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Abstract: This study aims to critically assess different micromechanical analysis models applied to
carbon-fiber-reinforced plastic (CFRP) composites, employing micromechanics-based homogeniza-
tion to accurately predict their effective properties. The paper begins with the simplest Voigt and
Reuss models and progresses to more sophisticated micromechanics-based models, including the
Mori–Tanaka and Method of Cells (MOC) models. It provides a critical review of the areas in which
these micromechanics-based models are effective and analyses of their limitations. The numerical
analysis results were confirmed through finite element simulations of the periodic representative vol-
ume element (RVE). Furthermore, the effective properties predicted by these micromechanics-based
models were validated via experiments conducted on IM7/5320-1 composite material with a fiber
volume fraction of 0.62.

Keywords: micromechanics models; carbon-fiber-reinforced plastic (CFRP); representative volume
element (RVE); effective properties

1. Introduction

At present, modeling and simulation methods are widely recognized as being essential
for predicting the performance of composite materials in various industrial fields, such as
the automotive and aerospace industries, where they offer a cost-effective and efficient al-
ternative to traditional experimental methods. Multiscale modeling is a method commonly
employed in structural simulation, particularly for the analysis of inhomogeneous materi-
als such as carbon-fiber-reinforced plastics (CFRPs) [1]. It can be used to predict material
behavior at the macroscopic level in composite structures. In this approach, micromechani-
cal homogenization techniques are employed to determine the effective properties of the
composites, spanning various scale levels from individual fibers and inclusions to entire
components under stress. Such a strategy is important for optimizing structural design, and
there is a focus on developing homogenization methods and micromechanical models for
CFRP. Composite material design involves defining equivalent effective macromechanical
properties based on information about the microconstituents, which can be obtained using
analytical, numerical, or experimental approaches.

There are several analytical micromechanical models available for predicting the effec-
tive elastic properties of composites. The micromechanics models established by Voigt [2]
and Reuss [3] provide the boundaries for estimating effective properties. Additionally,
there is the model of Mori–Tanaka [4], whose research focused on calculating the average
internal stress in a matrix of a material containing inclusions by using eigenstrains. Their
work served as the basis for a series of studies on determining the effective properties of
composites, such as those by Taya and Arsenault [5]. The eigenstrain method has become a
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popular approach due to the simplicity of its implementation. In [6], Benveniste reformu-
lated the Mori–Tanaka approach by introducing Eshelby’s equivalent inclusion method,
which subsequently led to the development of the Mori–Tanaka tensor. This tensor enables
the computation of effective properties of a composite based on Eshelby’s tensor, and this
method has been widely accepted in composite research. Several studies have investigated
composites containing inclusions of different shapes and sizes, such as penny-shaped and
spherical forms as well as noncylindrical [7–13] and nonelliptical shapes [14–16]. Various
inclusion alignment configurations, ranging from random to partially aligned distributions,
have been investigated using the Eshelby–Mori–Tanaka model [17–20]. This method has
also been leveraged for investigations into multiphase interactions in composites with
coated fiber reinforcements [21,22] and hierarchical multi-interface models [23,24]. Al-
though the model has been successful in application, some limitations have been identified.
For example, the model cannot predict the auxetic behavior in composites with nonauxetic
inclusions due to the lack of joints between inclusions [25]. The aim of recent modifications
by Azoti et al. [26] to Eshelby’s tensor and the Mori–Tanaka approach was to enhance the
efficacy of predicting effective properties in composites infused with graphene platelets.
The Method of Cells (MOC) [27] provides a framework for conducting micromechanical
analyses of composite materials, with particular emphasis on the periodic arrangement of
their microstructures. This approach is particularly useful for composites where reinforcing
inclusions, such as fibers, are periodically distributed. The analysis is simplified by the
MOC because it focuses on a single repeating unit cell (RUC), which is essentially the basic
element of the composite. The method involves applying displacement and tensile conti-
nuity conditions at interfaces within and between cells while also satisfying equilibrium
conditions. This approach can be utilized to calculate the effective stiffness tensor for linear
elastic composites. It is worth noting that the MOC can be modified for composites with
nonlinear properties, including those that are susceptible to damage or inelastic responses,
which gives it an edge over other methods [28–30].

Several numerical analysis techniques have been employed to estimate the elastic
properties, stress, and strain in composites, including finite difference methods, boundary
element analysis, and finite element analysis (FEA) [31–34]. FEA has been particularly
effective in predicting the behavior of composites under different loads, as demonstrated by
numerous studies. The accuracy of finite element analysis (FEA) studies can be improved
by correctly applying periodic boundary conditions (PBCs). In order to predict the overall
behavior of a composite material, it is necessary to create a representative volume element
(RVE) and apply PBCs, as demonstrated in previous studies [32,35–41]. This process
can be utilized to model complex scenarios, including those with discontinuous fibers
and microscale voids, using a configuration of periodic RVEs whose essential parameters
are randomly distributed. While numerical methods are highly accurate in capturing
detailed responses, they can be limited by their requirement for significant computational
and human resources. However, there are simpler and less demanding techniques that
may be more appropriate. Such techniques can still provide valuable insights and are
worth considering.

This study presents a comprehensive comparative study of several major microme-
chanical models against an entire range of fiber volume fractions, extending the scope
of model applicability and validation for unidirectional CFRP fabricated by an out-of-
autoclave (OOA) process. The strengths and weaknesses of these models have been
assessed by comparing their results with available experimental data. The study examines
four closed-form micromechanical models that have been documented in scholarly publica-
tions. Specifically, the Mori–Tanaka method extends Eshelby’s method for an inclusion in
an infinite matrix to composites with interacting inclusions. MOC is an advanced method
that models the composite’s microstructure as a periodic array of unit cells. It is especially
useful for predicting the effective behavior of composites with a significant volume fraction
of inclusions. Additionally, the FE-based RVE homogenization method is employed to
assess the effective properties of composites with complex microstructures, utilizing PBCs.
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It is worth noting that the performance of micromechanical models can be comparatively
evaluated using micromechanics-based models along with experimental studies on carbon-
fiber-reinforced polymer matrix composites, providing a robust validation framework.

2. Analytical Microscale Approaches

Over the past decades, analytical multiscale approaches have often been reliant on
micromechanical models that homogenize physically inhomogeneous materials in provid-
ing averaged mechanical properties representing equivalent behavior. In the context of
analytical multiscale approaches, this process is commonly referred to as mean-field homog-
enization (MFH). The effective elastic properties of the homogenized composite materials
can be determined by averaging mechanical field variables, such as strain and stress, in the
RVE. In this section, the basic concepts and theories of analytical micromechanics-based
models for CFRP composites are discussed, beginning with the basic Voigt and Reuss
models and progressing to more complex approaches such as the Mori–Tanaka model and
the MOC.

