foaming agent. Green Chem. 2012, 14, 2523–2533. [Google Scholar] [CrossRef]
- Hatami, T.; Johner, J.C.F.; de Castro, K.C.; Mei, L.H.I.; Vieira, M.G.A.; Angela, M. New insight into a step-by-step modeling of supercritical CO2 foaming to fabricate poly(ε-caprolactone) scaffold. Ind. Eng. Chem. Res. 2020, 59, 20033–20044. [Google Scholar] [CrossRef]
- Salerno, A.; Diéguez, S.; Diaz-Gomez, L.; Gómez-Amoza, J.L.; Magariños, B.; Concheiro, A.; Domingo, C.; Alvarez-Lorenzo, C.; García-González, C.A. Synthetic scaffolds with full pore interconnectivity for bone regeneration prepared by supercritical foaming using advanced biofunctional plasticizers. Biofabrication 2017, 9, 035002. [Google Scholar] [CrossRef]
- Song, C.; Luo, Y.; Liu, Y.; Li, S.; Xi, Z.; Zhao, L.; Cen, L.; Lu, E. Fabrication of PCL Scaffolds by Supercritical CO2 Foaming Based on the Combined Effects of Rheological and Crystallization Properties. Polymers 2020, 12, 780. [Google Scholar] [CrossRef]
- Castano, M.; Martinez-Campos, E.; Pintado-Sierra, M.; García, C.; Reinecke, H.; Gallardo, A.; Rodriguez-Hernandez, J.; Elvira, C. Combining Breath Figures and Supercritical Fluids to Obtain Porous Polymer Scaffolds. ACS Omega 2018, 3, 12593–12599. [Google Scholar] [CrossRef]
- Campardelli, R.; Franco, P.; Reverchon, E.; De Marco, I. Polycaprolactone/nimesulide patches obtained by a one-step supercritical foaming + impregnation process. J. Supercrit. Fluids 2019, 146, 47–54. [Google Scholar] [CrossRef]
- Kravanja, G.; Primožič, M.; Knez, Ž.; Leitgeb, M. Transglutaminase release and activity from novel poly(ε-caprolactone)-based composites prepared by foaming with supercritical CO2. J. Supercrit. Fluids 2020, 166, 105031. [Google Scholar] [CrossRef]
- Franco, P.; Belvedere, R.; Pessolano, E.; Liparoti, S.; Pantani, R.; Petrella, A.; De Marco, I. PCL/Mesoglycan Devices Obtained by Supercritical Foaming and Impregnation. Pharmaceutics 2019, 11, 631. [Google Scholar] [CrossRef] [PubMed]
- Ivanovic, J.; Knauer, S.; Fanovich, A.; Milovanovic, S.; Stamenic, M.; Jaeger, P.; Zizovic, I.; Eggers, R. Supercritical CO2 sorption kinetics and thymol impregnation of PCL and PCL-HA. J. Supercrit. Fluids 2016, 107, 486–498. [Google Scholar] [CrossRef]
- Salerno, A.; Saurina, J.; Domingo, C. Supercritical CO2 foamed polycaprolactone scaffolds for controlled delivery of 5-fluorouracil, nicotinamide and triflusal. Int. J. Pharm. 2015, 496, 654–663. [Google Scholar] [CrossRef] [PubMed]
- De Matos, M.B.C.; Puga, A.M.; Alvarez-Lorenzo, C.; Concheiro, A.; Braga, M.E.M.; De Sousa, H.C. Osteogenic poly(ε-caprolactone)/poloxamine homogeneous blends prepared by supercritical foaming. Int. J. Pharm. 2015, 479, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Fanovich, M.A.; Ivanovic, J.; Misic, D.; Alvarez, M.V.; Jaeger, P.; Zizovic, I.; Eggers, R. Development of polycaprolactone scaffold with antibacterial activity by an integrated supercritical extraction and impregnation process. J. Supercrit. Fluids 2013, 78, 42–53. [Google Scholar] [CrossRef]
- Burin, G.R.M.; Formiga, F.R.; Pires, V.C.; Miranda, J.C.; Barral, A.; Cabral-Albuquerque, E.C.M.; Vieira de Melo, S.A.B.; Braga, M.E.M.; de Sousa, H.C. Innovative formulations of PCL: Pluronic monoliths with copaiba oleoresin using supercritical CO2 foaming/mixing to control Aedes aegypti. J. Supercrit. Fluids 2022, 186, 105607. [Google Scholar] [CrossRef]
- Fanovich, M.A.; Ivanovic, J.; Zizovic, I.; Misic, D.; Jaeger, P. Functionalization of polycaprolactone/hydroxyapatite scaffolds with Usnea lethariiformis extract by using supercritical CO2. Mater. Sci. Eng. C 2016, 58, 204–212. [Google Scholar] [CrossRef]
- Diaz-Gomez, L.; García-González, C.A.; Wang, J.; Yang, F.; Aznar-Cervantes, S.; Cenis, J.L.; Reyes, R.; Delgado, A.; Évora, C.; Concheiro, A.; et al. Biodegradable PCL/fibroin/hydroxyapatite porous scaffolds prepared by supercritical foaming for bone regeneration. Int. J. Pharm. 2017, 527, 115–125. [Google Scholar] [CrossRef]
- Chen, C.-X.; Liu, Q.-Q.; Xin, X.; Guan, Y.-X.; Yao, S.-J. Pore formation of poly(ε-caprolactone) scaffolds with melting point reduction in supercritical CO2 foaming. J. Supercrit. Fluids 2016, 117, 279–288. [Google Scholar] [CrossRef]
- Moghadam, M.Z.; Hassanajili, S.; Esmaeilzadeh, F.; Ayatollahi, M.; Ahmadi, M. Formation of porous HPCL/LPCL/HA scaffolds with supercritical CO2 gas foaming method. J. Mech. Behav. Biomed. Mater. 2017, 69, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Mi, H.Y.; Turng, L.S. Comparison between PCL/hydroxyapatite (HA) and PCL/halloysite nanotube (HNT) composite scaffolds prepared by co-extrusion and gas foaming. Mater. Sci. Eng. C 2017, 72, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Salick, M.R.; Gao, Y.; Jiang, J.; Li, X.; Liu, F.; Cordie, T.; Li, Q.; Turng, L.S. Interconnected porous poly(ɛ-caprolactone) tissue engineering scaffolds fabricated by microcellular injection molding. J. Cell. Plast. 2018, 54, 379–397. [Google Scholar] [CrossRef]
- Moeini, A.; Germann, N.; Malinconico, M.; Santagata, G. Formulation of secondary compounds as additives of biopolymer-based food packaging: A review. Trends Food Sci. Technol. 2021, 114, 342–354. [Google Scholar] [CrossRef]
- Zhou, H.; Hu, D.; Zhu, M.; Xue, K.; Wei, X.; Park, C.B.; Wang, X.; Zhao, L. Review on poly (butylene succinate) foams: Modifications, foaming behaviors and applications. Sustain. Mater. Technol. 2023, 38, e00720. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, J.; Li, L. Multiple melting behavior of poly(butylene succinate). Eur. Polym. J. 2007, 43, 3163–3170. [Google Scholar] [CrossRef]
- Sarver, J.A.; Kiran, E. Foaming of polymers with carbon dioxide—The year-in-review—2019. J. Supercrit. Fluids 2021, 173, 105166. [Google Scholar] [CrossRef]
- Feng, Z.; Luo, Y.; Hong, Y.; Wu, J.; Zhu, J.; Li, H.; Qi, R.; Jiang, P. Preparation of Enhanced Poly(butylene succinate) Foams. Polym. Eng. Sci. 2016, 56, 1275–1282. [Google Scholar] [CrossRef]
