Electrical Characterization of Epoxy Nanocomposite under High DC Voltage
Abstract
:1. Introduction
2. Sample Preparation
3. Characterization: Scanning Electron Microscopy–Energy Dispersive Spectrum (SEM-EDS)
4. Results and Discussion
4.1. FEM Results
4.2. Dielectric Properties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tanaka, T. Dielectric nanocomposites with insulating properties. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 914–928. [Google Scholar] [CrossRef]
- Zebouchi, N.; Haddad, M.A. A Review on Real-Size Epoxy Cast Resin Insulators for Compact High Voltage Direct Current Gas Insulated Switchgears (GIS) and Gas Insulated Transmission Lines (GIL)—Current Achievements and Envisaged Research and Development. Energies 2020, 13, 6416. [Google Scholar] [CrossRef]
- Khan, M.Z.; Waleed, A.; Khan, A.; Hassan, M.A.S.; Paracha, Z.J.; Farooq, U. Significantly Improved Surface Flashover Characteristics of Epoxy Resin/Al2O3 Nanocomposites in Air, Vacuum and SF6 by Gas-Phase Fluorination. J. Electron. Mater. 2020, 49, 3400–3408. [Google Scholar] [CrossRef]
- Preetha, P.; Thomas, M.J. AC breakdown characteristics of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 1526–1534. [Google Scholar] [CrossRef]
- Tanaka, T.; Kozako, M.; Fuse, N.; Ohki, Y. Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 669–681. [Google Scholar] [CrossRef]
- Qu, G.; Cui, H.; Zhu, Y.; Yang, L.; Li, S.-T. Substantial Improvement of the Dielectric Strength of Cellulose–Liquid Composites: Effects of Traps at the Nanoscale Interface. J. Phys. Chem. Lett. 2020, 11, 1881–1889. [Google Scholar] [CrossRef] [PubMed]
- Aslam, F.; Li, Z.; Qu, G.; Feng, Y.; Li, S.; Li, S.; Mao, H. Improvement of DC Breakdown Strength of the Epoxy/POSS Nanocomposite by Tailoring Interfacial Electron Trap Characteristics. Materials 2021, 14, 1298. [Google Scholar] [CrossRef] [PubMed]
- Giang, T.; Kim, J. Effect of Liquid-Crystalline Epoxy Backbone Structure on Thermal Conductivity of Epoxy–Alumina Composites. J. Electron. Mater. 2017, 46, 627–636. [Google Scholar] [CrossRef]
- Pinnangudi, B.; Gorur, R.; Kroese, A. Quantification of corona discharges on nonceramic insulators. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 513–523. [Google Scholar] [CrossRef]
- Peek, F.W. The law of corona and the dielectric strength of air. Proc. Am. Inst. Electr. Eng. 1911, 30, 1485–1561. [Google Scholar] [CrossRef]
- Bas-Calopa, P.; Riba, J.-R.; Moreno-Eguilaz, M. Corona Discharge Characteristics under Variable Frequency and Pressure Environments. Sensors 2021, 21, 6676. [Google Scholar] [CrossRef] [PubMed]
- Preetha, P.; Alapati, S.; Singha, S.; Venkatesulu, B.; Thomas, M.J. Electrical Discharge Resistant Characteristics of Epoxy Nanocomposites. In Proceedings of the 2008 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Quebec City, QC, Canada, 26–29 October 2008; pp. 718–721. [Google Scholar]
- Desai, B.M.A.; Mishra, P.; Vasa, N.J.; Sarathi, R.; Imai, T. Understanding the performance of corona aged epoxy nano micro composites. Micro Nano Lett. 2018, 13, 1280–1285. [Google Scholar] [CrossRef]
- Nazir, M.T.; Phung, B.; Hoffman, M. Performance of silicone rubber composites with SiO2 micro/nano-filler under AC corona discharge. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 2804–2815. [Google Scholar] [CrossRef]
- Mason, J. Breakdown of solid dielectrics in divergent fields. Proc. IEE Part C Monogr. 1955, 102, 254–263. [Google Scholar] [CrossRef]
- Maity, P.; Basu, S.; Parameswaran, V.; Gupta, N. Degradation of polymer dielectrics with nanometric metal-oxide fillers due to surface discharges. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 52–62. [Google Scholar] [CrossRef]
- Li, Z.; Okamoto, K.; Ohki, Y.; Tanaka, T. Effects of nano-filler addition on partial discharge resistance and dielectric breakdown strength of Micro-Al2O3Epoxy composite. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 653–661. [Google Scholar] [CrossRef]
