Molded Plywood with Proportions of Beech Bark in Adhesive Mixtures: Production on an Industrial Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Statistical Analysis
3. Results and Discussion
3.1. Density of Plywood Panels Produced under Industrial Conditions
3.2. Bending Strength of Plywood Panels
3.3. Bonding Quality of Plywood Panels
3.4. Thickness Swelling and Water Absorption of Plywood Panels
3.5. Formaldehyde Emissions from Plywood Panels: Laboratory Tests at the Technical University in Zvolen
3.6. Formaldehyde Emissions from Plywood Panels: Official Authorized Test in an Accredited Foreign Independent Laboratory
- According to the German Chemikalien-Verbotsverordnung standards for wood-based materials (enforcement dated 1 January 2020), the resulting value was 0.092 ppm. The limit is up to 0.1 ppm (the concentration of the EN 717-1 test was multiplied by a factor of 2) [60].
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Youngquist, J.A. Wood based composites and panel products. In Wood Handbook—Wood as an Engineering Material; General Technical Report, FPL–GTR:113; Forest Product Laboratory: Madison, WI, USA, 1999; Chapter 10. [Google Scholar]
- Sellers, T. Plywood and Adhesive Technology; CRC Press: Boca Raton, FL, USA, 1985; ISBN 978-0-8247-7407-3. [Google Scholar]
- Heebink, B.G. Fluid-Pressure Molding of Plywood; Report No. R1624; US FS Forest Products Laboratory: Madison, WI, USA, 1953; 25p.
- Nickum, C.C. The Implication of Molded Plywood. Plan B Pap. 1962, 195, 39. Available online: https://thekeep.eiu.edu/plan_b/195 (accessed on 22 February 2024).
- Obst, J. Hospodárná Výroba Překližek; Průmyslové Vydavatelství: Praha, Czech Republic, 1952; 72p. [Google Scholar]
- Irle, M.A.; Barbu, M.C.; Réh, R.; Bergland, L.; Rowell, R.M. Wood composites. In Handbook of Wood Chemistry and Wood Composites; CRC Press: Boca Raton, FL, USA, 2012; pp. 321–411. ISBN 978-1-4398-5380-1. [Google Scholar]
- Available online: https://www.futuremarketinsights.com (accessed on 2 May 2023).
- Available online: https://www.expertmarketresearch.com/reports/plywood-market (accessed on 2 May 2023).
- Available online: https://www.imarcgroup.com/plywood-market (accessed on 3 May 2023).
- Available online: https://www.marketsandmarkets.com/Market-Reports/plywood-market-233250253.html (accessed on 3 May 2023).
- Available online: https://www.globenewswire.com/news-release/2022/01/20/2370402/0/en/Plywood-Market-Outlook-European-Import-Prices-Spike-26-IndexBox.html (accessed on 3 May 2023).
- Drápela, J. Výroba Nábytku—Technologie; SNTL—Státní Nakladatelství Technické Literatury: Praha, Czech Republic, 1980; 486p. [Google Scholar]
- Available online: https://www.plycollection.com/modern-school-chairs-plycollection/ (accessed on 4 May 2023).
- Available online: https://mdd.eu/en/seating/new-school-chair/ (accessed on 4 May 2023).