- Ru, K.; Zhang, S.; Peng, X.; Wang, J.; Peng, H. Fabrication of Poly(butylene succinate) phosphorus-containing ionomers microcellular foams with significantly improved thermal conductivity and compressive strength. Polymer 2019, 185, 121967. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, Y.; Wang, P.; Peng, X.; Zeng, J. Fabrication-controlled morphology of poly(butylene succinate) nano-microcellular foams by supercritical CO2. Polym. Adv. Technol. 2018, 29, 1953–1965. [Google Scholar] [CrossRef]
- Zhou, X.M.; Liu, Y.F. Preparation and properties of high melt strength PBS and its environmentally friendly foaming materials. Cell. Polym. 2022, 41, 30–38. [Google Scholar] [CrossRef]
- Ykhlef, N.; Lafranche, E. Development of bio-based poly(butylene succinate) formulations for microcellular injection foaming. Int. J. Mater. Form. 2019, 12, 1009–1022. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, X.; Du, Z.; Li, H.; Yu, K. Preparation and characterization of chain extended Poly(butylene succinate) foams. Polym. Eng. Sci. 2015, 55, 988–994. [Google Scholar] [CrossRef]
- Chen, P.; Zhao, L.; Gao, X.; Xu, Z.; Liu, Z.; Hu, D. Engineering of polybutylene succinate with long-chain branching toward high foamability and degradation. Polym. Degrad. Stab. 2021, 194, 109745. [Google Scholar] [CrossRef]
- Yin, D.; Mi, J.; Zhou, H.; Wang, X.; Yu, K. Simple and feasible strategy to fabricate microcellular poly(butylene succinate) foams by chain extension and isothermal crystallization induction. J. Appl. Polym. Sci. 2020, 137, 48850. [Google Scholar] [CrossRef]
- Wu, W.; Cao, X.; Lin, H.; He, G.; Wang, M. Preparation of biodegradable poly(butylene succinate)/halloysite nanotube nanocomposite foams using supercritical CO2 as blowing agent. J. Polym. Res. 2015, 22, 177. [Google Scholar] [CrossRef]
- Huang, A.; Song, X.; Liu, F.; Wang, H.; Geng, L.; Wang, H.; Yi, Q.; Peng, X. Supercritical Fluids-Assisted Processing Using CO2 Foaming to Enhance the Dispersion of Nanofillers in Poly(butylene succinate)-Based Nanocomposites and the Conductivity. J. Polym. Environ. 2022, 30, 3063–3077. [Google Scholar] [CrossRef]
- Kuang, T.; Ju, J.; Yang, Z.; Geng, L.; Peng, X. A facile approach towards fabrication of lightweight biodegradable poly (butylene succinate)/carbon fiber composite foams with high electrical conductivity and strength. Compos. Sci. Technol. 2018, 159, 171–179. [Google Scholar] [CrossRef]
- Fu, H.; Yin, D.; Wang, T.; Gong, W.; Zhou, H. Open Pore Morphology Evolution in Poly(butylene succinate)/Chitin Nanocrystal Nanocomposite Foams. J. Polym. Environ. 2022, 30, 401–414. [Google Scholar] [CrossRef]
- Oliviero, M.; Sorrentino, L.; Cafiero, L.; Galzerano, B.; Sorrentino, A.; Iannace, S. Foaming behavior of bio-based blends based on thermoplastic gelatin and poly(butylene succinate). J. Appl. Polym. Sci. 2015, 132, 42704. [Google Scholar] [CrossRef]
- Huang, A.; Lin, J.; Tian, G.; Tan, B.; Wu, F.; Geng, L.; Peng, X.; Fang, H. Facial Preparation of Segregated Poly(butylene succinate)/Carbon Nanotubes Composite Foams with Superior Conductive Properties via Synergistic Effect of High Pressure Solid Phase Molding and Supercritical Fluid Foaming. Macromol. Mater. Eng. 2022, 307, 2200380. [Google Scholar] [CrossRef]
- Thomas, D.; Cebe, P. Self-nucleation and crystallization of polyvinyl alcohol. J. Therm. Anal. Calorim. 2017, 127, 885–894. [Google Scholar] [CrossRef]
- Li, Y.; Tian, H.; Jia, Q.; Niu, P.; Xiang, A.; Liu, D.; Qin, Y. Development of polyvinyl alcohol/intercalated MMT composite foams fabricated by melt extrusion. J. Appl. Polym. Sci. 2015, 132, 42706-7. [Google Scholar] [CrossRef]
- Xiang, A.; Yin, D.; He, Y.; Li, Y.; Tian, H. Multifunctional nucleating agents with simultaneous plasticizing, solubilizing, nucleating and their effect on polyvinyl alcohol foams. J. Supercrit. Fluids 2021, 170, 105156. [Google Scholar] [CrossRef]
- Song, T.; Tanpichai, S.; Oksman, K. Cross-linked polyvinyl alcohol (PVA) foams reinforced with cellulose nanocrystals (CNCs). Cellulose 2016, 23, 1925–1938. [Google Scholar] [CrossRef]
- Azimi, H.; Jahani, D.; Aghamohammadi, S.; Nofar, M. Experimental and numerical investigation of bubble nucleation and growth in supercritical CO2-blown poly(vinyl alcohol). Korean J. Chem. Eng. 2022, 39, 2252–2262. [Google Scholar] [CrossRef]
- Popa, M.S.; Frone, A.N.; Panaitescu, D.M. Polyhydroxybutyrate blends: A solution for biodegradable packaging? Int. J. Biol. Macromol. 2022, 207, 263–277. [Google Scholar] [CrossRef]
- Horue, M.; Rivero Berti, I.; Cacicedo, M.L.; Castro, G.R. Microbial production and recovery of hybrid biopolymers from wastes for industrial applications- a review. Bioresour. Technol. 2021, 340, 125671. [Google Scholar] [CrossRef]
- Tebaldi, M.L.; Maia, A.L.C.; Poletto, F.; de Andrade, F.V.; Soares, D.C.F. Poly(-3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV): Current advances in synthesis methodologies, antitumor applications and biocompatibility. J. Drug Deliv. Sci. Technol. 2019, 51, 115–126. [Google Scholar] [CrossRef]
- Bossu, J.; Le Moigne, N.; Dieudonné-George, P.; Dumazert, L.; Guillard, V.; Angellier-Coussy, H. Impact of the processing temperature on the crystallization behavior and mechanical properties of poly[R-3-hydroxybutyrate-co-(R-3-hydroxyvalerate)]. Polymer 2021, 229, 123987. [Google Scholar] [CrossRef]
- Oluwabunmi, K.E.; Zhao, W.; D’Souza, N.A. Carbon Capture Utilization for Biopolymer Foam Manufacture: Thermal, Mechanical and Acoustic Performance of PCL/PHBV CO2 Foams. Polymers 2021, 13, 2559. [Google Scholar] [CrossRef] [PubMed]
- Wright, Z.C.; Frank, C.W. Increasing cell homogeneity of semicrystalline, biodegradable polymer foams with a narrow processing window via rapid quenching. Polym. Eng. Sci. 2014, 54, 2877–2886. [Google Scholar] [CrossRef]
- Szegda, D.; Duangphet, S.; Song, J.; Tarverdi, K. Extrusion foaming of PHBV. J. Cell. Plast. 2014, 50, 145–162. [Google Scholar] [CrossRef]
- Xu, J.K.; Zhang, L.; Li, D.L.; Bao, J.B.; Wang, Z.B. Foaming of Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) with Supercritical Carbon Dioxide: Foaming Performance and Crystallization Behavior. ACS Omega 2020, 5, 9839–9845. [Google Scholar] [CrossRef] [PubMed]