2.1. Mixing Rules: Voigt and Reuss Approximations

The simplest models are based on mixing rules that calculate the stiffness or strain of
the composites from the fiber volume fraction and the stiffness of the fiber and matrix. The
approaches of Voigt and Reuss should be mentioned here [2,3]:

C∗
Voigt = C(m) + Vf

(
C( f ) − C(m)

)
= Vf C( f ) + VmC(m) (1)

S∗
Reuss = S(m) + Vf

(
S( f ) − S(m)

)
= Vf S( f ) + VmS(m) (2)

where C∗ is the effective stiffness tensor and S∗ = [C∗]−1 is the effective compliance tensor,
with the fiber and matrix labeled f and m. Correspondingly, Vf is the fiber volume fraction

and Vm =
(

1 − Vf

)
is matrix volume fraction. In these approaches, Voigt assumes that the

fiber and matrix in the RVE experience uniform strain, whereas Reuss assumes uniform
stress. Therefore, the stiffness of the composite is calculated in the approach of Voigt, while
the strain is calculated for Reuss. The Reuss approach is also known as the inverse mixing
rule. Since both models do not include any information about the fiber geometry, they are
only rough approximations for geometrically oriented (nonspherical) inclusions. In terms
of determining the effective properties of the composite, the Voigt approach represents an
upper limit while the Reuss approach is a lower limit.

2.2. Mori–Tanaka Approach

The solution for an inclusion within an infinite matrix, subjected to uniform defor-
mation at large distances, is termed the dilute case. This foundational solution underpins
various classical micromechanics theories, especially in the case of the Mori–Tanaka method.
Specifically for ellipsoidal inclusions, the Eshelby [42,43] equivalent inclusion method is
instrumental for determining the inclusion’s elastic fields. Eshelby’s equivalent inclusion
model for the dilute case is summarized in Appendix A.

The Mori–Tanaka approach provides a framework for estimating the internal stress
within a matrix that incorporates inclusions by using eigenstrains. Benveniste [6] reformu-
lated this approach, elucidating the assumptions made within the theory. Their method
employs the Mori–Tanaka tensor to relate the stresses and strains in the matrix and fiber,
which are linked through a concentration tensor. The effective stiffness tensor of the com-
posite is then derived from the fiber and matrix stiffness tensors by incorporating volume
fractions. The model presumes a dilute distribution of ellipsoidal inclusions within an
infinite elastic matrix, applying Eshelby’s concept [42,43] of an equivalent inclusion model
to determine the strain concentration tensor. This enables the calculation of the composite’s
overall stiffness, factoring in the elastic properties of both fiber and matrix.
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The identity matrix, I, can be expressed as

I = Vf A f + VmAm (3)

In the above equation, A f and Am represent the strain concentration tensors for the
fiber and matrix, respectively. It should be noted that the sum of Vf and Vm is equal to 1
(Vf + Vm = 1).

Using Equation (3),

Am =
1

Vm

(
I − Vf A f

)
(4)

The effective stiffness of the composite, C∗, is

C∗ = Vf C( f )A f + VmC(m)Am (5)

Substituting Equation (4) into Equation (5) gives

C∗ = Vf C( f )A f + C(m)
(

I − Vf A f

)
(6)

which can be expressed as

C∗ = C(m) + Vf

(
C( f ) − C(m)

)
A f (7)

It can similarly be shown that

S∗ = S(m) + Vf

(
S( f ) − S(m)

)
B f (8)

where the concentration tensors A f and B f are such that

ε( f ) = A f ε0

σ( f ) = B f σ0 (9)

For a dilute solution case, the homogenized strain ε(m) and stress σ(m) in the matrix
material can be approximated using the externally applied homogeneous boundary condi-
tions at the surface S, ε0 and σ0, respectively (Figure 1). The phase f and m represent the
fiber (or inclusion) and matrix. This approximation is valid under the assumption that the
presence of inclusions has a negligible effect on the overall strain and stress distribution
within the matrix. Mathematically, this is represented as

ε(m) ≈ ε0 = ε (Dilute) (10)

σ(m) ≈ σ0 = σ(Dilute) (11)

The Mori–Tanaka method further examines the effect of a single inclusion within a
large volume V′, which is enclosed by a surface S′. The boundary conditions applied to
this volume dictate that the displacement field u

(
S′
)

is proportional to the homogenized
strain in the matrix, scaled by the position vector x:

u
(
S′
)
= ε(m)x (12)

The strain within the inclusion ε( f ) is related to the matrix strain through the strain
concentration tensor T, which accounts for the discrepancy in mechanical properties be-
tween the inclusion and the matrix. This tensor is crucial for predicting the behavior of the
inclusion under applied strains:

ε( f ) = Tε(m) (13)
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Figure 1. Schematic illustrations for boundary conditions of the Mori–Tanaka approach: (a) displace-
ment; (b) traction.

The overall homogenized strain ε in the composite can then be expressed as a volume-
fraction-weighted sum of the matrix and fiber (inclusion) strains. This representation
acknowledges that the composite’s response to external loading is a composite effect of
both its constituents. From Equation (10), ε can be expressed as

ε = Vmε(m) + Vf ε( f ) = ε0 (14)

Substituting Equation (13) into Equation (14) and then rewriting yields

ε(m) =
(

VmI + Vf T
)−1

ε0 (15)

By substituting Equation (15) into Equation (13) again and associating the result with
the first of Equation (9), one can obtain

ε( f ) = T
(

VmI + Vf T
)−1

ε0 (16)

Comparing Equation (16) with Equation (9), it can be seen that the strain concentration
tensor, T, for the Mori–Tanaka method can be expressed by

A f = T
(

VmI + Vf T
)−1

(17)

From Equation (13) and the Mori–Tanaka premise, it can be inferred that the mean
matrix strain reflects the applied strain in the dilute scenario. This implies that T corre-
sponds to Eshelby’s solution for strain concentration, specifically T = Adilute

f . As a result,

the strain concentration tensor of the Mori–Tanaka method, AMT
f , can be expressed in terms

of Adilute
f :

AMT
f = Adilute

f

[
VmI + Vf Adilute

f

]−1
(18)

Finally, by substituting Equation (18) into Equation (7), one can obtain the effective
stiffness of the composite.