- Wang, W.; Li, S. Improvement of Dielectric Breakdown Performance by Surface Modification in Polyethylene/TiO2 Nanocomposites. Materials 2019, 12, 3346. [Google Scholar] [CrossRef] [PubMed]
- Imai, T.; Sawa, F.; Ozaki, T.; Shimizu, T.; Kuge, S.-I.; Kozako, M.; Tanaka, T. Effects of Epoxy/Filler Interface on Properties of Nano- or Micro-composites. IEEJ Trans. Fundam. Mater. 2006, 126, 84–91. [Google Scholar] [CrossRef]
- Ge, G.; Tang, Y.; Li, Y.; Huang, L. Effect of Environmental Temperature on the Insulating Performance of Epoxy/MgO Nanocomposites. Appl. Sci. 2020, 10, 7018. [Google Scholar] [CrossRef]
- Mi, R.; Xing, Z.L.; Hao, J.H.; Hu, X.N.; Min, D.M.; Li, S.T.; Wu, Q.Z. Effect of morphology and traps on DC conductivity and breakdown of polyethylene nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 489–497. [Google Scholar] [CrossRef]
- Alsoud, A.; Daradkeh, S.; Knápek, A.; Holcman, V.; Sobola, D. Electrical Characteristics of Different Concentration of Silica Nanoparticles Embedded in Epoxy Resin. Phys. Scr. 2023, 98, 125520. [Google Scholar] [CrossRef]
- Al Soud, A.; Daradkeh, S.; Knápek, A.; Liedermann, K.; Holcman, V.; Sobola, D. Influence of High Concentration of Silica Nanoparticles on the Dielectric Spectra. In Proceedings II of the 29st Conference STUDENT EEICT 2023: Selected Papers; Faculty of Electrical Engineering and Communication, Brno University of Technology: Brno, Czech Republic, 2023. [Google Scholar]
- Al Soud, A.; Knápek, A.; Mousa, M.S. Analysis of the Various Effects of Coating W Tips with Dielectric Epoxylite 478 Resin or UPR-4 Resin Coatings under Similar Operational Conditions. Jordan J. Phys. 2020, 13, 191–199. [Google Scholar] [CrossRef]
- Al Soud, A.; Al Buqain, R.N.; Mousa, M.S. Composite Metallic Nano Emitters Coated with a Layer of Insulator Covered by Au Layer. Jordan J. Phys. 2020, 13, 253–262. [Google Scholar] [CrossRef]
- Mousa, M.; Al Share’, M. Study of the MgO-coated W emitters by field emission microscopy. Ultramicroscopy 1999, 79, 195–202. [Google Scholar] [CrossRef]
- Brammer, R.; Filliben, S.A. New corona resistant wire insulation for traction applications. In Proceedings of the 2017 IEEE Electrical Insulation Conference (EIC), Baltimore, MD, USA, 11–14 June 2017; pp. 131–134. [Google Scholar]
- Flandin, L.; Vouyovitch, L.; Beroual, A.; Bessede, J.-L.; Alberola, N.D. Influences of degree of curing and presence of inorganic fillers on the ultimate electrical properties of epoxy-based composites: Experiment and simulation. J. Phys. D Appl. Phys. 2005, 38, 144–155. [Google Scholar] [CrossRef]
- Tsagaropoulos, G.; Eisenberg, A. Dynamic Mechanical Study of the Factors Affecting the Two Glass Transition Behavior of Filled Polymers. Similarities and Differences with Random Ionomers. Macromolecules 1995, 28, 6067–6077. [Google Scholar] [CrossRef]
- Singha, S.; Thomas, M.J. Dielectric properties of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 12–23. [Google Scholar] [CrossRef]
- Maletić, S.; Orsini, N.J.; Milić, M.; Dojčilović, J.; Montone, A. Dielectric properties of epoxy/graphite flakes composites: Influence of loading and surface treatment. J. Appl. Polym. Sci. 2023, 141, e54881. [Google Scholar] [CrossRef]
- Afzal, A.; Siddiqi, H.M.; Saeed, S.; Ahmad, Z. Exploring resin viscosity effects in solventless processing of nano-SiO2/epoxy polymer hybrids. RSC Adv. 2013, 3, 3885–3892. [Google Scholar] [CrossRef]
- Havriliak, S.; Negami, S. A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 1967, 8, 161–210. [Google Scholar] [CrossRef]
- Sedky, A.; Afify, N.; Hakamy, A.; Abd-Elnaiem, A.M. Structural, optical, and dielectric properties of hydrothermally synthesized SnO2 nanoparticles, Cu/SnO2, and Fe/SnO2 nanocomposites. Phys. Scr. 2023, 98, 125929. [Google Scholar] [CrossRef]
- Chai, X.; Zhu, D.; Min, D.; Zhou, W.; Qing, Y.; Luo, F. Flexible thin microwave absorbing patch: Flake carbonyl iron and chopped carbon fibers oriented in resin matrix. J. Mater. Sci. Mater. Electron. 2020, 31, 1442–1450. [Google Scholar] [CrossRef]
