Morphology and Compressive Properties of Extruded Polyethylene Terephthalate Foam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Morphological Characterization
2.3. Compression Tests
2.4. Anisotropic Models
3. Results and Discussion
3.1. Cell Structure Anisotropy
3.2. Compression Properties
3.3. Anisotropy Analysis
4. Conclusions
- Although the foam structure is stochastic in nature, there are some regular characteristics. The cell structure is greatly influenced by the extrusion foaming process. Extrusion direction cells have a larger aspect ratio, equivalent diameter, and lower sphericity. The aspect ratio and equivalent circular diameter decrease as the foam density increases, while the cell wall thickness and sphericity show the opposite trend. Compared to the cells in the strand body, the cells in strand border have a larger aspect ratio, thicker cell wall thickness, and lower sphericity, making the extruded PET foam resemble a honeycomb structure.
- The PET foam compressive stress–strain curves demonstrate typical characteristics, which has been proved in conventional metal and polymer foams. Although the extruded PET foams are composed of foamed strands, they can still be analyzed from a macroscopic point of view in terms of the relationship between the mechanical properties of the foam and its structure. The cells in the extrusion direction (X3 direction) undergo the most significant stretching phenomenon and demonstrate the best compressive properties. The cells in the X2 direction exhibit some stretching, and their compressive properties are slightly better than those in the X1 direction. Ashby’s theory suggests that the structures in the X1 and X2 directions are bending-dominated, while the structures in the X3 direction are stretch-dominated. A strong correlation was discovered between the anisotropy of the cell shape and compressive properties.
- The elongated Kelvin model provides a more accurate description of the actual cell morphology of PET foams, and experimental results for both modulus and strength anisotropy are consistent with the theoretical predictions of this model. Gibson’s model was conducted by an ideal rectangular cell structure, which oversimplifies the cell structure of real foam; the strength and modulus anisotropy may be reasonably predicted by the rectangular cell model. The elongated Kelvin mode can be used to analyze extruded PET foam.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yao, S.; Hu, D.; Xi, Z.; Liu, T.; Xu, Z.; Zhao, L. Effect of crystallization on tensile mechanical properties of PET foam: Experiment and model prediction. Polym. Test. 2020, 90, 106649. [Google Scholar] [CrossRef]
- Rahimidehgolan, F.; Altenhof, W. Compressive behavior and deformation mechanisms of rigid polymeric foams: A review. Compos. B Eng. 2023, 253, 110513. [Google Scholar] [CrossRef]
- Kanbargi, N.; van Erp, M.J.; Lesser, A.J. Anisotropic cellular structures from semi-crystalline polymer templates. J. Polym. Sci. 2020, 58, 3311–3321. [Google Scholar] [CrossRef]
- Damayanti; Wu, H.-S. Strategic Possibility Routes of Recycled PET. Polymers 2021, 13, 1475. [Google Scholar] [CrossRef]
- Amundarain, I.; López-Montenegro, S.; Fulgencio-Medrano, L.; Leivar, J.; Iruskieta, A.; Asueta, A.; Miguel-Fernández, R.; Arnaiz, S.; Pereda-Ayo, B. Improving the Sustainability of Catalytic Glycolysis of Complex PET Waste through Bio-Solvolysis. Polymers 2024, 16, 142. [Google Scholar] [CrossRef]
- Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties, 2nd ed.; Cambridge University Press: Cambridge, UK, 1997; pp. 175–281. [Google Scholar]
- Gibson, L.J. Mechanical Behavior of Metallic Foams. Annu. Rev. Mater. 2000, 30, 191–227. [Google Scholar] [CrossRef]
- Marvi-Mashhadi, M.; Lopes, C.; Llorca, J. Effect of anisotropy on the mechanical properties of polyurethane foams: An experimental and numerical study. Mech. Mater. 2018, 124, 143–154. [Google Scholar] [CrossRef]
- Huber, A.T.; Gibson, L.J. Anisotropy of foams. J. Mater. Sci. 1988, 23, 3031–3040. [Google Scholar] [CrossRef]
- Benouali, A.H.; Froyen, L.; Dillard, T.; Forest, S.; N’guyen, F. Investigation on the influence of cell shape anisotropy on the mechanical performance of closed cell aluminium foams using micro-computed tomography. J. Mater. Sci. 2005, 40, 5801–5811. [Google Scholar] [CrossRef]