- Pizzi, A. Wood Adhesives: Chemistry and Technology; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Barbu, M.C.; Irle, M.; Réh, R. Wood Based Composites, Chapter 1. In Research Developments in Wood Engineering and Technology; Aguilera, A., Davim, P., Eds.; Engineering Science Reference; IGI Global: Hershey, PA, USA, 2014; pp. 1–45. [Google Scholar]
- Dunky, M. Adhesives in the wood industry. In Handbook of Adhesive Technology, 2nd ed; Pizzi, A., Mittal, K.L., Eds.; Marcel Dekker Inc.: New York, NY, USA, 2003; p. 71. [Google Scholar] [CrossRef]
- Frihart, C.R.; Hunt, C.G. Adhesives with wood materials, bond formation and performance. In Wood Handbook—Wood as an Engineering Material; General Technical Report FPL-GTR-190; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2010; Chapter 10. [Google Scholar]
- Kristak, L.; Antov, P.; Bekhta, P.; Lubis, M.A.R.; Iswanto, A.H.; Reh, R.; Sedliacik, J.; Savov, V.; Taghiyari, H.R.; Papadopoulos, A.N.; et al. Recent progress in ultra-low formaldehyde emitting adhesive systems and formaldehyde scavengers in wood-based panels: A review. Wood Mater. Sci. Eng. 2023, 18, 763–782. [Google Scholar] [CrossRef]
- Barbu, M.C.; Lohninger, Y.; Hofmann, S.; Kain, G.; Petutschnigg, A.; Tudor, E.M. Larch bark as a formaldehyde scavenger in thermal insulation panels. Polymers 2020, 12, 2632. [Google Scholar] [CrossRef] [PubMed]
- Réh, R.; Igaz, R.; Krišťák, Ľ.; Ružiak, I.; Gajtanska, M.; Božíková, M.; Kučerka, M. Functionality of beech bark in adhesive mixtures used in plywood and its effect on the stability associated with material systems. Materials 2019, 12, 1298. [Google Scholar] [CrossRef] [PubMed]
- Ružiak, I.; Igaz, R.; Krišťák, Ľ.; Réh, R.; Mitterpach, J.; Očkajová, A.; Kučerka, M. Influence of ureaformaldehyde adhesive modification with beech bark on chosen properties of plywood. BioResources 2017, 12, 3250–3264. [Google Scholar] [CrossRef]
- Available online: https://www.hermanmiller.com/en_lac/products/seating/side-chairs/eames-molded-plywood-chairs/design-story/ (accessed on 10 May 2023).
- Available online: https://www.plycollection.com/about/ (accessed on 12 May 2023).
- Available online: https://decor-plywood.com/en/plywood.html (accessed on 12 May 2023).
- Available online: https://licit.eu (accessed on 8 May 2023).
- Račko, V.; Čunderlík, I. Thickness and bark proportion of selected hardwood logs. Acta Fac. Xylologiae Zvolen 2007, 49, 19–25. [Google Scholar]
- Reh, R.; Kristak, L.; Sedliacik, J.; Bekhta, P.; Bozikova, M.; Kunecova, D.; Vozarova, V.; Tudor, E.M.; Antov, P.; Savov, V. Utilization of Birch Bark as an Eco-Friendly Filler in Urea-Formaldehyde Adhesives for Plywood Manufacturing. Polymers 2021, 13, 511. [Google Scholar] [CrossRef]
- Oh, Y.S. Evaluation of Chestnut Shell and Coffee Waste with Phenol-Formaldehyde Resin for Plywood Filler X1—Avaliação de Cascas de Castanha e Resíduos de Café Como Material de Enchimento Do Adesivo Fenol-Formaldeído Para a Produção de Compensados. Ciência Florest 2021, 31, 1991–2001. [Google Scholar] [CrossRef]
- Cetin, N.S.; Ozmen, N.; Narlioglu, N.; Cavus, V. Effect of bark flour on the mechanical properties of HDPE composites. J. Mater. Sci. 2014, 1, 23–32. [Google Scholar]
- Aydin, I.; Demirkir, C.; Colak, S.; Colakoglu, G. Utilization of bark flours as additive in plywood manufacturing. Eur. J. Wood Wood Prod. 2017, 75, 63–69. [Google Scholar] [CrossRef]
- Tudor, E.M.; Barbu, M.C.; Petutschnigg, A.; Reh, R. Added-value for wood bark as a coating layer for flooring tiles. J. Clean. Prod. 2018, 170, 1354–1360. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Mo, H.; Xie, E.; Fang, J.; Gan, W. Current Utilization of Waste Biomass as Filler for Wood Adhesives: A Review. J. Ind. Eng. Chem. 2022, 115, 48–61. [Google Scholar] [CrossRef]
- Sanghvi, M.R.; Tambare, O.H.; More, A.P. Performance of Various Fillers in Adhesives Applications: A Review. Polym. Bull. 2022, 79, 10491–10553. [Google Scholar] [CrossRef]
- Kawalerczyk, J.; Dziurka, D.; Mirski, R.; Trociński, A. Flour Fillers with Urea-Formaldehyde Resin in Plywood. BioResources 2019, 14, 6727–6735. [Google Scholar] [CrossRef]
- Mohamed Abdoul-Latif, F.; El Montassir, Z.; Ainane, A.; Gharby, S.; Sakar, E.H.; Merito, A.; Mohamed, J.; Ainane, T. Use of Thymus Plants as an Ecological Filler in Urea-Formaldehyde Adhesives Intended for Bonding Plywood. Processes 2022, 10, 2209. [Google Scholar] [CrossRef]
- EN 314-1; Plywood—Bonding Quality—Part 1: Test Methods. European Committee for Standardization: Brussels, Belgium, 2004.