C∗ = C(m) + Vf

(
C( f ) − C(m)

)
Adilute

f

(
VmI + Vf Adilute

f

)−1
(19)

2.3. The Method of Cells

The micromechanics-based MOC model is dependent on the periodicity in the mi-
crostructure of composite materials. Specifically, it focuses on the regular arrangement of
reinforcing fibers [27]. This technique allows studying a single RUC instead of the entire
composite. It focuses on displacement and traction continuity, as well as equilibrium,
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at both intra- and inter-cell interfaces. Compared to previous methods, the MOC has
a wider range of applicability due to its ability to handle nonlinear behaviors, such as
damage or inelasticity, in composite constituents [29,30]. Using the model, a composite
with continuously reinforced fibers is considered as a doubly periodic array, which implies
infinite repetition in two directions. The RUC of the MOC consists of four subcells, which
are identified by centroids (indicated by red dots) representing one fiber and three matrix
points in Figure 2. These centroids indicate regions of influence rather than precise shapes.
It is important to note that the MOC eliminates corner stress risers by portraying fibers as
pseudo-circular for analytical purposes.
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Figure 2. Simplified components of composite with periodic array fibers and 2 × 2 architecture of
the MOC.

Using the MOC framework, the cross-sectional area of a fiber in a composite is defined
as h1l1, while h2 and l2 indicate the fiber spacing within the matrix. This structure enables
the analysis of an RUC as depicted in Figure 2, which comprises four subcells identified
by β, γ = 1, 2. In order to model this, four local coordinate systems

(
x1, x̄(β)

2 , x̄(γ)3

)
are

established, each centered at a subcell’s centroid. To achieve balanced composite behavior,
linear displacement expansion is applied relative to subcell center distances. This approach
utilizes first-order theory, with the displacement within each subcell then being expressed
as follows:

u(βγ)
i = w(βγ)

i (x) + x̄(β)
2 φ

(βγ)
i + x̄(γ)3 ψ

(βγ)
i i = 1, 2, 3 (20)

where w(βγ)
i (x) represents the displacements located at the center of subcell, and φ

(βγ)
i

and ψ
(βγ)
i denote the linear dependence of the displacements on local coordinates. The

displacement gradients are then correlated with strain components of subcells, employing
standard strain–displacement relationships:

ε
(βγ)
ij =

1
2

[
∂ju

(βγ)
i + ∂iu

(βγ)
j

]
i, j = 1, 2, 3 (21)

where ∂1 = ∂/∂x1, ∂2 = ∂/∂x̄(β)
2 , and ∂3 = ∂/∂x̄(γ)3
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By substituting Equation (21) into Equation (20), the strain field for a subcell is gener-
ated. The resulting strain values are

ε
(βγ)
11 = ∂

∂x1
w1

ε
(βγ)
22 = ϕ

(βγ)
2 ,

ε
(βγ)
33 = ψ

(βγ)
3 ,

2ε
(βγ)
23 = ϕ

(βγ)
3 + ψ

(βγ)
2 ,

2ε
(βγ)
13 = ψ

(βγ)
1 + ∂

∂x1
w3,

2ε
(βγ)
12 = ϕ

(βγ)
1 + ∂

∂x1
w2

(22)

In the case of orthotropic materials, subcell stresses are expressed in terms of their
corresponding strains by using Hooke’s law. The equation is written as follows:

σ
(βγ)
11

σ
(βγ)
22

σ
(βγ)
33

σ
(βγ)
23

σ
(βγ)
13

σ
(βγ)
12


=



C(βγ)
11 C(βγ)

12 C(βγ)
13 0 0 0

C(βγ)
12 C(βγ)

22 C(βγ)
23 0 0 0

C(βγ)
13 C(βγ)

23 C(βγ)
33 0 0 0

0 0 0 C(βγ)
44 0 0

0 0 0 0 C(βγ)
55 0

0 0 0 0 0 C(βγ)
66





ε
(βγ)
11

ε
(βγ)
22

ε
(βγ)
33

2ε
(βγ)
23

2ε
(βγ)
13

2ε
(βγ)
12


(23)

For constituents that exhibit transverse isotropy with 2–3 isotropy, the following rela-
tionships hold: C(βγ)

33 = C(βγ)
22 , C(βγ)

13 = C(βγ)
12 , C(βγ)

55 = C(βγ)
66 , and C(βγ)

44 = 1
2

(
C(βγ)

22 − C(βγ)
23

)
.

The effective stiffness tensor, C∗, can be expressed as follows:

C∗ =
1

(h1 + h2)(l1 + l2)

2

∑
β,γ=1

hβlγC(βγ)A(βγ) (24)

where A(βγ) denotes strain concentration tensors in the 2 × 2 subcells. hβlγ/(h1 + h2)(l1 + l2)
is an expression representing the volume fraction of each subcell.

In cases where the RUC and a fiber have equal dimensions (i.e., h1 = l1 and h2 = l2),
specific equalities apply to the elasticity constants: C∗

12 = C∗
13, C∗

22 = C∗
33, and C∗

55 = C∗
66.

This configuration results in six independent elastic constants, deviating from the five
typically associated with transverse isotropy. To achieve composite-level transverse isotropy
within the MOC, an averaging procedure is applied. To obtain the five effective Young’s
modulus values, an integration process is used to average the strain concentration tensor
A(βγ), taking into account the tensor’s rotation by an angle ξ around the x1 (fiber)-direction.
This method was described by Brayshaw [44] in work from which five effective Young’s
modulus values resulted. The averaging procedure is as follows:

^
A
(βγ)

=
2
π

∫ π/4

−π/4
A(βγ)

ξ dξ (25)

The components of A(βγ)
ξ are given by

A(βγ)
ijkl(ξ) = TipTjqTkrTls A(βγ)

pqrs (26)
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where in the coordinate transformation matrix, T, all indices run from 1 to 3. The matrix is
given by

T =

1 0 0
0 cos ξ sin ξ
0 −sin ξ cos ξ

 (27)

The expressions that result are

Â(βγ)
11 = A(βγ)

11

Â(βγ)
21 =

(
1
2 + 1

π

)
A(βγ)

21 +
(

1
2 − 1

π

)
A(βγ)

31 ,

Â(βγ)
31 =

(
1
2 − 1

π

)
A(βγ)

21 +
(

1
2 + 1

π

)
A(βγ)

31 ,

Â(βγ)
22 =

(
3
8 + 1

π

)
A(βγ)

22 +
(

3
8 − 1

π

)
A(βγ)