- Iwamoto, M. Maxwell–Wagner Effect. In Encyclopedia of Nanotechnology; Springer: Dordrecht, The Netherlands, 2012; pp. 1276–1285. [Google Scholar] [CrossRef]
- Lovell, R. The Effect of Specimen Size on the Electric Breakdown of Unfilled and Filled Epoxy Polymers. IEEE Trans. Electr. Insul. 1976, EI-11, 110–114. [Google Scholar] [CrossRef]
- Khan, A.; Hassan, M.; Shaikh, M.S.; Farhan, M.; Ullah, A. Tailoring the properties of epoxy/silicone blends for high-voltage capacitor applications. J. Electr. Syst. Inf. Technol. 2022, 9, 23. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, G.; Alghamdi, A.S. Influence of nanofillers on electrical characteristics of epoxy resins insulation. In Proceedings of the 2010 10th IEEE International Conference on Solid Dielectrics (ICSD), Potsdam, Germany, 4–9 July 2010; pp. 1–4. [Google Scholar]
- Huang, L.; Zhu, P.; Li, G.; Lu, D.; Sun, R.; Wong, C. Core–shell SiO2@RGO hybrids for epoxy composites with low percolation threshold and enhanced thermo-mechanical properties. J. Mater. Chem. A 2014, 2, 18246–18255. [Google Scholar] [CrossRef]
- Shaheen, A.A.; Maghrabi, M.; Ghannam, H.; Al-Reyahi, A.; Ayesh, A.I.; Mousa, A.A. Complex impedance analysis of silver-phosphate glassy system doped with different concentrations of silver iodide. Appl. Phys. A 2024, 130, 52. [Google Scholar] [CrossRef]
- Zhang, C.; Mason, R.; Stevens, G. Preparation, Characterization and Dielectric Properties of Epoxy and Polyethylene Nanocomposites. IEEJ Trans. Fundam. Mater. 2006, 126, 1105–1111. [Google Scholar] [CrossRef]
- Poloju, V.K.; Mukherjee, S.; Mishra, P.C.; Aljuwayhel, N.F.; Ali, N.; Khadanga, V. Estimation of the thermal properties of MgO-SiO2/water hybrid nanofluid and development of novel thermo-economically viable model for heat transfer applications. Heat Mass Transf. 2023, 60, 247–262. [Google Scholar] [CrossRef]
- Wang, L.; Xu, M.; Feng, J.; Cao, X. Study on AC Breakdown Property of NANO-Ag/EPOXY Resin Composite. In Proceedings of the 2006 IEEE 8th International Conference on Properties and Applications of Dielectric Materials, Denpasar, Indonesia, 26–30 June 2006; pp. 163–166. [Google Scholar]
Time (min) Sample | 1 | 90 | 180 |
---|---|---|---|
Unfilled epoxy | 0.30 | 0.15 | 0.002 |
Epoxy/3 wt.% | 0.14 | 0.09 | 0.045 |
Epoxy/5 wt.% | 0.21 | 0.12 | 0.085 |
Epoxy/3 wt.% MgO | 0.45 | 0.24 | 0.100 |
Epoxy/5 wt.% MgO | 0.48 | 0.34 | 0.081 |
Epoxy/3 wt.% | 0.23 | 0.21 | 0.200 |
Epoxy/5 wt.% | 0.25 | 0.23 | 0.220 |
Sample | Breakdown Strength (V/m) | Time (min) |
---|---|---|
Unfilled epoxy | (2 × 106) | 90 |
Epoxy/3 wt.% | (2 × 106) | 90 |
Epoxy/5 wt.% | (2 × 106) | 180 |
Epoxy/3 wt.% MgO | (2 × 106) | 180 |
Epoxy/5 wt.% MgO | (2 × 106) | 180 |
Epoxy/3 wt.% | - | - |
Epoxy/5 wt.% | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsoud, A.; Daradkeh, S.I.; Al-Bashaish, S.R.; Shaheen, A.A.; Jaber, A.M.D.; Abuamr, A.M.; Mousa, M.S.; Holcman, V. Electrical Characterization of Epoxy Nanocomposite under High DC Voltage. Polymers 2024, 16, 963. https://doi.org/10.3390/polym16070963
Alsoud A, Daradkeh SI, Al-Bashaish SR, Shaheen AA, Jaber AMD, Abuamr AM, Mousa MS, Holcman V. Electrical Characterization of Epoxy Nanocomposite under High DC Voltage. Polymers. 2024; 16(7):963. https://doi.org/10.3390/polym16070963
Chicago/Turabian StyleAlsoud, Ammar, Samer I. Daradkeh, Saleh R. Al-Bashaish, Adel A. Shaheen, Ahmad M. D. (Assa’d) Jaber, Adel M. Abuamr, Marwan S. Mousa, and Vladimír Holcman. 2024. "Electrical Characterization of Epoxy Nanocomposite under High DC Voltage" Polymers 16, no. 7: 963. https://doi.org/10.3390/polym16070963
APA StyleAlsoud, A., Daradkeh, S. I., Al-Bashaish, S. R., Shaheen, A. A., Jaber, A. M. D., Abuamr, A. M., Mousa, M. S., & Holcman, V. (2024). Electrical Characterization of Epoxy Nanocomposite under High DC Voltage. Polymers, 16(7), 963. https://doi.org/10.3390/polym16070963