- EN 310; Wood-Based Panels. Determination of Modulus of Elasticity in Bending and of Bending Strength. European Committee for Standardization: Brussels, Belgium, 1993.
- EN 717-1; Wood Based Panels—Determination of Formaldehyde Release—Part 1: Formaldehyde Emission by the Chamber Method. European Committee for Standardization: Brussels, Belgium, 2004.
- Samek, J. Velkolplošné Dřevní Materiály. In Dřevařská Příručka I; Kafka, E., Ed.; SNTL—Nakladatelství Technické Literatury: Praha, Czech Republic, 1989; pp. 163–208. ISBN 80-03-00009-2. [Google Scholar]
- Available online: https://apawood-europe.org/official-guidelines-3/apa-plywood-main-eu-standards/performance-characteristics-standards/ (accessed on 15 May 2023).
- Available online: https://www.engineeringtoolbox.com/timber-mechanical-properties-d_1789.html (accessed on 15 May 2023).
- Available online: https://www.euroguide.org/structural-timber-design/plywood.html (accessed on 15 May 2023).
- Jeżo, A.; Wronka, A.; Dębiński, A.; Kristak, L.; Reh, R.; Rizhikovs, J.; Kowaluk, G. Influence of Upcycled Post-Treatment Bark Biomass Addition to the Binder on Produced Plywood Properties. Forests 2023, 14, 110. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, H.; Wang, S.; Wang, M.; Lu, X. Study of compressed plywood structure and density variances. Wood Res. 2013, 58, 663–670. [Google Scholar]
- Jorda, J.; Kain, G.; Barbu, M.-C.; Haupt, M.; Krišťák, Ľ. Investigation of 3D-Moldability of Flax Fiber Reinforced Beech Plywood. Polymers 2020, 12, 2852. [Google Scholar] [CrossRef]
- Oikawa, E.; Umeda, H. Design Development of Molded Plywood Stool. In Proceedings of the Annual (61st) Conference of Japanese Society for the Science of Design; Japanese Society for the Science of Design: Tokyo, Japan, 2014; p. 216. [Google Scholar]
- Zamirian, L. Process Improvement for Plywood Product Manufacturing Using Design of Experiments. Master’s Thesis, Concordia University, Montreal, QU, Canada, 2020; 88p. [Google Scholar]
- Graham, P.H. Commercial molded plywood methods much improved. Veneers Plywood 1950, 44, 12–14. [Google Scholar]
- Sandeep, C.; Sirish, N. In Situ Investigation of the Kinematics of Ply Interfaces During Composite Manufacturing. J. Manuf. Sci. Eng. 2021, 143, 021006. [Google Scholar]
- Matsuda, S.; Oshima, K.; Hosaka, M.; Satokawa, S. Effect of annealing on the separation of resin from CFRP cross-ply laminate via electrical treatment. Compos. Struct. 2020, 234, 111665. [Google Scholar] [CrossRef]
- Bekhta, P.; Salca, E.A.; Lunguleasa, A. Some properties of plywood panels manufactured from combinations of thermally densified and non-densified veneers of different thicknesses in one structure. J. Build. Eng. 2020, 29, 101116. [Google Scholar] [CrossRef]
- Bekhta, P.; Hiziroglu, S.; Shepelyuk, O. Properties of plywood manufactured from compressed veneer as building material. Mater. Des. 2009, 30, 947–953. [Google Scholar] [CrossRef]
- Talaei, A.; Ashori, A.; Heydari, V. A Comparative Study on the Mechanical and Physical Properties of Plywood Panels Prepared by Chitosan as Bio-Adhesive. J. Polym. Environ. 2022, 30, 4263–4270. [Google Scholar] [CrossRef]
- Auriga, R.; Gumowska, A.; Szymanowski, K.; Wronka, A.; Robles, E.; Ocipka, P.; Kowaluk, G. Performance properties of plywood composites reinforced with carbon fibers. Compos. Struct. 2020, 248, 112533. [Google Scholar] [CrossRef]
- Kamke, F.; Lee, J. Adhesive penetration in wood—A review. Wood Fiber Sci. 2007, 39, 205–220. [Google Scholar]
- Barboutis, I.; Kamperidou, V. Properties of two different thicknesses 3-ply plywood of tree-of-heaven veneers. In Proceedings of the 22nd International Scientific Conference Wood Is Good—EU Preaccession Challenges of the Sector, Proceedings, Zagreb, Croatia, 21 October 2011; pp. 9–16, ISBN 978-953-292-022-2. [Google Scholar]
- Benthien, J.T.; Ohlmeyer, M. Thickness swelling and water absorption of WPC after immersion in cold and boiling water. Eur. J. Wood Prod. 2013, 71, 437–442. [Google Scholar] [CrossRef]
- EN 636:2012+A1:2015; Plywood—Specifications. European Committee for Standardization: Brussels, Belgium, 2015.