- Mu, Y.; Yao, G.; Luo, H. Effect of cell shape anisotropy on the compressive behavior of closed-cell aluminum foams. Mater. Des. 2010, 31, 1557–1559. [Google Scholar] [CrossRef]
- Yang, Z.; Xin, C.; Mughal, W.; Li, X.; He, Y. High-melt-elasticity poly(ethylene terephthalate) produced by reactive extrusion with a multi-functional epoxide for foaming. J. Appl. Polym. 2018, 135, 45805. [Google Scholar] [CrossRef]
- Yao, S.; Guo, T.; Liu, T.; Xi, Z.; Xu, Z.; Zhao, L. Good extrusion foaming performance of long-chain branched PET induced by its enhanced crystallization property. J. Appl. Polym. Sci. 2020, 137, 49268. [Google Scholar] [CrossRef]
- Ge, Y.; Yao, S.; Xu, M.; Gao, L.; Fang, Z.; Zhao, L.; Liu, T. Improvement of Poly(ethylene terephthalate) Melt-Foamability by Long-Chain Branching with the Combination of Pyromellitic Dianhydride and Triglycidyl Isocyanurate. Ind. Eng. Chem. Res. 2019, 58, 3666–3678. [Google Scholar] [CrossRef]
- Qu, M.; Lu, D.; Deng, H.; Wu, Q.; Han, L.; Xie, Z.; Qin, Y.; Schubert, D.W. A comprehensive study on recycled and virgin PET melt-spun fibers modified by PMDA chain extender. Mater. Today Commun. 2021, 29, 103013. [Google Scholar] [CrossRef]
- Sauceau, M.; Fages, J.; Common, A.; Nikitine, C.; Rodier, E. New challenges in polymer foaming: A review of extrusion processes assisted by supercritical carbon dioxide. Prog. Mater. Sci. 2011, 36, 749–766. [Google Scholar] [CrossRef]
- Lee, S.-T.; Chul, B.P. (Eds.) Foam Extrusion: Principles and Practice, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 377–400. [Google Scholar]
- Bethke, C.; Goedderz, D.; Weber, L.; Standau, T.; Doring, M.; Altstadt, V. Improving the flame-retardant property of bottle-grade PET foam made by reactive foam extrusion. J. Appl. Polym. 2020, 137, 49042. [Google Scholar] [CrossRef]
- Doyle, L.; Weidlich, I.; Di Maio, E. Developing insulating polymeric foams: Strategies and research needs from a circular economy perspective. Materials 2022, 15, 6212. [Google Scholar] [CrossRef]
- Fathi, A. Mechanical Properties of Strand PET Foams at Different Length Scales. Ph.D. Thesis, Universitaet Bayreuth, Bayreuth, Germany, 2018. [Google Scholar]
- Parky, C.P.; Garcia, G.A. Development of Polypropylene Plank Foam Products. J. Cell. Plast. 2002, 38, 219–228. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, Q.; Zhang, F.; Chang, J.; Wu, G. Microstructure and strength correlation of pure Al and Al-Mg syntactic foam composites subject to uniaxial compression. Mater. Sci. Eng. A 2017, 696, 236–247. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, W.; Jiang, X.; Zhao, J.; Xie, W.; Chen, T. Experimental investigations on phenomenological constitutive model of closed-cell PVC foam considering the effects of density, strain rate and anisotropy. Compos. B Eng. 2022, 238, 109885. [Google Scholar] [CrossRef]
- Liu, Y.; Rahimidehgolan, F.; Altenhof, W. Anisotropic compressive behavior of rigid PVC foam at strain rates up to 200 s−1. Polym. Test. 2020, 91, 106836. [Google Scholar] [CrossRef]
- Celzard, A.; Zhao, W.; Pizzi, A.; Fierro, V. Mechanical properties of tannin-based rigid foams undergoing compression. Mater. Sci. Eng. A 2010, 527, 4438–4446. [Google Scholar] [CrossRef]
- Vengatachalam, B.; Poh, L.; Liu, Z.; Qin, Q.; Swaddiwudhipong, S. Three dimensional modelling of closed-cell aluminium foams with predictive macroscopic behaviour. Mech. Mater. 2019, 136, 103067. [Google Scholar] [CrossRef]
- Jang, W.-Y.; Hsieh, W.-Y.; Miao, C.-C.; Yen, Y.-C. Microstructure and mechanical properties of ALPORAS closed-cell aluminium foam. Mater. Charact. 2015, 107, 228–238. [Google Scholar] [CrossRef]
- Tagliabue, S.; Andena, L.; Nacucchi, M.; De Pascalis, F. An image-based approach for structure investigation and 3D numerical modelling of polymeric foams. J. Polym. Res. 2021, 28, 1–22. [Google Scholar] [CrossRef]
- Ashby, M.F. The properties of foams and lattices. Philos. Trans. R. Soc. A 2006, 364, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, A.R.; Thomsen, O.T.; Madaleno, L.A.O.; Jensen, L.R.; Rauhe, J.C.M.; Pyrz, R. Evaluation of the anisotropic mechanical properties of reinforced polyurethane foams. Compos. Sci. Technol. 2013, 87, 210–217. [Google Scholar] [CrossRef]
