A Comparative Study of Micromechanical Analysis Models for Determining the Effective Properties of Out-of-Autoclave Carbon Fiber–Epoxy Composites
Abstract
:1. Introduction
2. Analytical Microscale Approaches
2.1. Mixing Rules: Voigt and Reuss Approximations
2.2. Mori–Tanaka Approach
2.3. The Method of Cells
3. Finite Element Analysis and Experiments
3.1. Representative Volume Element (RVE) Generation
3.2. Periodic Boundary Conditions (PBCs)
3.3. Constitutive Models of Material
3.3.1. Fiber
3.3.2. Epoxy Matrix
3.3.3. Fiber–Matrix Interface
4. Experimental Results
4.1. Manufacturing Process for IM7/ 5320-1 Composites
4.2. Characterization of Unidirectional Carbon Fiber Composites
5. Comparison of Predicted Effective Properties for the Micromechanics Models
- Four analytical micromechanical models and finite element analysis are utilized to compare the predicted effective properties of an IM7/5320-1 unidirectional CFRP with a fiber volume fraction of 0.62.
- The effective properties of all the micromechanics models are compared for all fiber volume fractions ranging from 0.0 to 1.0.
5.1. Comparison of the Predicted Effective Properties of CFRP with a Fiber Volume Fraction of 62%
5.2. Comparison of the Predicted Effective Properties of CFRP as a Function of Fiber Volume Fractions
6. Discussion
7. Conclusions
- (1)
- An overview of commonly used micromechanics models for predicting the effective mechanical properties of composite materials is presented in this paper, outlining the foundational theories behind four analytical closed-form micromechanics models: those for the Voigt, Reuss, and Mori–Tanaka approaches as well as the MOC. The Voigt and Reuss models are simple and assume uniform stress or strain, making them less computationally intensive but less accurate for complex microstructures. The Mori–Tanaka model, on the other hand, introduces a moderate increase in complexity by incorporating interactions between inclusions and the matrix, while still remaining within a manageable computational framework. The MOC is an approach that takes into account detailed microstructural interactions and nonlinear material behavior, which can make it more computationally consuming and require more detailed modeling of the microstructure. These models serve as the theoretical basis for determining the effective mechanical properties of composite materials.
- (2)
- This study presents a method for using finite element analysis (FEA) with a representative volume element (RVE) model to analyze computational micromechanics. The model consists of unidirectional cylindrical fibers periodically distributed within a polymer matrix, with the goal of replicating the cross-section of a unidirectional composite laminate, which is in line with established research in the field.
- (3)
- Four analytical micromechanical models, finite element analysis, and experimental results were utilized to compare the predicted effective properties of an IM7/5320-1 unidirectional CFRP. Additionally, the variation in effective properties was examined across all micromechanics models spanning the entire range of volume fractions.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Eshelby Equivalent Inclusion Method: Dilute Dispersion Model
Appendix B. Determination of Effective Properties
References
- Dvorak, G. Micromechanics of Composite Materials; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 186. [Google Scholar]
- Voigt, W. Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Ann. Der Phys. 1889, 274, 573–587. [Google Scholar] [CrossRef]
- Reuss, A. Calculation of the yield strength of mixed crystals due to the plasticity condition for single crystals. J. Appl. Math. Mech. 1929, 9, 49–58. [Google Scholar]
- Mori, T.; Tanaka, K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 1973, 21, 571–574. [Google Scholar] [CrossRef]
- Taya, M.; Arsenault, R.J. Metal Matrix Composites; Pergamon: Oxford, MS, USA, 1989. [Google Scholar]
- Benveniste, Y. A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech. Mater. 1987, 6, 147–157. [Google Scholar] [CrossRef]
- Tandon, G.P.; Weng, G.J. The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites. Polym. Compos. 1984, 5, 327–333. [Google Scholar] [CrossRef]
- Tandon, G.; Weng, G. Stress distribution in and around spheroidal inclusions and voids at finite concentration. J. Appl. Mech. 1986, 53, 511–518. [Google Scholar] [CrossRef]
- Weng, G. Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions. Int. J. Eng. Sci. 1984, 22, 845–856. [Google Scholar] [CrossRef]