- Available online: https://www.umweltbundesamt.de/en/formaldehyde (accessed on 19 May 2023).
- Tudor, E.M.; Barbu, M.C.; Petutschnigg, A.; Réh, R.; Krišťák, Ľ. Analysis of Larch-Bark Capacity for Formaldehyde Removal in Wood Adhesives. Int. J. Environ. Res. Public Health 2020, 17, 764. [Google Scholar] [CrossRef]
- Van Der Klashorst, G.H.; Strauss, H.F. Polymerization of lignin model compounds with formaldehyde in acidic aqueous medium. J. Polym. Sci. Part A Polym. Chem. 1986, 24, 2143–2169. [Google Scholar] [CrossRef]
- Bekhta, P.; Sedliačik, J.; Noshchenko, G.; Kačík, F.; Bekhta, N. Characteristics of beech bark and its effect on properties of UF adhesive and on bonding strength and formaldehyde emission of plywood panels. Eur. J. Wood Wood Pract. 2021, 79, 423–433. [Google Scholar] [CrossRef]
- Available online: https://ilac.org/publications-and-resources/ilac-guidance-series/ (accessed on 22 February 2024).
Variant Label | Filler | Filler Content (pbw 1 per 100 pbw of Solid Resin) | Pressing Temperature (°C) | Pressing Time (min) |
---|---|---|---|---|
REF 10 flat plywood | Wheat flour | 10 | 110 | 5 |
BB 10 flat plywood | Beech bark | 10 | 110 | 5 |
REF 10 molded plywood | Wheat flour | 10 | 110 | 5 |
BB 10 molded plywood | Beech bark | 10 | 110 | 5 |
Variant Label | Filler | Filler Content (pbw 1 per 100 pbw of Solid Resin) | Densities (kg/m3) |
---|---|---|---|
REF 10 flat plywood 1 | Wheat flour | 10 | 758 (11) * |
REF 10 flat plywood 2 | Wheat flour | 10 | 764 (6) |
BB 10 flat plywood 1 | Beech bark | 10 | 751 (10) |
BB 10 flat plywood 2 | Beech bark | 10 | 755 (6) |
REF 10 molded plywood 1 | Wheat flour | 10 | 761 (21) |
REF 10 molded plywood 2 | Wheat flour | 10 | 730 (22) |
BB 10 molded plywood 1 | Beech bark | 10 | 754 (11) |
BB 10 molded plywood 1 | Beech bark | 10 | 735 (5) |
Variant Label | Filler | Filler Content (pbw1 per 100 pbw of Solid Resin) | MOR (MPa) |
---|---|---|---|
REF 10 flat plywood 1 | Wheat flour | 10 | 95 (9) * |
REF 10 flat plywood 2 | Wheat flour | 10 | 62 (3) |
BB 10 flat plywood 1 | Beech bark | 10 | 93 (5) |
BB 10 flat plywood 2 | Beech bark | 10 | 69 (3) |
REF 10 molded plywood 1 | Wheat flour | 10 | 153 (22) |
REF 10 molded plywood 2 | Wheat flour | 10 | 58 (2) |
BB 10 molded plywood 1 | Beech bark | 10 | 93 (8) |
BB 10 molded plywood 2 | Beech bark | 10 | 60 (4) |
Variant Label | Filler | Filler Content (pbw 1 per 100 pbw of Solid Resin) | Bonding Quality (MPa) |
---|---|---|---|
REF 10 flat plywood 1 | Wheat flour | 10 | 2.5 (0.3) * |
REF 10 flat plywood 2 | Wheat flour | 10 | 2.4 (0.1) |
BB 10 flat plywood 1 | Beech bark | 10 | 2.8 (0.3) |
BB 10 flat plywood 2 | Beech bark | 10 | 2.8 (0.3) |
REF 10 molded plywood 1 | Wheat flour | 10 | 2.9 (0.0) |
REF 10 molded plywood 2 | Wheat flour | 10 | 2.8 (1.5) |
BB 10 molded plywood 1 | Beech bark | 10 | 3.1 (0.4) |