- Oprică, M.G.; Uşurelu, C.D.; Frone, A.N.; Gabor, A.R.; Nicolae, C.-A.; Vasile, V.; Panaitescu, D.M. Opposite Roles of Bacterial Cellulose Nanofibers and Foaming Agent in Polyhydroxyalkanoate-Based Materials. Polymers 2022, 14, 5358. [Google Scholar] [CrossRef]
- Tsui, A.; Frank, C.W. Impact of Processing Temperature and Composition on Foaming of Biodegradable Poly(hydroxyalkanoate) Blends. Ind. Eng. Chem. Res. 2014, 53, 15896–15908. [Google Scholar] [CrossRef]
- Zhang, T.; Jang, Y.; Lee, E.; Shin, S.; Kang, H.-j. Supercritical CO2 Foaming of Poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polymers 2022, 14, 2018. [Google Scholar] [CrossRef]
- Luo, J.; Zhu, M.; Wang, L.; Zhou, H.; Wen, B.; Wang, X.; Zhang, Y. CO2-based fabrication of biobased and biodegradable poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/graphene nanoplates nanocomposite foams: Toward EMI shielding application. Polymer 2022, 253, 125034. [Google Scholar] [CrossRef]
- Le Moigne, N.; Sauceau, M.; Benyakhlef, M.; Jemai, R.; Benezet, J.C.; Rodier, E.; Lopez-Cuesta, J.M.; Fages, J. Foaming of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/organo-clays nano-biocomposites by a continuous supercritical CO2 assisted extrusion process. Eur. Polym. J. 2014, 61, 157–171. [Google Scholar] [CrossRef]
- Srithep, Y.; Ellingham, T.; Peng, J.; Sabo, R.; Clemons, C.; Turng, L.S.; Pilla, S. Melt compounding of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/ nanofibrillated cellulose nanocomposites. Polym. Degrad. Stab. 2013, 98, 1439–1449. [Google Scholar] [CrossRef]
- Dedieu, I.; Peyron, S.; Gontard, N.; Aouf, C. The thermo-mechanical recyclability potential of biodegradable biopolyesters: Perspectives and limits for food packaging application. Polym. Test. 2022, 111, 107620. [Google Scholar] [CrossRef]
- Lee, S.H.; Lim, S.W.; Lee, K.H. Properties of potentially biodegradable copolyesters of (succinic acid-1,4-butanediol)/(dimethyl terephthalate-1,4-butanediol). Polym. Int. 1999, 48, 861–867. [Google Scholar] [CrossRef]
- Herrera, R.; Franco, L.; Rodríguez-Galán, A.; Puiggalí, J. Characterization and degradation behavior of poly(butylene adipate-co-terephthalate)s. J. Polym. Sci. Part A Polym. Chem. 2002, 40, 4141–4157. [Google Scholar] [CrossRef]
- Aversa, C.; Barletta, M.; Cappiello, G.; Gisario, A. Compatibilization strategies and analysis of morphological features of poly(butylene adipate-co-terephthalate) (PBAT)/poly(lactic acid) PLA blends: A state-of-art review. Eur. Polym. J. 2022, 173, 111304. [Google Scholar] [CrossRef]
- Song, J.; Zhou, H.; Wang, X.; Zhang, Y.; Mi, J. Role of chain extension in the rheological properties, crystallization behaviors, and microcellular foaming performances of poly (butylene adipate-co-terephthalate). J. Appl. Polym. Sci. 2019, 136, 47322. [Google Scholar] [CrossRef]
- Song, J.; Mi, J.; Zhou, H.; Wang, X.; Zhang, Y. Chain extension of poly (butylene adipate-co-terephthalate) and its microcellular foaming behaviors. Polym. Degrad. Stab. 2018, 157, 143–152. [Google Scholar] [CrossRef]
- Cui, Y.; Luo, J.; Deng, Y.; Wang, X.; Zhou, H. Effect of acetylated cellulose nanocrystals on solid-state foaming behaviors of chain-extended poly(butylene adipate-co-terephthalate). J. Vinyl Addit. Technol. 2021, 27, 722–735. [Google Scholar] [CrossRef]
- Cui, Y.; Zhou, H.; Yin, D.; Zhou, H.; Wang, X. An innovative strategy to regulate bimodal cellular structure in chain extended poly(butylene adipate-co-terephthalate) foams. J. Vinyl Addit. Technol. 2021, 27, 319–331. [Google Scholar] [CrossRef]
- Malinowski, R.; Stepczyńska, M.; Raszkowska-Kaczor, A.; Żuk, T. Some effects of foaming of the poly(butylene adipate-co-terephthalate) modified by electron radiation. Polym. Adv. Technol. 2018, 29, 1117–1122. [Google Scholar] [CrossRef]
- Cai, W.; Liu, P.; Bai, S.; Li, S. A one-step method to manufacture biodegradable poly (butylene adipate-co-terephthalate) bead foam parts. Polym. Adv. Technol. 2021, 32, 2007–2019. [Google Scholar] [CrossRef]
- Wei, X.; Cui, W.; Zheng, K.; Wang, J.; Hu, J.; Zhou, H. Bimodal Cellular Structure Evolution in PBAT Foams Incorporated by Carbon Nanotubes and Graphene Nanosheets. J. Polym. Environ. 2022, 30, 2785–2799. [Google Scholar] [CrossRef]
- Pereira da Silva, J.S.; Farias da Silva, J.M.; Soares, B.G.; Livi, S. Fully biodegradable composites based on poly(butylene adipate-co-terephthalate)/peach palm trees fiber. Compos. Part B Eng. 2017, 129, 117–123. [Google Scholar] [CrossRef]
- Hong, S.H.; Hwang, S.H. Construction and Characterization of Biodegradable Foam from High-Content Lignin-Reinforced Poly(Butylene Adipate-co-Terephthalate) Biocomposites. ACS Appl. Polym. Mater. 2022, 4, 1775–1783. [Google Scholar] [CrossRef]
- Tian, H.L.; Yu, J.S.; Zhao, Y.; Pan, H.W.; Li, Y.; Xiao, Y.; Han, L.J.; Bian, J.J.; Hao, Y.P.; Zhang, H.L. Environmentally friendly poly(butylene adipate-co-terephthalate) and CO2-based poly(propylene carbonate) biodegradable foams modified with short basalt fiber. J. Therm. Anal. Calorim. 2023, 148, 12455–12466. [Google Scholar] [CrossRef]
- Javadi, A.; Srithep, Y.; Clemons, C.C.; Turng, L.S.; Gong, S. Processing of poly(hydroxybutyrate-co-hydroxyvalerate)-based bionanocomposite foams using supercritical fluids. J. Mater. Res. 2012, 27, 1506–1517. [Google Scholar] [CrossRef]
- Fernandes, E.M.; Pires, R.A.; Mano, J.F.; Reis, R.L. Bionanocomposites from lignocellulosic resources: Properties, applications and future trends for their use in the biomedical field. Prog. Polym. Sci. 2013, 38, 1415–1441. [Google Scholar] [CrossRef]
- Lobo, F.C.M.; Franco, A.R.; Fernandes, E.M.; Reis, R.L. An Overview of the Antimicrobial Properties of Lignocellulosic Materials. Molecules 2021, 26, 1749. [Google Scholar] [CrossRef] [PubMed]
- Le Corre, D.; Bras, J.; Dufresne, A. Starch nanoparticles: A review. Biomacromolecules 2010, 11, 1139–1153. [Google Scholar] [CrossRef]