- Zhao, Y.; Weng, G. Effective elastic moduli of ribbon-reinforced composites. J. Appl. Mech. 1990, 57, 158–167. [Google Scholar] [CrossRef]
- Wang, Y.; Weng, G. The influence of inclusion shape on the overall viscoelastic behavior of composites. J. Appl. Mech. 1992, 59, 510–518. [Google Scholar] [CrossRef]
- Zheng, Q.-S.; Du, D.-X. An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution. J. Mech. Phys. Solids 2001, 49, 2765–2788. [Google Scholar] [CrossRef]
- Klusemann, B.; Böhm, H.; Svendsen, B. Homogenization methods for multi-phase elastic composites with non-elliptical reinforcements: Comparisons and benchmarks. Eur. J. Mech. A/Solids 2012, 34, 21–37. [Google Scholar] [CrossRef]
- Nogales, S.; Böhm, H.J. Modeling of the thermal conductivity and thermomechanical behavior of diamond reinforced composites. Int. J. Eng. Sci. 2008, 46, 606–619. [Google Scholar] [CrossRef]
- Eroshkin, O.; Tsukrov, I. On micromechanical modeling of particulate composites with inclusions of various shapes. Int. J. Solids Struct. 2005, 42, 409–427. [Google Scholar] [CrossRef]
- Kachanov, M.; Tsukrov, I.; Shafiro, B. Effective moduli of solids with cavities of various shapes. Appl. Mech. Rev. 1994, 47, S151–S174. [Google Scholar] [CrossRef]
- Tandon, G.; Weng, G. Average stress in the matrix and effective moduli of randomly oriented composites. Compos. Sci. Technol. 1986, 27, 111–132. [Google Scholar] [CrossRef]
- Zhao, Y.; Tandon, G.; Weng, G. Elastic moduli for a class of porous materials. Acta Mech. 1989, 76, 105–131. [Google Scholar] [CrossRef]
- Gommers, B.; Verpoest, I.; Van Houtte, P. The Mori–Tanaka method applied to textile composite materials. Acta Mater. 1998, 46, 2223–2235. [Google Scholar] [CrossRef]
- Schjødt-Thomsen, J.; Pyrz, R. The Mori–Tanaka stiffness tensor: Diagonal symmetry, complex fibre orientations and non-dilute volume fractions. Mech. Mater. 2001, 33, 531–544. [Google Scholar] [CrossRef]
- Benveniste, Y.; Dvorak, G.; Chen, T. Stress fields in composites with coated inclusions. Mech. Mater. 1989, 7, 305–317. [Google Scholar] [CrossRef]
- Chen, T.; Dvorak, G.; Benveniste, Y. Stress fields in composites reinforced by coated cylindrically orthotropic fibers. Mech. Mater. 1990, 9, 17–32. [Google Scholar] [CrossRef]
- Liu, H.; Brinson, L.C. A hybrid numerical-analytical method for modeling the viscoelastic properties of polymer nanocomposites. J. Appl. Mech. 2006, 73, 758–768. [Google Scholar] [CrossRef]
- Li, Y.; Waas, A.M.; Arruda, E.M. A closed-form, hierarchical, multi-interphase model for composites—Derivation, verification and application to nanocomposites. J. Mech. Phys. Solids 2011, 59, 43–63. [Google Scholar] [CrossRef]
- Azoti, W.; Koutsawa, Y.; Bonfoh, N.; Lipinski, P.; Belouettar, S. On the capability of micromechanics models to capture the auxetic behavior of fibers/particles reinforced composite materials. Compos. Struct. 2011, 94, 156–165. [Google Scholar] [CrossRef]
- Azoti, W.L.; Elmarakbi, A. Multiscale modelling of graphene platelets-based nanocomposite materials. Compos. Struct. 2017, 168, 313–321. [Google Scholar] [CrossRef]
- Aboudi, J. Micromechanical analysis of composites by the method of cells. Appl. Mech. Rev. 1989, 42, 193–221. [Google Scholar] [CrossRef]
- Paley, M.; Aboudi, J. Micromechanical analysis of composites by the generalized cells model. Mech. Mater. 1992, 14, 127–139. [Google Scholar] [CrossRef]
- Aboudi, J.; Arnold, S.M.; Bednarcyk, B.A. Micromechanics of Composite Materials: A Generalized Multiscale Analysis Approach; Butterworth-Heinemann: Oxford, UK, 2013. [Google Scholar]
- Aboudi, J.; Arnold, S.M.; Bednarcyk, B.A. Practical Micromechanics of Composite Materials; Butterworth-Heinemann: Oxford, UK, 2021. [Google Scholar]
- Banerjee, P.K.; Butterfield, R. Boundary Element Methods in Engineering Science; McGraw-Hill: New York, NY, USA, 1981. [Google Scholar]
- Sun, C.-T.; Vaidya, R.S. Prediction of composite properties from a representative volume element. Compos. Sci. Technol. 1996, 56, 171–179. [Google Scholar] [CrossRef]
- Brandt, A.; Fish, J. Multiscale Methods: Bridging the Scales in Science and Engineering; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Bednarcyk, B.A.; Stier, B.; Simon, J.-W.; Reese, S.; Pineda, E.J. Meso-and micro-scale modeling of damage in plain weave composites. Compos. Struct. 2015, 121, 258–270. [Google Scholar] [CrossRef]
- Drugan, W.J.; Willis, J.R. A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J. Mech. Phys. Solids 1996, 44, 497–524. [Google Scholar] [CrossRef]
