Fusedly Deposited Frequency-Selective Composites Fabricated by a Dual-Nozzle 3D Printing as Microwave Filter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of FD-FSC
2.3. Measurement
3. Results and Discussion
3.1. Microstructure of Conductive FD-FSC
3.2. Anisotropic Characteristics of Electrical Properties
3.3. Transmission Loss of FD-FSC
3.4. Electromagnetic Wave Absorption of FD-FSCs
Filler | Polymer Matrix | Thickness (mm) | Permittivity (at 10 GHz) | 10 dB BW (GHz) | Ref. | ||
---|---|---|---|---|---|---|---|
Type | Wt% | ||||||
CB only | CB | 21.4 | PLA | 4.3 | 17.1–j22.2 | 4.2 (8.2–12.4) | Our work |
CB | 2.0 | Epoxy | 2.7 | 3.0–j7.5 | 3 (8.5~11.5) | [16] | |
CB | 10.0 | TPU | 1.8 | 12.0–j4.0 | 2.9 (11.1~14.0) | [38] | |
CB | 10.0 | PP | 2.8 | 12.0–j10.0 | 4.6 (8.8~13.4) | [39] | |
CB | 21.0 | PLA/TPU | 2.57 | 12.0–j3.8 | 3.8 (8~11.8) | [40] | |
Binary Particles | CB/BaTiO3 | 10.5/5.0 | PVDF | 2.5 | 13.0–j0.5 | 2.0 (8.3~10.3) | [41] |
CB/CIP | 20.0/25.0 | Epoxy | 1.5 | - | 3.8 (14.2~18) | [42] | |
CB/SiC | 5.0/60.0 | Epoxy | 2.0 | - | 6.0 (6.4~12.4) | [43] |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Reyes, C.; Somogyi, R.; Niu, S.; Cruz, M.A.; Yang, F.; Catenacci, M.J.; Rhodes, C.P.; Wiley, B.J. Three-dimensional printing of a complete lithium ion battery with fused filament fabrication. ACS Appl. Energy Mater. 2018, 1, 5268–5279. [Google Scholar] [CrossRef]
- Ambrosi, A.; Moo, J.G.S.; Pumera, M. Helical 3D-printed metal electrodes as custom-shaped 3D platform for electrochemical devices. Adv. Funct. Mater. 2015, 26, 698–703. [Google Scholar] [CrossRef]
- Zadpoor, A.A.; Malda, J. Additive manufacturing of biomaterials, tissues, and organs. Ann. Biomed. Eng. 2016, 45, 1–11. [Google Scholar] [CrossRef]
- Murphy, S.V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32, 773–785. [Google Scholar] [CrossRef] [PubMed]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Jiang, W.; Yan, L.; Ma, H.; Fan, Y.; Wang, J.; Feng, M.; Qu, S. Electromagnetic wave absorption and compressive behavior of a three-dimensional metamaterial absorber based on 3D printed honeycomb. Sci. Rep. 2018, 8, 4817. [Google Scholar] [CrossRef] [PubMed]
- Ainin, F.N.; Azaman, M.D.; Majid, M.S.A.; Ridzuan, M.J.M. Investigating the low-velocity impact behaviour of sandwich composite structures with 3D-printed hexagonal honeycomb core—A review. Funct. Compos. Struct. 2023, 5, 012001. [Google Scholar] [CrossRef]
- Praveen Kumar, A.; Ma, Q. Evaluation of energy absorption enhancement of additively manufactured polymer composite lattice structures. Funct. Compos. Struct. 2023, 5, 015005. [Google Scholar] [CrossRef]
- Chen, J.; Liu, X.; Tian, Y.; Zhu, W.; Yan, C.; Shi, Y.; Kong, L.B.; Qi, H.J.; Zhou, K. 3D-Printed Anisotropic Polymer Materials for Functional Applications. Adv. Mater. 2021, 34, 2102877. [Google Scholar] [CrossRef]