- Figueiró, C.d.S.; Calcagno, C.I.W.; Santana, R.M.C. Starch Foams and Their Additives: A Brief Review. Starch-Stärke 2023, 76, 2300012. [Google Scholar] [CrossRef]
- Cruz-Tirado, J.P.; Vejarano, R.; Tapia-Blácido, D.R.; Barraza-Jáuregui, G.; Siche, R. Biodegradable foam tray based on starches isolated from different Peruvian species. Int. J. Biol. Macromol. 2019, 125, 800–807. [Google Scholar] [CrossRef] [PubMed]
- Han, J.H.; Lee, J.; Kim, S.K.; Kang, D.H.; Park, H.B.; Shim, J.K. Impact of the Amylose/Amylopectin Ratio of Starch-Based Foams on Foaming Behavior, Mechanical Properties, and Thermal Insulation Performance. ACS Sustain. Chem. Eng. 2023, 11, 2968–2977. [Google Scholar] [CrossRef]
- Cazón, P.; Velazquez, G.; Ramírez, J.A.; Vázquez, M. Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocoll. 2017, 68, 136–148. [Google Scholar] [CrossRef]
- Meng, L.; Liu, H.; Yu, L.; Duan, Q.; Chen, L.; Liu, F.; Shao, Z.; Shi, K.; Lin, X. How water acting as both blowing agent and plasticizer affect on starch-based foam. Ind. Crops Prod. 2019, 134, 43–49. [Google Scholar] [CrossRef]
- Vieira, M.G.A.; Da Silva, M.A.; Dos Santos, L.O.; Beppu, M.M. Natural-based plasticizers and biopolymer films: A review. Eur. Polym. J. 2011, 47, 254–263. [Google Scholar] [CrossRef]
- Sun, G.; Zeng, G.; Hu, C.; Wang, M. Research progress on the application of tristate water in preparation of starch-based foaming materials. Polym. Eng. Sci. 2022, 62, 3893–3901. [Google Scholar] [CrossRef]
- Tabasum, S.; Younas, M.; Zaeem, M.A.; Majeed, I.; Majeed, M.; Noreen, A.; Iqbal, M.N.; Zia, K.M. A review on blending of corn starch with natural and synthetic polymers, and inorganic nanoparticles with mathematical modeling. Int. J. Biol. Macromol. 2019, 122, 969–996. [Google Scholar] [CrossRef] [PubMed]
- Wiercigroch, E.; Szafraniec, E.; Czamara, K.; Pacia, M.Z.; Majzner, K.; Kochan, K.; Kaczor, A.; Baranska, M.; Malek, K. Raman and infrared spectroscopy of carbohydrates: A review. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2017, 185, 317–335. [Google Scholar] [CrossRef] [PubMed]
- Dircio-Morales, M.A.; Fonseca-Florido, H.A.; Velazquez, G.; Ávila-Orta, C.A.; Ramos-De Valle, L.F.; Hernández-Gámez, F.; Rivera-Salinas, J.E.; Soriano-Corral, F. Relationship among Extrusion Conditions, Cell Morphology, and Properties of Starch-Based Foams—A Review. Starch-Stärke 2023, 75, 2200103. [Google Scholar] [CrossRef]
- Aguilar, G.J.; Tapia-Blácido, D.R. Evaluating how avocado residue addition affects the properties of cassava starch-based foam trays. Int. J. Biol. Macromol. 2023, 240, 124348. [Google Scholar] [CrossRef]
- Barbosa, J.V.; Martins, J.; Carvalho, L.; Bastos, M.M.S.M.; Magalhães, F.D. Effect of peroxide oxidation on the expansion of potato starch foam. Ind. Crops Prod. 2019, 137, 428–435. [Google Scholar] [CrossRef]
- Bergel, B.F.; Araujo, L.L.; Santana, R.M.C. Evaluation of toxicity and biodegradation of thermoplastic starch foams with modified starch. Food Packag. Shelf Life 2022, 31, 100798. [Google Scholar] [CrossRef]
- Pornsuksomboon, K.; Holló, B.B.; Szécsényi, K.M.; Kaewtatip, K. Properties of baked foams from citric acid modified cassava starch and native cassava starch blends. Carbohydr. Polym. 2016, 136, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.M.; Tucker, N.; Le Guen, M.J. Thermal, mechanical and viscoelastic properties of citric acid-crosslinked starch/cellulose composite foams. Carbohydr. Polym. 2020, 230, 115675. [Google Scholar] [CrossRef] [PubMed]
- Iriani, E.S.; Wahyuningsih, K.; Oktavia, E. The Effect of Surface Modification by Sizing Agent on the Water Absorption Capacity of Cassava Starch-based Biofoam Packaging. Macromol. Symp. 2020, 391, 1900133. [Google Scholar] [CrossRef]
- Rostamabadi, H.; Bajer, D.; Demirkesen, I.; Kumar, Y.; Su, C.; Wang, Y.; Nowacka, M.; Singha, P.; Falsafi, S.R. Starch modification through its combination with other molecules: Gums, mucilages, polyphenols and salts. Carbohydr. Polym. 2023, 314, 120905. [Google Scholar] [CrossRef] [PubMed]
- Bergel, B.F.; da Luz, L.M.; Santana, R.M.C. Effect of poly(lactic acid) coating on mechanical and physical properties of thermoplastic starch foams from potato starch. Prog. Org. Coat. 2018, 118, 91–96. [Google Scholar] [CrossRef]
- Reis, M.O.; Olivato, J.B.; Bilck, A.P.; Zanela, J.; Grossmann, M.V.E.; Yamashita, F. Biodegradable trays of thermoplastic starch/poly (lactic acid) coated with beeswax. Ind. Crops Prod. 2018, 112, 481–487. [Google Scholar] [CrossRef]
- Chiarathanakrit, C.; Riyajan, S.A.; Kaewtatip, K. Transforming fish scale waste into an efficient filler for starch foam. Carbohydr. Polym. 2018, 188, 48–53. [Google Scholar] [CrossRef]
- Nansu, W.; Ross, S.; Ross, G.; Mahasaranon, S. Coconut residue fiber and modified coconut residue fiber on biodegradable composite foam properties. Mater. Today Proc. 2021, 47, 3594–3599. [Google Scholar] [CrossRef]
- Ghanbari, A.; Tabarsa, T.; Ashori, A.; Shakeri, A.; Mashkour, M. Thermoplastic starch foamed composites reinforced with cellulose nanofibers: Thermal and mechanical properties. Carbohydr. Polym. 2018, 197, 305–311. [Google Scholar] [CrossRef]
- Moo-Tun, N.M.; Iñiguez-Covarrubias, G.; Valadez-Gonzalez, A. Assessing the effect of PLA, cellulose microfibers and CaCO3 on the properties of starch-based foams using a factorial design. Polym. Test. 2020, 86, 106482. [Google Scholar] [CrossRef]
- Machado, C.M.; Benelli, P.; Tessaro, I.C. Sesame cake incorporation on cassava starch foams for packaging use. Ind. Crops Prod. 2017, 102, 115–121. [Google Scholar] [CrossRef]
- Ketkaew, S.; Kasemsiri, P.; Hiziroglu, S.; Mongkolthanaruk, W.; Wannasutta, R.; Pongsa, U.; Chindaprasirt, P. Effect of Oregano Essential Oil Content on Properties of Green Biocomposites Based on Cassava Starch and Sugarcane Bagasse for Bioactive Packaging. J. Polym. Environ. 2018, 26, 311–318. [Google Scholar] [CrossRef]
- Mahmud, M.A.; Belal, S.A.; Gafur, M.A. Development of a biocomposite material using sugarcane bagasse and modified starch for packaging purposes. J. Mater. Res. Technol. 2023, 24, 1856–1874. [Google Scholar] [CrossRef]