BB 10 molded plywood 1 | Beech bark | 10 | 3.0 (0.2) |
Variant Label | Filler | Filler Content (pbw 1 per 100 pbw of Solid Resin) | TS (%) (after 2/24 h) |
---|---|---|---|
REF 10 flat plywood 1 | Wheat flour | 10 | 1.4 (0.1)/3.3 (0.2) * |
REF 10 flat plywood 2 | Wheat flour | 10 | 1.6 (0.1)/3.6 (0.1) |
BB 10 flat plywood 1 | Beech bark | 10 | 1.6 (0.3)/3.6 (0.7) |
BB 10 flat plywood 2 | Beech bark | 10 | 1.6 (0.1)/4.5 (0.3) |
REF 10 molded plywood 1 | Wheat flour | 10 | 2.6 (0.9)/5.6 (1.0) |
REF 10 molded plywood 2 | Wheat flour | 10 | 2.0 (0.1)/5.0 (1.0) |
BB 10 molded plywood 1 | Beech bark | 10 | 2.3 (0.2)/4.7 (0.5) |
BB 10 molded plywood 1 | Beech bark | 10 | 1.9 (0.1)/4.2 (0.3) |
Variant Label | Filler | Filler Content (pbw 1 per 100 pbw of Solid Resin) | WA (%) (after 2/24 h) |
---|---|---|---|
REF 10 flat plywood 1 | Wheat flour | 10 | 14.7 (1.2)/33.0 (2.3) * |
REF 10 flat plywood 2 | Wheat flour | 10 | 14.1 (1.0)/31.9 (1.5) |
BB 10 flat plywood 1 | Beech bark | 10 | 12.8 (1.3)/28.8 (1.0) |
BB 10 flat plywood 2 | Beech bark | 10 | 22.4 (1.3)/41.1 (0.4) |
REF 10 molded plywood 1 | Wheat flour | 10 | 26.2 (2.6)/40.7 (2.0) |
REF 10 molded plywood 2 | Wheat flour | 10 | 20.6 (1.0)/39.5 (2.1) |
BB 10 molded plywood 1 | Beech bark | 10 | 15.6 (2.3)/37.8 (2.2) |
BB 10 molded plywood 1 | Beech bark | 10 | 17.1 (2.8)/35.7 (3.6) |
Class of Formaldehyde Emission | Formaldehyde Emissions Using a UF Filler | Requirement According to EN 636 (mg/m3) | Requirement According to Chemikalien-Verbotsverordnung | ||||
---|---|---|---|---|---|---|---|
Wheat Flour (mg/m3) | Beech Bark (mg/m3) | Wheat Flour (ppm) | Beech Bark (ppm) | (mg/m3) | (ppm) | ||
E1 | 0.055 | 0.042 | 0.044 | 0.034 | ≤0.124 | - | - |
E0.5 | 0.055 | 0.042 | 0.044 | 0.034 | - | 0.062 | 0.050 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reh, R.; Kristak, L.; Sedliacik, J.; Bekhta, P.; Wronka, A.; Kowaluk, G. Molded Plywood with Proportions of Beech Bark in Adhesive Mixtures: Production on an Industrial Scale. Polymers 2024, 16, 966. https://doi.org/10.3390/polym16070966
Reh R, Kristak L, Sedliacik J, Bekhta P, Wronka A, Kowaluk G. Molded Plywood with Proportions of Beech Bark in Adhesive Mixtures: Production on an Industrial Scale. Polymers. 2024; 16(7):966. https://doi.org/10.3390/polym16070966
Chicago/Turabian StyleReh, Roman, Lubos Kristak, Jan Sedliacik, Pavlo Bekhta, Anita Wronka, and Grzegorz Kowaluk. 2024. "Molded Plywood with Proportions of Beech Bark in Adhesive Mixtures: Production on an Industrial Scale" Polymers 16, no. 7: 966. https://doi.org/10.3390/polym16070966
APA StyleReh, R., Kristak, L., Sedliacik, J., Bekhta, P., Wronka, A., & Kowaluk, G. (2024). Molded Plywood with Proportions of Beech Bark in Adhesive Mixtures: Production on an Industrial Scale. Polymers, 16(7), 966. https://doi.org/10.3390/polym16070966