- Stepashkin, A.A.; Chukov, D.I.; Senatov, F.S.; Salimon, A.I.; Korsunsky, A.M.; Kaloshkin, S.D. 3D-printed PEEK-carbon fiber (CF) composites: Structure and thermal properties. Compos. Sci. Technol. 2018, 164, 319–326. [Google Scholar] [CrossRef]
- Knott, E.F. Radar Cross Section Measurements; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Wu, N.; Hu, Q.; Wei, R.; Mai, X.; Naik, N.; Pan, D.; Guo, Z.; Shi, Z. Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: Recent progress, challenges and prospects. Carbon 2021, 176, 88–105. [Google Scholar] [CrossRef]
- Lim, G.-H.; Woo, S.; Lee, H.; Moon, K.-S.; Sohn, H.; Lee, S.-E.; Lim, B. Mechanically robust magnetic carbon nanotube papers prepared with CoFe2O4 nanoparticles for electromagnetic interference shielding and magnetomechanical actuation. ACS Appl. Mater. Interfaces 2017, 9, 40628–40637. [Google Scholar] [CrossRef]
- Lee, J.; Lee, K.; Kim, T.; Lee, S.B. Enhanced microwave absorption properties of graphene/FeCoNi composite materials by tuning electromagnetic parameters. Funct. Compos. Struct. 2019, 1, 015003. [Google Scholar] [CrossRef]
- Lee, S.-E.; Kang, J.-H.; Kim, C.-G. Fabrication and design of multi-layered radar absorbing structures of MWNT-filled glass/epoxy plain-weave composites. Compos. Struct. 2006, 76, 397–405. [Google Scholar] [CrossRef]
- Kim, J.B.; Lee, S.-K.; Kim, C.-G. Comparison study on the effect of carbon nano materials for single-layer microwave absorbers in X-band. Compos. Sci. Technol. 2008, 68, 2909–2916. [Google Scholar] [CrossRef]
- Munk, B.A. Frequency Selective Surfaces and Grid Arrays; Wiley: New York, NY, USA, 1995. [Google Scholar]
- Munk, B.A. Frequency Selective Surfaces: Theory and Design; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Shung-Wu Lee, G. Zarrillo and Chak-Lam Law. Simple formulas for transmission through periodic metal grids or plates. IEEE Trans. Antennas Propag. 1982, 30, 904–909. [Google Scholar] [CrossRef]
- Panwar, R.; Puthucheri, S.; Agarwala, V.; Singh, D. Fractal frequency-selective surface embedded thin broadband microwave absorber coatings using heterogeneous composites. IEEE Trans. Microw. Theory Tech. 2015, 63, 2438–2448. [Google Scholar] [CrossRef]
- Xu, C.; Duan, G.; Xu, W.; Wang, X.; Huang, Y.; Zhang, X.; Zhu, H.; Wang, B.-X. Thermally tunable vanadium-dioxide-based broadband metamaterial absorber with switchable functionality in the terahertz band. Funct. Compos. Struct. 2023, 5, 025004. [Google Scholar] [CrossRef]
- Kronberger, R.; Wienstroer, V. 3D-printed FSS using printing filaments with enclosed metal particles. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium—Fall (PIERS—FALL), Singapore, 19–22 November 2017; pp. 808–811. [Google Scholar]
- Sanz-Izquierdo, B.; Parker, E.A. 3-D Printing of Elements in Frequency Selective Arrays. IEEE Trans. Antennas Propag. 2014, 62, 6060–6066. [Google Scholar] [CrossRef]
- Duan, Y.; Liang, Q.; Yang, Z.; Li, Z.; Yin, H.; Cao, Y.; Li, D. A wide-angle broadband electromagnetic absorbing metastructure using 3D printing technology. Mater. Des. 2021, 208, 109900. [Google Scholar] [CrossRef]