33 + 1
8

(
A(βγ)

23 + A(βγ)
32

)
+ 1

4 A(βγ)
44 ,

Â(βγ)
23 =

(
3
8 + 1

π

)
A(βγ)

23 +
(

3
8 − 1

π

)
A(βγ)

32 + 1
8

(
A(βγ)

22 + A(βγ)
33

)
− 1

4 A(βγ)
44 ,

Â(βγ)
33 =

(
3
8 + 1

π

)
A(βγ)

33 +
(

3
8 − 1

π

)
A(βγ)

22 + 1
8

(
A(βγ)

23 + A(βγ)
32

)
+ 1

4 A(βγ)
44 ,

Â(βγ)
44 = 1

4

(
A(βγ)

22 + A(βγ)
33

)
− 1

4

(
A(βγ)

23 + A(βγ)
32

)
+ 1

2 A(βγ)
44 ,

Â(βγ)
55 =

(
1
2 + 1

π

)
A(βγ)

55 +
(

1
2 − 1

π

)
A(βγ)

66

Â(βγ)
66 =

(
1
2 − 1

π

)
A(βγ)

55 +
(

1
2 + 1

π

)
A(βγ)

66

(28)

In Equation (24), the strain concentration tensor A(βγ) can be replaced by
^
A
(βγ)

. Finally,
the effective Young’s modulus values of a transversely isotropic unidirectional composite
are determined:

C∗ =
1

(h1 + h2)(l1 + l2)

2

∑
β,γ=1

hβlγC(βγ)
^
A
(βγ)

(29)

Equation (29) is expanded as

C∗ =
h1l1C(11)

^
A
(11)

+ h1l2C(12)
^
A
(12)

+ h2l1C(21)
^
A
(21)

+ h2l2C(22)
^
A
(22)

(h1 + h2)(l1 + l2)
(30)

As stated, when the parameters satisfy h1 = l1 and h2 = l2, Equation (30) provides
effective stiffness tensor components resulting in five independent elastic constants and
transversely isotropic behavior, C∗

12 = C∗
13, C∗

22 = C∗
33, C∗

55 = C∗
66, and C∗

44 = 1
2 (C

∗
22 − C∗

23).
This function calculates the micromechanics for the Method of Cells (MOC) and produces
both averaged and unaveraged results (MOCu).

3. Finite Element Analysis and Experiments
3.1. Representative Volume Element (RVE) Generation

In computational micromechanics, FEA is employed to predict the effective properties
of composite materials. The RVE model was established using Abaqus/Standard 2017
for discretization. It includes unidirectional cylindrical fibers periodically and stochasti-
cally distributed within a polymer matrix. This configuration is intended to simulate the
cross-section of a unidirectional composite laminate, which is consistent with previous
studies [45,46]. It is worth mentioning that in the FE simulation, the volume fraction
of fiber reinforcement was set to 62%. This value was determined by measuring speci-
mens taken from composite laminates made of CYCOM 5320-1 IM7 12K prepreg (Syensqo,
Brussels, Belgium) according to the ASTM specifications for testing of mechanical proper-
ties. According to the product datasheet [47], the diameter of the carbon fiber measures
5.2 µm. To ensure computational efficiency while capturing the fundamental effective
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elastic properties, a square RVE with a length of 58 µm was considered sufficient [45]. The
RVE with a volume fraction of 0.62 consists of 98 fibers evenly dispersed along each axis of
the plane of transverse isotropy. As shown in Figure 3, a typical RVE was extruded along
the axis of fibers with a thickness of w = 1.0 µm. The fibers were modeled using six-node
fully integrated wedge iso-parametric elements (C3D6), while the matrix was modeled
using eight-node fully integrated brick iso-parametric elements (C3D8), and eight-node
cohesive iso-parametric elements (COH3D8) were used at the fiber–matrix interface. An
element size of approximately 0.5 µm was chosen, assuming perfect and homogeneous
contact between the fibers and matrix, with no gaps at the interface. The impact of fiber
damage initiation mechanisms, such as fiber debonding and matrix shear yielding, on the
effective properties was not explored in that study.
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3.2. Periodic Boundary Conditions (PBCs)

PBCs are often used to minimize the impact of boundary constraints on the mechanical
behavior of the RVE model. This approach is generally preferred over iso-strain or iso-stress
methods because it can more accurately replicate the mechanical response within a finite
RVE size [48,49]. However, for the three types of boundary conditions, there will often be
convergence to the same result if the RVE is large enough, and PBCs are often considered
the optimal choice for achieving desired results in a given RVE size. In 3D RVEs, PBCs
can be expressed as three displacement vectors: u1, u2, and u3. These vectors relate the
relative displacement of a set of master nodes (typically M0, MX, MY, and MZ) located
on opposite faces. Therefore, u1 = uMX − uM0, u2 = uMY − uM0, and u3 = uMZ − uM0. In
order to maintain displacement continuity with neighboring RVEs, PBCs were applied
between opposite faces of the RVE, creating a pattern similar to a jigsaw puzzle, as shown
in Figure 4a. The PBCs can be expressed mathematically as follows:

u(L, y, z)− u(0, y, z) = uMX − uM0 = u1
u(x, H, z)− u(x, 0, z) = uMY − uM0 = u2
u(x, y, W)− u(x, y, 0) = uMZ − uM0 = u3

(31)
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Figure 4. Schematic illustrations of a typical RVE under periodic boundary conditions: (a) periodical
RVEs; (b) 3-dimensional; (3D) RVE model for the application of boundary conditions.

In the configuration shown in Figure 4b, it can be observed that the displacement
between two nodes on opposite faces is equal to the displacement of the corresponding
master node pair, where the direction of the master nodes and the node pairs are indicated
by the colors. To allow for the application of different loading scenarios, it is suggested that
displacements are applied to these master nodes. These displacements should represent
any physically uniform deformation scenario that can occur within the unit cell. It should
be noted that each master node aggregates the reaction forces exerted by all nodes on its
associated face. For instance, to induce a uniaxial tensile strain along the x-axis, one could
assign uMX = (δ, 0, 0)T , uMY =

(
0, uy, 0

)T , and uMZ = (0, 0, uz)
T . The values of uy and

uz can be determined from the homogenized traction forces on their respective faces at
x = L and y = H, as described in Equation (32) and in accordance with Equation (31).
The representative volume element (RVE) in Abaqus utilizes the *EQUATION keyword to
implement PBCs. ∫

Ωy tydΩ = 0 Ωy : y = H∫
Ωz tzdΩ = 0 Ωz : z = W

(32)

3.3. Constitutive Models of Material
3.3.1. Fiber

In periodic RVE analysis, carbon fibers are modeled as materials with linear elasticity
and transverse isotropy. The mechanical characteristics of the IM7 carbon fiber were derived
from the manufacturer’s datasheet and supplementation by previous studies [47,50–52].
The results are shown in Table 1. In this analysis, it was decided that nonlinear elasticity
and longitudinal fractures of the fibers would be intentionally excluded from consideration.