- Engel, J.B.; Ambrosi, A.; Tessaro, I.C. Development of biodegradable starch-based foams incorporated with grape stalks for food packaging. Carbohydr. Polym. 2019, 225, 115234. [Google Scholar] [CrossRef]
- Engel, J.B.; Ambrosi, A.; Tessaro, I.C. Development of a Cassava Starch-Based Foam Incorporated with Grape Stalks Using an Experimental Design. J. Polym. Environ. 2019, 27, 2853–2866. [Google Scholar] [CrossRef]
- Machado, C.M.; Benelli, P.; Tessaro, I.C. Study of interactions between cassava starch and peanut skin on biodegradable foams. Int. J. Biol. Macromol. 2020, 147, 1343–1353. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, P.; Li, Y.; Sandeep, S.N.; Li, J.; Ji, M.; Peng, S.; Yan, N.; Li, F. Fully biodegradable, hydrophobic, enhanced barrier starch bio-composites with sandwich structure by simulating wood. Ind. Crops Prod. 2023, 197, 116603. [Google Scholar] [CrossRef]
- Cheng, X.-H.; Wang, K.; Cheng, N.-Q.; Mi, S.-Y.; Sun, L.-S.; Yeh, J.-T. The control of expansion ratios and cellular structure of supercritical CO2-aid thermoplastic starch foams using crosslinking agents and nano-silica particles. J. Polym. Res. 2021, 28, 303. [Google Scholar] [CrossRef]
- Figueiró, C.D.; Trojaner, M.R.; Calcagno, C.I.W.; Santana, R.M.C. Effect of Silica Content on Cellular Structural and Hygroscopicity of Modified Cassava Starch Foam. Starch-Starke 2023, 75, 2300011. [Google Scholar] [CrossRef]
- Guo, A.; Tao, X.; Kong, H.; Zhou, X.; Wang, H.; Li, J.; Li, F.; Hu, Y. Effects of aluminum hydroxide on mechanical, water resistance, and thermal properties of starch-based fiber-reinforced composites with foam structures. J. Mater. Res. Technol. 2023, 23, 1570–1583. [Google Scholar] [CrossRef]
- Chiarathanakrit, C.; Mayakun, J.; Prathep, A.; Kaewtatip, K. Comparison of the effects of calcified green macroalga (Halimeda macroloba Decaisne) and commercial CaCO3 on the properties of composite starch foam trays. Int. J. Biol. Macromol. 2019, 121, 71–76. [Google Scholar] [CrossRef]
- Kaewtatip, K.; Chiarathanakrit, C.; Riyajan, S.A. The effects of egg shell and shrimp shell on the properties of baked starch foam. Powder Technol. 2018, 335, 354–359. [Google Scholar] [CrossRef]
- Rodrigues, N.H.P.; de Souza, J.T.; Rodrigues, R.L.; Canteri, M.H.G.; Tramontin, S.M.K.; de Francisco, A.C. Starch-Based Foam Packaging Developed from a By-Product of Potato Industrialization (Solanum tuberosum L.). Appl. Sci. 2020, 10, 2235. [Google Scholar] [CrossRef]
- Versino, F.; López, O.V.; García, M.A. Sunflower Oil Industry By-product as Natural Filler of Biocomposite Foams for Packaging Applications. J. Polym. Environ. 2021, 29, 1869–1879. [Google Scholar] [CrossRef]
- Nugroho, A.; Maharani, D.M.; Legowo, A.C.; Hadi, S.; Purba, F. Enhanced mechanical and physical properties of starch foam from the combination of water hyacinth fiber (Eichhornia crassipes) and polyvinyl alcohol. Ind. Crops Prod. 2022, 183, 114936. [Google Scholar] [CrossRef]
- Kaewtatip, K.; Saepoo, T.; Sarak, S.; Mayakun, J.; Chaibundit, C. Preparation and characterization of biodegradable starch foam composite with treated Khlum fiber for food packaging. J. Appl. Polym. Sci. 2023, 140, e53782. [Google Scholar] [CrossRef]
- Sanhawong, W.; Banhalee, P.; Boonsang, S.; Kaewpirom, S. Effect of concentrated natural rubber latex on the properties and degradation behavior of cotton-fiber-reinforced cassava starch biofoam. Ind. Crops Prod. 2017, 108, 756–766. [Google Scholar] [CrossRef]
- Joshi, P.; Gupta, K.; Uniyal, P.; Jana, A.; Banerjee, A.; Kumar, N.; Ghosh, D.; Srivastava, M.; Ray, A.; Khatri, O.P. Cassava starch-derived aerogels as biodegradable packaging materials. Mater. Chem. Phys. 2023, 296, 127282. [Google Scholar] [CrossRef]
- Kahvand, F.; Fasihi, M. Microstructure and physical properties of thermoplastic corn starch foams as influenced by polyvinyl alcohol and plasticizer contents. Int. J. Biol. Macromol. 2020, 157, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Tirado, J.P.; Barros Ferreira, R.S.; Lizárraga, E.; Tapia-Blácido, D.R.; Silva, N.C.C.; Angelats-Silva, L.; Siche, R. Bioactive Andean sweet potato starch-based foam incorporated with oregano or thyme essential oil. Food Packag. Shelf Life 2020, 23, 100457. [Google Scholar] [CrossRef]
- Velasco, V.; Sepúlveda, E.; Williams, P.; Rodríguez-Llamazares, S.; Gutiérrez, C.; Valderrama, N. Starch-based composite foam for chicken meat packaging. J. Food Sci. Technol. 2022, 59, 4594–4602. [Google Scholar] [CrossRef] [PubMed]
- Bahramian, B.; Fathi, A.; Dehghani, F. A renewable and compostable polymer for reducing consumption of non-degradable plastics. Polym. Degrad. Stab. 2016, 133, 174–181. [Google Scholar] [CrossRef]
- Cvek, M.; Paul, U.C.; Zia, J.; Mancini, G.; Sedlarik, V.; Athanassiou, A. Biodegradable Films of PLA/PPC and Curcumin as Packaging Materials and Smart Indicators of Food Spoilage. ACS Appl. Mater. Interfaces 2022, 14, 14654–14667. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.; Li, X.; Gao, P.; Wu, M.; Wang, L.; Zheng, W. Lightweight biodegradable porous poly(propylene carbonate)/carbon nanostructures nano/microcellular structures with enhanced foamability, good electromagnetic interference shielding, and low permanent strain. Compos. Commun. 2023, 44, 101760. [Google Scholar] [CrossRef]
- Muthuraj, R.; Mekonnen, T. Carbon Dioxide–Derived Poly(propylene carbonate) as a Matrix for Composites and Nanocomposites: Performances and Applications. Macromol. Mater. Eng. 2018, 303, 1800366. [Google Scholar] [CrossRef]
- Kuang, T.; Li, K.; Chen, B.; Peng, X. Poly (propylene carbonate)-based in situ nanofibrillar biocomposites with enhanced miscibility, dynamic mechanical properties, rheological behavior and extrusion foaming ability. Compos. Part B Eng. 2017, 123, 112–123. [Google Scholar] [CrossRef]
- Yang, G.; Su, J.; Gao, J.; Hu, X.; Geng, C.; Fu, Q. Fabrication of well-controlled porous foams of graphene oxide modified poly(propylene-carbonate) using supercritical carbon dioxide and its potential tissue engineering applications. J. Supercrit. Fluids 2013, 73, 1–9. [Google Scholar] [CrossRef]