- Xi, Y. Representative volumes of composite materials. J. Eng. Mech. 1996, 122, 1159–1167. [Google Scholar] [CrossRef]
- Xia, Z.; Zhang, Y.; Ellyin, F. A unified periodical boundary conditions for representative volume elements of composites and applications. Int. J. Solids Struct. 2003, 40, 1907–1921. [Google Scholar] [CrossRef]
- Harper, L.; Qian, C.; Turner, T.; Li, S.; Warrior, N. Representative volume elements for discontinuous carbon fibre composites–Part 1: Boundary conditions. Compos. Sci. Technol. 2012, 72, 225–234. [Google Scholar] [CrossRef]
- Chao, X.; Qi, L.; Cheng, J.; Tian, W.; Zhang, S.; Li, H. Numerical evaluation of the effect of pores on effective elastic properties of carbon/carbon composites. Compos. Struct. 2018, 196, 108–116. [Google Scholar] [CrossRef]
- Tian, W.; Qi, L.; Chao, X.; Liang, J.; Fu, M. Periodic boundary condition and its numerical implementation algorithm for the evaluation of effective mechanical properties of the composites with complicated micro-structures. Compos. Part B Eng. 2019, 162, 1–10. [Google Scholar] [CrossRef]
- Taheri-Behrooz, F.; Pourahmadi, E. A 3D RVE model with periodic boundary conditions to estimate mechanical properties of composites. Struct. Eng. Mech. 2019, 72, 713–722. [Google Scholar]
- Eshelby, J.D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1957, 241, 376–396. [Google Scholar]
- Eshelby, J.D. The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1959, 252, 561–569. [Google Scholar]
- Brayshaw, J.B. Consistent Formulation of the Method of Cells: Micromechanics Model for Transversely Isotropic Metal Matrix Composites; University of Virginia: Charlottesville, VA, USA, 1994. [Google Scholar]
- González, C.; LLorca, J. Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: Microscopic mechanisms and modeling. Compos. Sci. Technol. 2007, 67, 2795–2806. [Google Scholar] [CrossRef]
- Totry, E.; González, C.; LLorca, J. Prediction of the failure locus of C/PEEK composites under transverse compression and longitudinal shear through computational micromechanics. Compos. Sci. Technol. 2008, 68, 3128–3136. [Google Scholar] [CrossRef]
- HEXCEL. Resources/Data Sheets/Carbon Fiber. Available online: https://www.hexcel.com/Resources/DataSheets/Carbon-Fiber (accessed on 13 March 2024).
- Hazanov, S.; Huet, C. Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume. J. Mech. Phys. Solids 1994, 42, 1995–2011. [Google Scholar] [CrossRef]
- Okereke, M.; Keates, S. Finite Element Applications; Springer International Publishing AG: Cham, Switerland, 2018. [Google Scholar]
- Shah, S.P.; Maiarù, M. Effect of manufacturing on the transverse response of polymer matrix composites. Polymers 2021, 13, 2491. [Google Scholar] [CrossRef] [PubMed]
- Wanthal, S.; Schaefer, J.; Justusson, B.; Hyder, I.; Engelstad, S.; Rose, C. Verification and validation process for progressive damage and failure analysis methods in the NASA Advanced Composites Consortium. In Proceedings of the American Society for Composites (ASC) Technical Conference, West Lafayette, IN, USA, 23–25 October 2017. [Google Scholar]
- Herraez, M.; Bergan, A.C.; Gonzalez, C.; Lopes, C.S. Modeling Fiber Kinking at the Microscale and Mesoscale; Langley Research Center: Hampton, VA, USA, 2018.
- Drucker, D.C.; Prager, W.; Greenberg, H.J. Extended limit design theorems for continuous media. Q. Appl. Math. 1952, 9, 381–389. [Google Scholar] [CrossRef]
- Karuppiah, A.; Keshavanarayana, S.; Jones, K.K.; Sriyarathne, A. Predicting Stress Relaxation Behavior of Fabric Composites Using Finite Element Based Micromechanics Model. In Proceedings of the SAMPE Conference Proceedings, Long Beach, CA, USA, 23–26 May 2016. [Google Scholar]
- Thanthaloor Krishnamaraja, M.R. Study of the Effect of an Embedded Cylindrical Sensor on the In-Plane Tensile Properties of Laminated Composites. Ph.D. Thesis, Wichita State University, Wichita, KS, USA, 2015. [Google Scholar]
- Quino, G.; Gargiuli, J.; Pimenta, S.; Hamerton, I.; Robinson, P.; Trask, R.S. Experimental characterisation of the dilation angle of polymers. Polym. Test. 2023, 125, 108137. [Google Scholar] [CrossRef]
- Sorini, C.; Chattopadhyay, A.; Goldberg, R.K. An improved plastically dilatant unified viscoplastic constitutive formulation for multiscale analysis of polymer matrix composites under high strain rate loading. Compos. Part B Eng. 2020, 184, 107669. [Google Scholar] [CrossRef]
- Camanho, P.P.; Dávila, C.G. Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials; Langley Research Center: Hampton, VA, USA, 2002.