Table 1. Mechanical properties of IM7 carbon fiber.

Ef
1

[GPa]
Ef

2
[GPa]

Ef
3

[GPa] υ
f
12 υ

f
13 υ

f
23

Gf
12

[GPa]
Gf

13
[GPa]

Gf
23

[GPa]

262.2 19.5 19.5 0.30 0.30 0.46 18.9 18.9 7.8
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3.3.2. Epoxy Matrix

The elastoplastic behavior of polymer matrices can be significantly influenced by
conditions of hydrostatic stress. In the case of epoxy polymer matrices, it has been observed
that the yield behavior is pressure-dependent. This behavior can be explained by imple-
menting the linear Drucker–Prager model in Abaqus [53]. The Drucker–Prager model is a
plasticity model that describes the yield behavior of materials under pressure-dependent
conditions. The model assumes that the yield surface can be represented as a circular cone
in the principal stress space, with the apex located at the hydrostatic axis. The linear yield
surface of this model can be expressed as follows (Figure 5):

t − p · tanβ − d = 0 (33)

where t denotes the deviatoric stress, p is the hydrostatic pressure, β is the friction coefficient,
and d is the cohesion property. This yield surface is represented as a line in the p− t domain
with a slope tanβ and intersects the vertical axis at t( p = 0) = d. t is defined as

t =
1
2

q

[
1 +

1
K
−

(
1 − 1

K

)
·
(

r
q

)3
]

(34)
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The model is defined by two parameters: the friction angle β measures the slope of
the yield surface, while the dilatancy angle ψmeasures its expansion. The properties of the
epoxy polymer matrix used in the carbon-fiber-reinforced composites were obtained from
the literature [54–57], as shown in Table 2.

Table 2. Parameters of the linear Drucker–Prager model that characterize the 5320-1 epoxy matrix.

Em [GPa] υm β K Ψ

3.809 0.35 31o 0.89 14.28o
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3.3.3. Fiber–Matrix Interface

The fiber–matrix interface was modeled utilizing the cohesive zone model, which
is defined according to a mixed-mode bilinear traction–separation law [58–60]. There
are cohesive elements at the fiber–matrix interface that are subject to a quadratic stress
criterion [61]. The linear behavior ends at the onset of damage, which is dictated by a
maximum stress criterion expressed as(

⟨tn⟩
Nc

)2
+

(
ts

Sc

)2
+

(
tt

Sc

)2
= 1 (35)

where ⟨⟩ denote McCaulay brackets, which are defined as ⟨x⟩ = (x+|x|)/2. tn and ts
represent the normal traction and shear components of the traction vector. Both shear
directions, s and t, are assumed to be equal. Nc is normal strength and Sc is shear strength.
The cohesive elements exhibit linear elastic behavior with very high penalty stiffness, kc

nn
and kc

ss, until the damage regime initiates at δ0. Linear softening is commonly utilized
to represent stiffness degradation leading up to the complete failure of the material ( δu).
The dissipation of energy under mixed-mode loading is calculated using the Benzeggagh–
Kenane (BK) law [62]. The criterion is expressed as follows:

GC = GC
n +

(
GC

s − GC
n

){ 2Gs

Gn + 2Gs

}ηBK

(36)

where GC
n and GC

s represent the critical fracture energy in normal and shear directions,
respectively. Gn and Gs are the reciprocal work under mixed-mode propagation. ηBK
denotes the BK power exponent. Table 3 presents a summary of the parameters for FEA
that are specific to the IM7/5320-1 materials. This includes the properties of the fiber–matrix
interface, which have been sourced from the literature [63].

Table 3. Material properties of IM7/CYCOM 5320-1 fiber–matrix interface.

Nc
(MPa)

Sc
(MPa)

kc
nn = kc

ss
(GPa/µm)

Gc
nn

[J/m2]
Gc

s
[J/m2] ηBK

57 85 100 7 80 1.2

4. Experimental Results
4.1. Manufacturing Process for IM7/ 5320-1 Composites

The CYCOM 5320-1 IM7 12K composite material is a prepreg system that incorporates
toughened epoxy resin. It is engineered for primary structural component fabrication
via vacuum-bag-only (VBO) or out-of-autoclave (OOA) processes [64]. This system is
advantageous for prototyping that demands either low-cost tooling or VBO curing methods,
thanks to its ability to cure at lower temperatures. CYCOM 5320-1 enables the production
of autoclave-quality components with minimal porosity through vacuum-bag curing while
retaining the ease of use typical of standard prepregs. This system allows the provision
of mechanical properties similar to those of other toughened epoxy prepreg systems that
require autoclave curing, withstanding temperatures up to 350 ◦F (177 ◦C), subject to a post-
cure process at 350 ◦F (177 ◦C). Furthermore, it offers flexibility in cure cycle options [65].
Illustrated in Figure 6 is the bagging material setup with a standard VBO cure cycle and
fabrication method.
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4.2. Characterization of Unidirectional Carbon Fiber Composites

Determination of the fiber volume fraction in the carbon composite was executed
using gravimetric analysis as prescribed by the ASTM standards [66,67]. Three rectangular
samples, each with an area of 20 × 20 mm2, were cut from the composite laminate fabri-
cated for characterization of fiber volume fraction. The density of the composite samples
was measured using the buoyancy method based on Archimedes’ principle, while the
fiber weight fraction of the samples was determined using the resin burn-off technique.
The fiber volume fraction was calculated using formulas specified by ASTM standards,
with the densities of the carbon fiber and matrix noted as 1.78 g/cm3 and 1.31 g/cm3,
respectively [47,64]. The resulting fiber volume fraction was determined as 62 ± 0.6%, with
a porosity of 1.9 ± 0.2%.