- Lee, S.-E.; Lee, W.-J.; Oh, K.-S.; Kim, C.-G. Broadband all fiber-reinforced composite radar absorbing structure integrated by inductive frequency selective carbon fiber fabric and carbon-nanotube-loaded glass fabrics. Carbon 2016, 107, 564–572. [Google Scholar] [CrossRef]
- Lee, S.-E.; Park, K.-Y.; Oh, K.-S.; Kim, C.-G. The use of carbon/dielectric fiber woven fabrics as filters for electromagnetic radiation. Carbon 2009, 47, 1896–1904. [Google Scholar] [CrossRef]
- Whittow, W.; Li, Y.; Torah, R.; Yang, K.; Beeby, S.; Tudor, J. Printed frequency selective surfaces on textiles. Electron. Lett. 2014, 50, 916–917. [Google Scholar] [CrossRef]
- Mei, H.; Zhao, X.; Zhou, S.; Han, D.; Xiao, S.; Cheng, L. 3D-printed oblique honeycomb Al2O3/SiCw structure for electromagnetic wave absorption. Chem. Eng. J. 2019, 372, 940–945. [Google Scholar] [CrossRef]
- Yin, L.; Doyhamboure--Fouquet, J.; Tian, X.; Li, D. Design and characterization of radar absorbing structure based on gradient-refractive-index metamaterials. Compos. Part B Eng. 2018, 132, 178–187. [Google Scholar] [CrossRef]
- Tirado-Garcia, I.; Garcia-Gonzalez, D.; Garzon-Hernandez, S.; Rusinek, A.; Robles, G.; Martinez-Tarifa, J.; Arias, A. Conductive 3D printed PLA composites: On the interplay of mechanical, electrical and thermal behaviours. Compos. Struct. 2021, 265, 113744. [Google Scholar] [CrossRef]
- Gorrasi, G.; Sorrentino, A. Photo-oxidative stabilization of carbon nanotubes on polylactic acid. Polym. Degrad. Stab. 2013, 98, 963–971. [Google Scholar] [CrossRef]
- Galos, J.; Hu, Y.; Ravindran, A.R.; Ladani, R.B.; Mouritz, A.P. Electrical properties of 3D printed continuous carbon fibre composites made using the FDM process. Compos. Part A Appl. Sci. Manuf. 2021, 151, 106661. [Google Scholar] [CrossRef]
- Guo, H.; Zhao, H.; Niu, H.; Ren, Y.; Fang, H.; Fang, X.; Lv, R.; Maqbool, M.; Bai, S. Highly Thermally Conductive 3D Printed Graphene Filled Polymer Composites for Scalable Thermal Management Applications. ACS Nano 2021, 15, 6917–6928. [Google Scholar] [CrossRef] [PubMed]
- Khodabakhshi, S.; Fulvio, P.F.; Andreoli, E. Carbon black reborn: Structure and chemistry for renewable energy harnessing. Carbon 2020, 162, 604–649. [Google Scholar] [CrossRef]
- Bauhofer, W.; Kovacs, J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 2009, 69, 1486–1498. [Google Scholar] [CrossRef]
- Min, Y.K.; Eom, T.; Kim, H.; Kang, D.; Lee, S.-E. Independent Heating Performances in the Sub-Zero Environment of MWCNT/PDMS Composite with Low Electron-Tunneling Energy. Polymers 2023, 15, 1171. [Google Scholar] [CrossRef]
- Cao, M.-S.; Song, W.-L.; Hou, Z.-L.; Wen, B.; Yuan, J. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon/fiber silica composites. Carbon 2010, 48, 788–796. [Google Scholar] [CrossRef]