- Cui, X.; Chen, J.; Zhu, Y.; Jiang, W. Lightweight and conductive carbon black/chlorinated poly(propylene carbonate) foams with a remarkable negative temperature coefficient effect of resistance for temperature sensor applications. J. Mater. Chem. C 2018, 6, 9354–9362. [Google Scholar] [CrossRef]
- Jiao, J.; Xiao, M.; Shu, D.; Li, L.; Meng, Y.Z. Preparation and characterization of biodegradable foams from calcium carbonate reinforced poly(propylene carbonate) composites. J. Appl. Polym. Sci. 2006, 102, 5240–5247. [Google Scholar] [CrossRef]
- Yu, P.; Mi, H.-Y.; Huang, A.; Liu, X.; Chen, B.-Y.; Zhang, S.-D.; Peng, X.-F. Preparation of poly(propylene carbonate)/nano calcium carbonate composites and their supercritical carbon dioxide foaming behavior. J. Appl. Polym. Sci. 2015, 132, 42248. [Google Scholar] [CrossRef]
- Sartore, L.; Inverardi, N.; Pandini, S.; Bignotti, F.; Chiellini, F. PLA/PCL-based foams as scaffolds for tissue engineering applications. Mater. Today Proc. 2019, 7, 410–417. [Google Scholar] [CrossRef]
- Sun, S.; Li, Q.; Zhao, N.; Jiang, J.; Zhang, K.; Hou, J.; Wang, X.; Liu, G. Preparation of highly interconnected porous poly(ε-caprolactone)/poly(lactic acid) scaffolds via supercritical foaming. Polym. Adv. Technol. 2018, 29, 3065–3074. [Google Scholar] [CrossRef]
- Zhao, N.; Lv, Z.; Ma, J.; Zhu, C.; Li, Q. Fabrication of hydrophilic small diameter vascular foam scaffolds of poly(ε-caprolactone)/polylactic blend by sodium hydroxide solution. Eur. Polym. J. 2019, 110, 31–40. [Google Scholar] [CrossRef]
- Wang, L.; Wang, D.; Zhou, Y.; Zhang, Y.; Li, Q.; Shen, C. Fabrication of open-porous PCL/PLA tissue engineering scaffolds and the relationship of foaming process, morphology, and mechanical behavior. Polym. Adv. Technol. 2019, 30, 2539–2548. [Google Scholar] [CrossRef]
- Lv, Z.; Zhao, N.; Wu, Z.; Zhu, C.; Li, Q. Fabrication of Novel Open-Cell Foams of Poly(ε-caprolactone)/Poly(lactic acid) Blends for Tissue-Engineering Scaffolds. Ind. Eng. Chem. Res. 2018, 57, 12951–12958. [Google Scholar] [CrossRef]
- Qiao, Y.; Li, Q.; Jalali, A.; Yang, J.; Wang, X.; Zhao, N.; Jiang, Y.; Wang, S.; Hou, J.; Jiang, J. In-situ microfibrillated Poly(ε-caprolactone)/Poly(lactic acid) composites with enhanced rheological properties, crystallization kinetics and foaming ability. Compos. Part B Eng. 2021, 208, 108594. [Google Scholar] [CrossRef]
- Cao, Y.; Jiang, J.; Jiang, Y.; Li, Z.; Hou, J.; Li, Q. Biodegradable highly porous interconnected poly(ε-caprolactone)/poly(L-lactide-co-ε-caprolactone) scaffolds by supercritical foaming for small-diameter vascular tissue engineering. Polym. Adv. Technol. 2022, 33, 440–451. [Google Scholar] [CrossRef]
- Kong, W.; Li, R.; Zhao, X.; Ye, L. Construction of a Highly Oriented Poly(lactic acid)-Based Block Polymer Foam and Its Self-Reinforcing Mechanism. ACS Sustain. Chem. Eng. 2023, 11, 1133–1145. [Google Scholar] [CrossRef]
- Geissler, B.; Feuchter, M.; Laske, S.; Walluch, M.; Holzer, C.; Langecker, G.R. Tailor-Made High Density PLA Foam Sheets—Strategies to Improve the Mechanical Properties. Cell. Polym. 2014, 33, 249–258. [Google Scholar] [CrossRef]
- Li, B.; Zhao, G.; Wang, G.; Zhang, L.; Gong, J.; Shi, Z. Biodegradable PLA/PBS open-cell foam fabricated by supercritical CO2 foaming for selective oil-adsorption. Sep. Purif. Technol. 2021, 257, 117949. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, L.; Zhou, J.; Fan, X.; Xie, H.; Zhang, H.; Zhang, G.; Shi, X. Influence of Polylactide (PLA) Stereocomplexation on the Microstructure of PLA/PBS Blends and the Cell Morphology of Their Microcellular Foams. Polymers 2020, 12, 2362. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Mi, H.Y.; Huang, A.; Geng, L.H.; Chen, B.Y.; Kuang, T.R.; Mou, W.J.; Peng, X.F. Effect of Poly(butylenes succinate) on Poly(lactic acid) Foaming Behavior: Formation of Open Cell Structure. Ind. Eng. Chem. Res. 2015, 54, 6199–6207. [Google Scholar] [CrossRef]
- Tian, G.; He, H.; Xu, M.; Liu, Y.; Gao, Q.; Zhu, Z. Ultralow percolation threshold biodegradable PLA/PBS/MWCNTs with segregated conductive networks for high-performance electromagnetic interference shielding applications. J. Appl. Polym. Sci. 2023, 140, e53558. [Google Scholar] [CrossRef]
- Campuzano, J.F.; López, I.D. Study of the effect of dicumyl peroxide on morphological and physical properties of foam injection molded poly(Lactic acid)/poly(butylene succinate) blends. Express Polym. Lett. 2020, 14, 673–684. [Google Scholar] [CrossRef]
- Chen, J.; Yang, L.; Chen, D.; Wang, M.; Wu, L. Facile fabrication of highly interconnected poly(lactic acid)-based scaffolds with good hydrophilicity using supercritical carbon dioxide. J. Appl. Polym. Sci. 2023, 140, e54047. [Google Scholar] [CrossRef]
- Chen, P.; Gao, X.; Zhao, L.; Xu, Z.; Li, N.; Pan, X.; Dai, J.; Hu, D. Preparation of biodegradable PBST/PLA microcellular foams under supercritical CO2: Heterogeneous nucleation and anti-shrinkage effect of PLA. Polym. Degrad. Stab. 2022, 197, 109844. [Google Scholar] [CrossRef]
- Long, H.; Xu, H.; Shaoyu, J.; Jiang, T.; Zhuang, W.; Li, M.; Jin, J.; Ji, L.; Ying, H.; Zhu, C. High-Strength Bio-Degradable Polymer Foams with Stable High Volume-Expansion Ratio Using Chain Extension and Green Supercritical Mixed-Gas Foaming. Polymers 2023, 15, 895. [Google Scholar] [CrossRef]
- Liu, W.; He, S.; Zhou, H. Preparation and properties of flexible poly(lactic acid) blend foams. Cell. Polym. 2018, 37, 189–205. [Google Scholar] [CrossRef]
- Liu, W.; Chen, P.; Wang, X.; Wang, F.; Wu, Y. Effects of poly(butyleneadipate-co-terephthalate) as a macromolecular nucleating agent on the crystallization and foaming behavior of biodegradable poly(lactic acid). Cell. Polym. 2017, 36, 75–96. [Google Scholar] [CrossRef]