The CFRP plate was machined using a diamond wheel cutter (KCA, Gimhae, Korea)
and the dimensions are shown in Figure 7. Tensile tests were conducted on composites
in accordance with ASTM D3039/D3039M-17 standards, with five specimens per test
case [68,69]. Composite material testing was performed using a Instron 5985 universal
testing machine (Instron, Norwood MA, USA) equipped with a 250 kN load cell. The
crosshead speed was set at a uniform 2 mm/min for all specimens. Strain was measured
using 5 mm bi-axial strain gauges (Koywa, Tokyo, Japan) with a 2.1 gauge factor placed
at the center of the test specimens. The properties of the in-plane shear properties for
the composites were taken from previous research [70]. The mechanical test results for
IM7/5320-1 composites (Vf = 62%) were compared to those of micromechanical models.
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5. Comparison of Predicted Effective Properties for the Micromechanics Models

In this section, the results of four closed micromechanics models—Voigt, Reuss ap-
proximation, Mori–Tanaka, and MOC—are analyzed together with the results of FEA. The
four analytical closed-form micromechanics models were implemented using MATLAB
code (MATLAB R2023a). The effective properties of the composites were assessed through
a computational homogenization scheme that utilized PBCs for each representative volume
element (RVE). The simulation time of the RVE model was about 120 s for the baseline
case using six cores with an Intel Core™ i5-10400 @ 2.90 GHz (Intel, Santa Clara CA,
USA). The constitutive matrix was obtained by post-processing element-wise stress and
volume, which were then converted to the effective elastic Young’s modulus. Equations
for calculating the effective properties of unidirectional fiber-reinforced composites with
transverse isotropy are described in Appendix B. Lastly, the two most significant results of
the micromechanics models are analyzed as follows:

1. Four analytical micromechanical models and finite element analysis are utilized to
compare the predicted effective properties of an IM7/5320-1 unidirectional CFRP
with a fiber volume fraction of 0.62.

2. The effective properties of all the micromechanics models are compared for all fiber
volume fractions ranging from 0.0 to 1.0.

5.1. Comparison of the Predicted Effective Properties of CFRP with a Fiber Volume Fraction of 62%

In this study, a comparison of the effective properties of a unidirectional IM7/5320-1
CFRP with a fiber volume fraction of 0.62 is conducted. The results were obtained from
analytical micromechanics-based models, FEA, experiments, and the company’s technical
datasheet (TDS) [64], as shown in Figure 8. The results of the tests performed in Section 4.2
are compared against the lamina mechanical properties of CFRP, which are represented by
the dotted horizontal line. All models, with the exception of the Reuss model, have been
found to accurately predict the longitudinal modulus of elasticity. This is supported by
both the finite element and experimental results. In the graph, MT stands for Mori–Tanaka.
The term ‘MOC’ refers to results obtained through averaging to determine the effective
properties for transverse isotropy, while unaveraged predictions are referred to as ‘MOCu’.
It is clear from the results that all micromechanical models, except the Voigt and Reuss
models, show relatively good agreement.
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Figure 8. Bar charts for comparison of predicted effective properties of unidirectional IM7/5320-1
CFRP with fiber volume fraction of 0.62 by different micromechanical models: (a) longitudinal
Young’s modulus, E1; (b) transverse Young’s modulus, E2; (c) shear modulus, G12; (d) shear modulus,
G23; (e) Poisson’s ratio, υ12; (f) Poisson’s ratio, υ23.

5.2. Comparison of the Predicted Effective Properties of CFRP as a Function of Fiber Volume
Fractions

This section presents a comparison of the predicted effective properties of
micromechanics-based models for unidirectional IM7/5320-1 composites for the entire
range of fiber volume fractions. The effective properties were analyzed using 3D RVE
models generated at different volume fractions ranging from 10% to 70%, as shown in
Figure 9, with 62% of the data obtained from experimental results.
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Figure 9. Configuration of RVE models with eight different fiber volume fractions.

Figure 10 presents a comparison of the predicted effective properties of unidirectional
IM7/5320-1 CFRP using different micromechanical models as a function of volume fraction.
It is worth noting that, at a volume fraction of 0, the effective properties are equivalent
to those of the matrix material, whereas at a volume fraction of 1, the effective properties
are equivalent to those of the fiber material. Figure 10a,b present the longitudinal Young’s
modulus and transverse Young’s modulus predicted by analytical micromechanical models
and FEA. It is worth noting that the Voigt and Reuss approaches provide upper and
lower limits for the composite stiffness. Additionally, all methods, except for Reuss,
predict a linear relationship between the longitudinal Young’s modulus, E1, and fiber
volume fraction. The Reuss prediction of E1 exhibits a significant deviation from the other
methods in displaying a highly nonlinear relationship with volume fraction. Furthermore,
there is a noticeable contrast in the plots of transverse Young’s modulus, E2, between
the micromechanical models, as illustrated in Figure 10b. It is worth noting that the
Mori–Tanaka and MOC predictions are in close alignment for all volume fraction values.
It has been observed that MOCu tends to overpredict E2 in comparison to other models,
particularly for fiber volume fractions greater than 0.2.

Polymers 2024, 16, x FOR PEER REVIEW 16 of 23 
 

 

 

Figure 9. Configuration of RVE models with eight different fiber volume fractions. 

Figure 10 presents a comparison of the predicted effective properties of unidirec-

tional IM7/5320-1 CFRP using different micromechanical models as a function of volume 

fraction. It is worth noting that, at a volume fraction of 0, the effective properties are equiv-

alent to those of the matrix material, whereas at a volume fraction of 1, the effective prop-

erties are equivalent to those of the fiber material. Figure 10a and Figure 10b present the 

longitudinal Young’s modulus and transverse Young’s modulus predicted by analytical 

micromechanical models and FEA. It is worth noting that the Voigt and Reuss approaches 

provide upper and lower limits for the composite stiffness. Additionally, all methods, ex-

cept for Reuss, predict a linear relationship between the longitudinal Young’s modulus, 

�1, and fiber volume fraction. The Reuss prediction of �1 exhibits a significant deviation 

from the other methods in displaying a highly nonlinear relationship with volume frac-

tion. Furthermore, there is a noticeable contrast in the plots of transverse Young’s modu-

lus, E2, between the micromechanical models, as illustrated in Figure 10b. It is worth not-

ing that the Mori–Tanaka and MOC predictions are in close alignment for all volume frac-

tion values. It has been observed that MOCu tends to overpredict E2 in comparison to 

other models, particularly for fiber volume fractions greater than 0.2. 

  
(a) (b) 

Figure 10. Cont.