- Turon, A.; Camanho, P.P.; Costa, J.; Dávila, C. A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech. Mater. 2006, 38, 1072–1089. [Google Scholar] [CrossRef]
- Turon, A.; Camanho, P.; Costa, J.; Renart, J. Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: Definition of interlaminar strengths and elastic stiffness. Compos. Struct. 2010, 92, 1857–1864. [Google Scholar] [CrossRef]
- Ogihara, S.; Koyanagi, J. Investigation of combined stress state failure criterion for glass fiber/epoxy interface by the cruciform specimen method. Compos. Sci. Technol. 2010, 70, 143–150. [Google Scholar] [CrossRef]
- Benzeggagh, M.; Kenane, M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 1996, 56, 439–449. [Google Scholar] [CrossRef]
- Naya, F. Prediction of Mechanical Properties of Unidirectional FRP Plies at Different Environmental Conditions by Means of Computational Micromechanics. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2017. [Google Scholar]
- SYENSQO. CYCOM® 5320-1 Product Data Sheet. Available online: https://www.syensqo.com/en/product/cycom-5320-1 (accessed on 13 March 2024).
- Hyun, D.-K.; Kim, D.; Hwan Shin, J.; Lee, B.-E.; Shin, D.-H.; Hoon Kim, J. Cure cycle modification for efficient vacuum bag only prepreg process. J. Compos. Mater. 2021, 55, 1039–1051. [Google Scholar] [CrossRef]
- ASTM D3171–22; Standard Test Methods for Constituent Content of Composite Materials. ASTM_International: West Conshohocken, PA, USA, 2022.
- ASTM D2584–18; Standard Test Method for Ignition Loss of Cured Reinforced Resins. ASTM_International: West Conshohocken, PA, USA, 2018.
- ASTM D3039/D3039M–17; Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM_International: West Conshohocken, PA, USA, 2017.
- ASTM D3518/D3518M–18; Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a ±45° Laminate. ASTM_International: West Conshohocken, PA, USA, 2018.
- Joung, J.-o. Performance Evaluation of a Sandwich Panel Structure using Unidirectional Prepreg Material for Oven Cure. Master’s Thesis, Gyeongsang National University, Jinju-si, Republic of Korea, 2016. [Google Scholar]
- Mura, T. Micromechanics of Defects in Solids; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
[GPa] | [GPa] | [GPa] | [GPa] | [GPa] | [GPa] | |||
---|---|---|---|---|---|---|---|---|
262.2 | 19.5 | 19.5 | 0.30 | 0.30 | 0.46 | 18.9 | 18.9 | 7.8 |
[GPa] | ||||
---|---|---|---|---|
3.809 | 0.35 | 31o | 0.89 | 14.28o |
(MPa) | (MPa) | (GPa/μm) | [J/m2] | [J/m2] | |
---|---|---|---|---|---|
57 | 85 | 100 | 7 | 80 | 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.C.; Jang, H.-K.; Joo, G.; Kim, J.H. A Comparative Study of Micromechanical Analysis Models for Determining the Effective Properties of Out-of-Autoclave Carbon Fiber–Epoxy Composites. Polymers 2024, 16, 1094. https://doi.org/10.3390/polym16081094
Kim YC, Jang H-K, Joo G, Kim JH. A Comparative Study of Micromechanical Analysis Models for Determining the Effective Properties of Out-of-Autoclave Carbon Fiber–Epoxy Composites. Polymers. 2024; 16(8):1094. https://doi.org/10.3390/polym16081094
Chicago/Turabian StyleKim, Young Cheol, Hong-Kyu Jang, Geunsu Joo, and Ji Hoon Kim. 2024. "A Comparative Study of Micromechanical Analysis Models for Determining the Effective Properties of Out-of-Autoclave Carbon Fiber–Epoxy Composites" Polymers 16, no. 8: 1094. https://doi.org/10.3390/polym16081094
APA StyleKim, Y. C., Jang, H. -K., Joo, G., & Kim, J. H. (2024). A Comparative Study of Micromechanical Analysis Models for Determining the Effective Properties of Out-of-Autoclave Carbon Fiber–Epoxy Composites. Polymers, 16(8), 1094. https://doi.org/10.3390/polym16081094