- Shi, X.; Qin, J.; Wang, L.; Ren, L.; Rong, F.; Li, D.; Wang, R.; Zhang, G. Introduction of stereocomplex crystallites of PLA for the solid and microcellular poly(lactide)/poly(butylene adipate-co-terephthalate) blends. RSC Adv. 2018, 8, 11850–11861. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, M.J.; Cao, Y.; Howell, L.; Leeke, G.A. Miscibility in blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(ε-caprolactone) induced by melt blending in the presence of supercritical CO2. Polymer 2007, 48, 6304–6310. [Google Scholar] [CrossRef]
- Brütting, C.; Dreier, J.; Bonten, C.; Altstädt, V.; Ruckdäschel, H. Sustainable Immiscible Polylactic Acid (PLA) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) Blends: Crystallization and Foaming Behavior. ACS Sustain. Chem. Eng. 2023, 11, 6676–6687. [Google Scholar] [CrossRef]
- Walallavita, A.; Verbeek, C.J.R.; Lay, M. Blending Novatein® thermoplastic protein with PLA for carbon dioxide assisted batch foaming. In Proceedings of the 31st International Conference of the Polymer Processing Society—Conference Papers, Jeju Island, Republic of Korea, 7–11 June 2015; AIP Publishing: College Park, MD, USA, 2016; p. 100006. [Google Scholar]
- Walallavita, A.S.; Verbeek, C.J.R.; Lay, M.C. Biopolymer foams from Novatein thermoplastic protein and poly(lactic acid). J. Appl. Polym. Sci. 2017, 134, 45561. [Google Scholar] [CrossRef]
- Hu, D.; Xue, K.; Liu, Z.; Xu, Z.; Zhao, L. The essential role of PBS on PBAT foaming under supercritical CO2 toward green engineering. J. CO2 Util. 2022, 60, 101965. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Wang, W.; Gong, P.; Yang, Q.; Park, C.B.; Li, G. Ultra-fast degradable PBAT/PBS foams of high performance in compression and thermal insulation made from environment-friendly supercritical foaming. J. Supercrit. Fluids 2022, 181, 105512. [Google Scholar] [CrossRef]
- Peng, J.; Zhang, C.; Mi, H.; Peng, X.F.; Turng, L.S. Study of solid and microcellular injection-molded poly(butylenes adipate- co -terephthalate)/poly(vinyl alcohol) biodegradable parts. Ind. Eng. Chem. Res. 2014, 53, 8493–8500. [Google Scholar] [CrossRef]
- Tian, H.-l.; Wang, Z.-p.; Jia, S.-l.; Pan, H.-w.; Han, L.-j.; Bian, J.-j.; Li, Y.; Yang, H.-L.; Zhang, H.-L. Biodegradable Foaming Material of Poly(butylene adipate-co-terephthalate) (PBAT)/Poly(propylene carbonate) (PPC). Chin. J. Polym. Sci. 2022, 40, 208–219. [Google Scholar] [CrossRef]
- Boonprasertpoh, A.; Pentrakoon, D.; Junkasem, J. Effect of PBAT on physical, morphological, and mechanical properties of PBS/PBAT foam. Cell. Polym. 2020, 39, 31–41. [Google Scholar] [CrossRef]
- Xu, C.; Sun, C.; Wan, H.; Tan, H.; Zhao, J.; Zhang, Y. Microstructure and physical properties of poly(lactic acid)/polycaprolactone/rice straw lightweight bio-composite foams for wall insulation. Constr. Build. Mater. 2022, 354, 129216. [Google Scholar] [CrossRef]
- Guo, H.; Jiang, J.; Li, Z.; Jin, Z.; Hou, J.; Wang, X.; Li, Q. Solid-State Supercritical CO2 Foaming of PCL/PLGA Blends: Cell Opening and Compression Behavior. J. Polym. Environ. 2020, 28, 1880–1892. [Google Scholar] [CrossRef]
- Hassan, M.M.; Le Guen, M.J.; Tucker, N.; Parker, K. Thermo-mechanical, morphological and water absorption properties of thermoplastic starch/cellulose composite foams reinforced with PLA. Cellulose 2019, 26, 4463–4478. [Google Scholar] [CrossRef]
- Chauvet, M.; Sauceau, M.; Baillon, F.; Fages, J. Blending and foaming thermoplastic starch with poly (lactic acid) by CO2-aided hot melt extrusion. J. Appl. Polym. Sci. 2021, 138, 50150. [Google Scholar] [CrossRef]
- Trinh, B.M.; Chang, C.C.; Mekonnen, T.H. Facile fabrication of thermoplastic starch/poly (lactic acid) multilayer films with superior gas and moisture barrier properties. Polymer 2021, 223, 123679. [Google Scholar] [CrossRef]
- Chang, C.-J.; Venkatesan, M.; Cho, C.-J.; Chung, P.-Y.; Chandrasekar, J.; Lee, C.-H.; Wang, H.-T.; Wong, C.-M.; Kuo, C.-C. Thermoplastic Starch with Poly(butylene adipate-co-terephthalate) Blends Foamed by Supercritical Carbon Dioxide. Polymers 2022, 14, 1952. [Google Scholar] [CrossRef] [PubMed]
- Ogunsona, E.; D’Souza, N.A. Characterization and mechanical properties of foamed poly(ε-caprolactone) and Mater-Bi blends using CO2 as blowing agent. J. Cell. Plast. 2015, 51, 245–268. [Google Scholar] [CrossRef]
- Martin Torrejon, V.; Song, H.; Wu, B.; Luo, G.; Song, J. Effect of Starch Type and Pre-Treatment on the Properties of Gelatin–Starch Foams Produced by Mechanical Foaming. Polymers 2023, 15, 1775. [Google Scholar] [CrossRef]
- Vidal, F.; van der Marel, E.R.; Kerr, R.W.F.; McElroy, C.; Schroeder, N.; Mitchell, C.; Rosetto, G.; Chen, T.T.D.; Bailey, R.M.; Hepburn, C.; et al. Designing a circular carbon and plastics economy for a sustainable future. Nature 2024, 626, 45–57. [Google Scholar] [CrossRef]
- Rahman, M.H.; Bhoi, P.R. An overview of non-biodegradable bioplastics. J. Clean. Prod. 2021, 294, 126218. [Google Scholar] [CrossRef]
- Transforming our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/publications/transforming-our-world-2030-agenda-sustainable-development-17981 (accessed on 18 March 2024).
- Yang, M.; Chen, L.; Wang, J.; Msigwa, G.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Yap, P.-S. Circular economy strategies for combating climate change and other environmental issues. Environ. Chem. Lett. 2023, 21, 55–80. [Google Scholar] [CrossRef]
- The European Green Deal. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/story-von-der-leyen-commission/european-green-deal_en (accessed on 18 March 2024).
- U.S. Plastics Pact Roadmap to 2025. Available online: https://usplasticspact.org/roadmap/ (accessed on 18 March 2024).
- European Commission. A New Circular Economy Action Plan for a Cleaner and More Competitive Europe. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1583933814386&uri=COM:2020:98:FIN (accessed on 19 March 2024).
- Terzopoulou, Z.; Bikiaris, D.N. Biobased plastics for the transition to a circular economy. Mater. Lett. 2024, 362, 136174. [Google Scholar] [CrossRef]
- Biodegradable Foam Market Analysis. Available online: https://www.coherentmarketinsights.com/market-insight/biodegradable-foam-market-5970 (accessed on 19 March 2024).