Polymers 2024, 16, 1094 17 of 23

Polymers 2024, 16, x FOR PEER REVIEW 17 of 23 
 

 

  
(c) (d) 

  
(e) (f) 

Figure 10. Comparison of predicted effective properties of unidirectional IM7/5320-1 CFRP as a 

function of volume fraction by different micromechanical models: (a) longitudinal Young’s modu-

lus, ��; (b) transverse Young’s modulus, ��; (c) shear modulus, ���; (d) shear modulus, ���; (e) 

Poisson’s ratio, ���; (f) Poisson’s ratio, ���. 

With respect to the effective shear modulus predictions presented in Figure 10b and 

c, it is worth noting that both the Mori–Tanaka and MOC predictions exhibit a high degree 

of agreement for both micromechanical models. Additionally, MOCu is identical to MOC, 

as the averaging process does not impact shear modulus �12. Similarly, for �23 (Figure 

10d), the Mori–Tanaka and MOC exhibit good agreement with IM7/5320-1 for volume 

fractions ranging from 0.6 to 0.9. The predictions for �23  using MOCu align with the 

Reuss predictions due to the MOCu 2-3 shear iso-stress condition [29]. 

Figure 10e and f show that the predictions for the Poisson’s ratio deviate from the 

traditional Voigt and Reuss bounds, indicating that these bounds are not universally ap-

plicable. In particular, the averaging procedure used in the MOC methodology has no 

effect on the Poisson’s ratio, �12 , yielding consistent predictions for the Mori–Tanaka, 

MOC, and MOCu models. While there are noticeable differences in the experimental re-

sults, all are in excellent agreement with the FEA. Conversely, the effect of MOC averaging 

on the Poisson’s ratio �23  is pronounced. While the Mori–Tanaka, MOC, and MOCu 

models share certain predictive similarities, significant discrepancies in both values and 

trends are evident for all results. Importantly, these discrepancies span the entire range of 

volume fractions, underscoring the complex nature of Poisson’s ratio in composites. 

6. Discussion 

The experimental results presented in Figure 10 suggest that the properties of com-

posite materials can be influenced by the fiber volume fraction. It is worth noting that 

none of the considered methods achieves a perfect correlation between all material 

Figure 10. Comparison of predicted effective properties of unidirectional IM7/5320-1 CFRP as a
function of volume fraction by different micromechanical models: (a) longitudinal Young’s modulus,
E1; (b) transverse Young’s modulus, E2; (c) shear modulus, G12; (d) shear modulus, G23; (e) Poisson’s
ratio, υ12; (f) Poisson’s ratio, υ23.

With respect to the effective shear modulus predictions presented in Figure 10b,c, it
is worth noting that both the Mori–Tanaka and MOC predictions exhibit a high degree of
agreement for both micromechanical models. Additionally, MOCu is identical to MOC, as
the averaging process does not impact shear modulus G12. Similarly, for G23 (Figure 10d),
the Mori–Tanaka and MOC exhibit good agreement with IM7/5320-1 for volume frac-
tions ranging from 0.6 to 0.9. The predictions for G23 using MOCu align with the Reuss
predictions due to the MOCu 2-3 shear iso-stress condition [29].

Figure 10e,f show that the predictions for the Poisson’s ratio deviate from the tradi-
tional Voigt and Reuss bounds, indicating that these bounds are not universally applicable.
In particular, the averaging procedure used in the MOC methodology has no effect on
the Poisson’s ratio, υ12, yielding consistent predictions for the Mori–Tanaka, MOC, and
MOCu models. While there are noticeable differences in the experimental results, all are in
excellent agreement with the FEA. Conversely, the effect of MOC averaging on the Poisson’s
ratio υ23 is pronounced. While the Mori–Tanaka, MOC, and MOCu models share certain
predictive similarities, significant discrepancies in both values and trends are evident for
all results. Importantly, these discrepancies span the entire range of volume fractions,
underscoring the complex nature of Poisson’s ratio in composites.

6. Discussion

The experimental results presented in Figure 10 suggest that the properties of compos-
ite materials can be influenced by the fiber volume fraction. It is worth noting that none
of the considered methods achieves a perfect correlation between all material properties
and the fiber volume fraction parameter. This discrepancy can be attributed to various
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factors, such as potential inaccuracies in the measured properties of CFRPs or inherent
properties of its constituents, or limitations inherent in the theoretical and FEA approaches
used in micromechanics methods. While micromechanics theories provide critical insights,
achieving an exact match of all layer material properties for a given fiber volume fraction
remains a challenging task. In the context of isotropic constituent materials, the use of
Voigt and Reuss models is a conventional approach for property prediction. However,
they are known to provide a wider range of results for both longitudinal and transverse
moduli compared to other micromechanical models. According to the analysis shown in
Figure 10, the estimates provided by the Mori–Tanaka and Method of Cells (MOC) methods
fall within an acceptable range of variance. Longitudinal evaluations and predictions of
Young’s modulus typically have minimal uncertainties that apply to both materials and
constituents. The micromechanics-based models of this investigation provide valuable
insights for elucidating and predicting the effective properties of composite materials,
which is critical for their integration into technology-driven industries.

7. Conclusions

This study assesses various micromechanical models for predicting the effective prop-
erties of carbon-fiber-reinforced plastic (CFRP) composites through micromechanics-based
homogenization. The results are summarized as follows:

(1) An overview of commonly used micromechanics models for predicting the effective
mechanical properties of composite materials is presented in this paper, outlining
the foundational theories behind four analytical closed-form micromechanics models:
those for the Voigt, Reuss, and Mori–Tanaka approaches as well as the MOC. The
Voigt and Reuss models are simple and assume uniform stress or strain, making them
less computationally intensive but less accurate for complex microstructures. The
Mori–Tanaka model, on the other hand, introduces a moderate increase in complexity
by incorporating interactions between inclusions and the matrix, while still remaining
within a manageable computational framework. The MOC is an approach that takes
into account detailed microstructural interactions and nonlinear material behavior,
which can make it more computationally consuming and require more detailed
modeling of the microstructure. These models serve as the theoretical basis for
determining the effective mechanical properties of composite materials.

(2) This study presents a method for using finite element analysis (FEA) with a repre-
sentative volume element (RVE) model to analyze computational micromechanics.
The model consists of unidirectional cylindrical fibers periodically distributed within
a polymer matrix, with the goal of replicating the cross-section of a unidirectional
composite laminate, which is in line with established research in the field.