- Kasgoz, A.; Korkmaz, M.; Durmus, A. Compositional and structural design of thermoplastic polyurethane/carbon based single and multi-layer composite sheets for high-performance X-band microwave absorbing applications. Polymer 2019, 180, 121672. [Google Scholar] [CrossRef]
- Lei, L.; Yao, Z.; Zhou, J.; Wei, B.; Fan, H. 3D printing of carbon black/polypropylene composites with excellent microwave absorption performance. Compos. Sci. Technol. 2020, 200, 108479. [Google Scholar] [CrossRef]
- Gao, Q.; Ye, X.; Luo, A.; He, E.; Yang, C.; Yang, P.; Yan, T.; Ye, Y.; Wu, H. 3D printing of carbon black/polylactic acid/polyurethane composites for efficient microwave absorption. J. Mater. Sci. Mater. Electron. 2023, 34, 1672. [Google Scholar] [CrossRef]
- Meng, X.-M.; Zhang, X.-J.; Lu, C.; Pan, Y.-F.; Wang, G.-S. Enhanced absorbing properties of three-phase composites based on a thermoplastic-ceramic matrix (BaTiO3 + PVDF) and carbon black nanoparticles. J. Mater. Chem. A 2014, 2, 18725–18730. [Google Scholar] [CrossRef]
- Liu, L.; Duan, Y.; Ma, L.; Liu, S.; Yu, Z. Microwave absorption properties of a wave-absorbing coating employing carbonyl-iron powder and carbon black. Appl. Surf. Sci. 2010, 257, 842–846. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Z.; Wu, Y. Absorption properties of carbon black/silicon carbide microwave absorbers. Compos. Part B Eng. 2011, 42, 326–329. [Google Scholar] [CrossRef]
Infill Settings | Retraction | Printing | ||||||
---|---|---|---|---|---|---|---|---|
Specimen | Line Thickness tl (mm) | Line Width wl (mm) | Infill Line Distance dl (mm) | Distance (mm) | Speed (mm/s) | Infill Density (%) | Speed (mm/s) | Number of Print Layers |
1 layer | 0.2 | 0.8 | 0.6 | 6.7 | 25 | 100 | 30 | 1 |
3 layers | 0.2 | 0.8 | 0.6 | 6.7 | 25 | 100 | 30 | 3 |
5 layers | 0.2 | 0.8 | 0.6 | 6.7 | 25 | 100 | 30 | 5 |
7 layers | 0.2 | 0.8 | 0.6 | 6.7 | 25 | 100 | 30 | 7 |
9 layers | 0.2 | 0.8 | 0.6 | 6.7 | 25 | 100 | 30 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, J.-Y.; Oh, Y.-C.; Shin, S.-C.; Lee, S.-K.; Seo, H.-S.; Lee, S.-E. Fusedly Deposited Frequency-Selective Composites Fabricated by a Dual-Nozzle 3D Printing as Microwave Filter. Polymers 2024, 16, 786. https://doi.org/10.3390/polym16060786
Cho J-Y, Oh Y-C, Shin S-C, Lee S-K, Seo H-S, Lee S-E. Fusedly Deposited Frequency-Selective Composites Fabricated by a Dual-Nozzle 3D Printing as Microwave Filter. Polymers. 2024; 16(6):786. https://doi.org/10.3390/polym16060786
Chicago/Turabian StyleCho, Jae-Yeon, Young-Chan Oh, Seung-Cheol Shin, Sun-Kon Lee, Hyoung-Seock Seo, and Sang-Eui Lee. 2024. "Fusedly Deposited Frequency-Selective Composites Fabricated by a Dual-Nozzle 3D Printing as Microwave Filter" Polymers 16, no. 6: 786. https://doi.org/10.3390/polym16060786
APA StyleCho, J. -Y., Oh, Y. -C., Shin, S. -C., Lee, S. -K., Seo, H. -S., & Lee, S. -E. (2024). Fusedly Deposited Frequency-Selective Composites Fabricated by a Dual-Nozzle 3D Printing as Microwave Filter. Polymers, 16(6), 786. https://doi.org/10.3390/polym16060786