- European Commission: Biobased, Biodegradable and Compostable Plastics. Available online: https://environment.ec.europa.eu/topics/plastics/biobased-biodegradable-and-compostable-plastics_en (accessed on 19 March 2024).
- Wang, X.; Jang, J.; Su, Y.; Liu, J.; Zhang, H.; He, Z.; Ni, Y. Starting materials, processes and characteristics of bio-based foams: A review. J. Bioresour. Bioprod. 2024, 9, 160–173. [Google Scholar] [CrossRef]
Objectives | Foaming Conditions | Key Features | Ref. |
---|---|---|---|
Study the effects of the rheological behaviour of the polymer, the nucleation agent, the blowing agent, and the processing conditions on the foam density and structure. | Extrusion foaming using sodium bicarbonate and citric acid as CBAs and calcium carbonate as a nucleation agent. | Thermal and hydrolytic degradations observed when using a water-generating blowing agent. Extruded foams showed mostly closed-cell morphology with cell sizes ranging between 50 and 200 mm. Lower screw speed resulted in higher expansion of the foams due to higher residence time for the decomposition of the CBA. Addition of calcium carbonate yielded a much finer cell structure, although at the cost of an increase in the density of the foams. | [354] |
Prepare PHBV/organo-clays nano-biocomposite foams by extrusion foaming. | Extrusion foaming using supercritical CO2. | Previous preparation of a masterbatch by twin-screw extrusion and its dilution during the foaming process improved clay dispersion without widespread thermal degradation of PHBV. Good clay dispersion favoured homogeneous nucleation while restraining pore coalescence, yielding more homogeneous nano-biocomposite foams and higher porosity up to 50%. | [360] |
Study the crystallization and foaming behaviour, thermal stability, and degradation of PHBV/nanofibrillated cellulose (NFC) biodegradable nanocomposites. | Batch foaming experiments using CO2 as the PBA. Foaming of CO2-saturated samples was triggered by a rapid pressure drop and a rapid temperature increase (in a hot oil bath). | NFC served as a nucleating agent, enabling the early onset of crystallization. Higher amounts of NFC led to extended thermal degradation of the PHBV matrix and to lower solubility and increased desorption diffusivity of CO2 in the PHBV/NFC nanocomposites. Generally, addition of NFC showed an inhibiting behaviour of the foaming due to lower CO2 sorption, faster CO2 loss, and a higher degree of crystallinity. | [361] |
Development of PHBV/graphene nanoplates (GNPs) with electromagnetic shielding effect. | Batch foaming in a high-pressure autoclave using supercritical CO2 as the PBA. Samples were saturated at 160 °C and 20 MPa. Foaming triggered by pressure drop at 140 °C. | Increasing GNP content from 0 to 6 wt.% resulted in a decreased pore size and volume expansion ratio of PHBV foams. GNPs improved the electrical conductivity by 12 orders of magnitude. EMI shielding effectiveness reached 27.4 dB cm3/g. | [359] |
Preparation of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) microcellular foams by using melt memory effect. | Foam injection moulding (FIM) using nitrogen as a physical blowing agent. A core-back operation was used to promote the foamability and control the cell size and density of the foams. | Cell density, uniformity of the cellular structure, and higher ductility of PHBH microcellular foam, obtained at a melting temperature of 150 °C. The polymer melt memory effect was maintained for the melting temperature in the range 150–160 °C, providing cell nucleation sites through the crystals in foams. | [126] |
Objectives | Foaming Conditions | Key Features | Ref. |
---|---|---|---|
Study the biodegradability and application of starch-based foams incorporated with grape stalks for packaging foods with low moisture content. | Grape stalks, guar gum, magnesium stearate, and water (55 wt%) were mixed with cassava starch (32%wt) and glycerol (5% wt). The resulting mixture was poured in a Teflon-coated metal mould and compression moulded in a heated hydraulic press at 70 bar and 180 °C for 7 min. | Loss of crystallinity of starch after expansion (an amorphous material was formed). Foams were completely biodegraded after 7 weeks. Foams of starch/grape stalks showed good properties in the applicability test. | [406] |
Improve the expansion capability of starch foam by chemical modification of starch via oxidation. | The paste containing starch, water, and other additives was placed in a mould coated with Teflon and compression moulded at 190 °C for 40 min. | The intrinsic viscosity of the starch solutions decreased as the degree of oxidation increased, indicating a molecular weight reduction in the starch due to chain scission caused by oxidation. Number of C-H and C-O bonds decrease due to the conversion of CH2OH-6 into carboxyl groups. Foams from the modified starches showed decreased density (142 kg/m3) compared to foams from regular starch (308 kg/m3). | [391] |
Evaluate the effect of thyme (TEO) or oregano (OEO) essential oil on the physical and antimicrobial properties of foams based on native sweet potato starch. | Thermocompression. Sweet potato starch, water, TEO or OEO, plasticizer (glycerol), and the release agent (magnesium stearate) were mixed for 10 min. The batter was subsequently thermocompressed at 160 °C and 60 bar for 10 min. | Observed an antimicrobial effect caused by small essential oil drops trapped in the first layers of the foams. The foams with OEO showed a higher antimicrobial effect than the foams with TEO. The presence of the essential oils reduced the solubility and water absorption of the starch matrix. | [422] |
Investigate the feasibility of starch-based composite foam (SCF) as fresh chicken meat packaging during refrigerated storage. | Starch pellets were prepared by melt mixing potato starch, maleic anhydride, and glycerol at 130 °C in a twin-screw extruder. Afterwards, starch pellets, PLA, PVA, nanoclay, and azodicarbonamide (CBA) were melt-blended and foamed in a twin-screw extruder at 160 °C. Foams with 2% nisin as an antimicrobial agent were also prepared. | The starch-based foam showed higher liquid retention capacity than expanded polystyrene, with no impairment of chicken meat quality during refrigeration storage. The incorporation of 2% of nisin into the starch-based composite foam resulted in a lower microbiological growth in the chicken meat during storage. | [423] |
Fabrication of starch-based composite foams (with natural reinforcements, such as barley straw fibres, grape wastes, and cardoon wastes) by microwave radiation. | In the first step, starch was plasticized with water by extrusion; in the second step, pellets were thermoformed into sheets; in the third step, the starch sheets were foamed by microwave radiation. | The natural reinforcements increased the rigidity, strength, and the toughness of the foams. During foaming, the flexible and solid thermoplastic starch sheet turned into a rigid foam. The use of barley straw fibres and cardoon waste showed a decrease in the average cell size while the addition of grape particles did not change the average cell size of foams. | [163] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, L.F.F.F.; Reis, R.L.; Fernandes, E.M. Forefront Research of Foaming Strategies on Biodegradable Polymers and Their Composites by Thermal or Melt-Based Processing Technologies: Advances and Perspectives. Polymers 2024, 16, 1286. https://doi.org/10.3390/polym16091286
Gonçalves LFFF, Reis RL, Fernandes EM. Forefront Research of Foaming Strategies on Biodegradable Polymers and Their Composites by Thermal or Melt-Based Processing Technologies: Advances and Perspectives. Polymers. 2024; 16(9):1286. https://doi.org/10.3390/polym16091286
Chicago/Turabian StyleGonçalves, Luis F. F. F., Rui L. Reis, and Emanuel M. Fernandes. 2024. "Forefront Research of Foaming Strategies on Biodegradable Polymers and Their Composites by Thermal or Melt-Based Processing Technologies: Advances and Perspectives" Polymers 16, no. 9: 1286. https://doi.org/10.3390/polym16091286