(3) Four analytical micromechanical models, finite element analysis, and experimental
results were utilized to compare the predicted effective properties of an IM7/5320-1
unidirectional CFRP. Additionally, the variation in effective properties was examined
across all micromechanics models spanning the entire range of volume fractions.
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Appendix A Eshelby Equivalent Inclusion Method: Dilute Dispersion Model

This appendix provides a detailed explanation of the Eshelby equivalent inclusion
method for the case of a dilute distribution of inclusions within an infinite homogeneous
matrix. The method is important for understanding the mechanical behavior of composite
materials in which the matrix is reinforced by dispersed inclusions of different material
properties. The ellipsoidal domain Ω is composed of identical material and is encased
by an infinite homogeneous matrix with elastic stiffness C(m). This passage discusses the
introduction of an eigenstrain ε∗ which was first conceptualized by Eshelby. The eigenstrain
is a strain that is devoid of stress and is similar to thermal strain. It is important to note
that the encasing matrix hinders the inherent shape transformation of domain Ω, resulting
in internal stress. Additionally, the total strain within domain Ω is represented as ε and is
the sum of eigenstrain and elastic strain. The elastic strain in the matrix material conforms
to Hooke’s law, which is expressed as

σ = C(m)(ε − ε∗) in Ω (A1)

According to Eshelby [42,43], if there is a uniform eigenstrain ε∗ within the ellipsoidal
domain Ω, it will result in a uniform total strain ε. This validates the following linear
transformation:

ε = Pε∗ in Ω (A2)

where the components of the Eshelby tensor, denoted by P, depend on the shape of the
inclusion and the material attributes of the body. The stress within the ellipsoidal domain
Ω with eigenstrain ε∗ is now subject to a uniform displacement boundary condition
ui(S) = ε0

ijxj at infinity. Given that domain Ω shares the matrix material, the stress within
it is expressed as

σ = C(m)
(

ε0 + ε − ε∗
)

in Ω (A3)

where σ0 = C(m)ε0. Consider substituting the ellipsoidal domain Ω, with stiffness tensor
C(m), for an “equivalent” inclusion material with stiffness C( f ), subjected to identical dis-
placement boundary conditions and total strain ε. The stress in the domain Ω then becomes

σ( f ) = C( f )
(

ε0 + ε
)

in Ω (A4)

The role of the eigenstrain is to ensure stress equivalency in domain Ω, whether filled
by the matrix or the equivalent fiber such that σ( f ) = σ. Setting Equations (A3) and (A4)
equal gives

C(m)
(

ε0 + ε − ε∗
)
= C( f )

(
ε0 + ε

)
(A5)

Equation (A4) implies that
(
ε0 + ε

)
= ε̄( f ), and then it follows from Equation (A5) that

C(m)ε∗ =
(

C(m) − C( f )
)

ε( f ) (A6)

Combining Equations (A4) and (A2), the strain in the inclusion is

ε( f ) = ε0 + ε = ε0 + Pε∗ (A7)

which can be reformulated as
ε∗ = P−1

(
ε̄( f ) − ε0

)
(A8)
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Substituting Equation (A8) into Equation (A6) results in

C(m)P−1
(

ε( f ) − ε0
)
=

(
C(m) − C( f )

)
ε( f ) (A9)

or [
C(m)P−1 −

(
C(m) − C( f )

)]
ε( f ) = C(m)P−1ε0 (A10)

By multiplying both sides Equation (A10) by PC(m)−1, one can obtain[
I − PC(m)−1

(
C(m) − C( f )

)]
ε( f ) = ε0 (A11)

Comparing Equation (A11) to ε( f ) = A f ε, utilizing the average strain theorem, it
becomes evident that the strain concentration tensor, A f , for an ellipsoidal inclusion within
an infinite matrix is

Adilute
f ε( f ) = ε0 where Adilute

f =
[
I − PC]−1 (A12)

where
C = C(m)−1

(
C(m) − C( f )

)
(A13)

This solution for the ellipsoidal inclusion lays the groundwork for deriving various
special cases of the Eshelby tensor for shapes like spheres and cylinders. Mura [71] has
articulated these in tensorial notation. For example, in a spherical inclusion, the nonzero
terms of the Eshelby tensor, P, in contracted notation are

P11 = P22 = P33 = (7−5vm)
[15(1−vm)]

P12 = P23 = P31 = P13 = P21 = P32 = (5vm−1)
[15(1−vm)]

P44 = P55 = P66 = 2(4−5vm)
[15(1−vm)]

(A14)

For a cylindrical inclusion that extends infinitely in the longitudinal direction within
composites, the non-zero components of the Eshelby tensor P are expressed as follows

P22 = P33 =
[ 3

4+
1
2 (1−2vm)]

[2(1−vm)]

P12 = P13 = P21 = P31 = vm
[2(1−vm)]

P23 = P32 =
[ 1

4−
1
2 (1−2vm)]

[2(1−vm)]

P44 =
2[ 1

4+
1
2 (1−2vm)]

[2(1−vm)]

P55 = P66 = 2
4

(A15)

where vm represents the Poisson’s ratio of the matrix. Furthermore, the factor of 2 in the
contracted notation P shear components above comes from combining the two appropriate
tensorial shear terms given by Mura [71], i.e., P44 = P2323 + P2332, P55 = P1313 + P1331,
P66 = P1212 + P1221.

Appendix B Determination of Effective Properties

In a unidirectional fiber-reinforced composite within a matrix, subjected to uniform
stress or strain, the composite’s overall stiffness is represented by the following equation:

σij = Cijkl·εkl (A16)

or
εkl = Sijkl·σij (A17)
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where Cijkl and Sijkl =
[
Cijkl

]−1 are stiffness tensor and compliance tensor, respectively.
For composite materials, the following engineering constants are related due to isotropy in
the plane perpendicular to the fiber direction:

E22 = E33, G13 = G12, ν12 = ν13, (A18)

The compliance matrix of composites with transversely isotropy properties can be
expressed as



ε11

ε22

ε33

γ23

γ13

γ12


=



1
E11

− ν12
E11

− ν12
E11

0 0 0

− ν12
E11

1
E22

− ν2z
E22

0 0 0

− ν12
E11

− ν23
E22

1
E22

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G12

0

0 0 0 0 0 2(1+ν12)
E11





σ11

σ22

σ33

σ23

σ13

σ12


(A19)

The mechanical behavior of composite materials is typically characterized by several
effective mechanical properties, including the elastic modulus, E11 and E22 for the longitu-
dinal and transverse directions, respectively, the effective shear modulus, G12 and G23, and
the Poisson’s ratios, ν12 and ν23, which are fundamental for defining the mechanical behav-
ior of composite materials. Precisely determining these properties is crucial for accurately
calculating the stiffness matrix of the composite material.
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