- Espadas-Escalante, J.; Avilés, F. Anisotropic compressive properties of multiwall carbon nanotube/polyurethane foams. Mech. Mater. 2015, 91, 167–176. [Google Scholar] [CrossRef]
- Andersons, J.; Kirpluks, M.; Stiebra, L.; Cabulis, U. Anisotropy of the stiffness and strength of rigid low-density closed-cell polyisocyanurate foams. Mater. Des. 2016, 92, 836–845. [Google Scholar] [CrossRef]
- Oliveira-Salmazo, L.; Lopez-Gil, A.; Silva-Bellucci, F.; Job, A.E.; Rodriguez-Perez, M.A. Natural rubber foams with anisotropic cellular structures: Mechanical properties and modeling. Ind. Crop. Prod. 2016, 80, 26–35. [Google Scholar] [CrossRef]
- Sullivan, R.M.; Ghosn, L.J.; Lerch, B.A. A general tetrakaidecahedron model for open-celled foams. Int. J. Solids Struct. 2008, 45, 1754–1765. [Google Scholar] [CrossRef]
- Sullivan, R.M.; Ghosn, L.J. Shear moduli for non-isotropic, open cell foams using a general elongated Kelvin foam model. Int. J. Eng. Sci. 2009, 47, 990–1001. [Google Scholar] [CrossRef]
- Sullivan, R.M.; Ghosn, L.J.; Lerch, B.A.; Baker, E.H. Elongated Tetrakaidecahedron Micromechanics Model for Space Shuttle External Tank Foams; NASA Technical Report; Glenn Research Center: Cleveland, OH, USA, 2009. [Google Scholar]
- Sullivan, R.M.; Ghosn, L.J.; Lerch, B.A. Application of an elongated Kelvin model to space shuttle foams. J. Spacecr. Rocket. 2009, 46, 411–418. [Google Scholar] [CrossRef]
- Mazzuca, P.; Firmo, J.P.; Correia, J.R.; Castilho, E. Mechanical behaviour in shear and compression at elevated temperature of polyethylene terephthalate (PET) foam. J. Build. Eng. 2021, 42, 102526. [Google Scholar] [CrossRef]
- Tang, Y.; Li, Y.; Jiang, X.; Zhao, J.; Zhao, G.; Xie, W.; Zhang, W. Tensile properties of transversely isotropic closed-cell PVC foam under quasi-static and dynamic loadings. J. Sandw. Struct. Mater. 2023, 10996362231209013. [Google Scholar] [CrossRef]
- Zhou, Y.; Xue, B.; Zhang, W.; Wang, R. Prediction of bulk mechanical properties of PVC foam based on microscopic model: Part II-Material characterization and analytical formulae. Polym. Test. 2023, 117, 107846. [Google Scholar] [CrossRef]
- Zhou, Y.; Xue, B.; Zhang, W.; Wang, R. Prediction of bulk mechanical properties of PVC foam based on microscopic model: Part I-Microstructure characterization and generation algorithm. Polym. Test. 2023, 117, 107872. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, D.; Hou, S.; Yang, D.; Nieh, T.; Lu, Z. Cellular structure and energy absorption of Al Cu alloy foams fabricated via a two-step foaming method. Mater. Des. 2020, 196, 109090. [Google Scholar] [CrossRef]
- ISO844-2021; Rigid Cellular Plastics. ISO: Geneva, Switzerland, 2021.
- Rahimidehgolan, F.; Magliaro, J.; Altenhof, W. Influence of specimen size and density variation in the foam rise direction on the compressive behavior of PVC foams. Mater. Today Commun. 2023, 35, 106003. [Google Scholar] [CrossRef]
- Arezoo, S.; Tagarielli, V.L.; Petrinic, N.; Reed, J.M. The mechanical response of Rohacell foams at different length scales. J. Mater. Sci. 2011, 46, 6863–6870. [Google Scholar] [CrossRef]
- Park, C.; Nutt, S. Anisotropy and strain localization in steel foam. Mater. Sci. Eng. A 2001, 299, 68–74. [Google Scholar] [CrossRef]
- Xie, H.; Shen, C.; Fang, H.; Han, J.; Cai, W. Flexural property evaluation of web reinforced GFRP-PET foam sandwich panel: Experimental study and numerical simulation. Compos. B Eng. 2022, 234, 109725. [Google Scholar] [CrossRef]
- Kim, K.Y.; Kang, S.L.; Kwak, H. Bubble nucleation and growth in polymer solutions. Polym. Eng. Sci. 2004, 44, 1890–1899. [Google Scholar] [CrossRef]
- Shafi, M.; Flumerfelt, R. Initial bubble growth in polymer foam processes. Chem. Eng. Sci. 1997, 52, 627–633. [Google Scholar] [CrossRef]
- Thomson, W. On the division of space with minimum partitional area. Acta Math. 1887, 11, 121–134. [Google Scholar] [CrossRef]
- Zhu, H.; Knott, J.; Mills, N. Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells. J. Mech. Phys. Solids 1997, 45, 319–343. [Google Scholar] [CrossRef]
- Cheneler, D.; Kennedy, A. A comparison of the manufacture and mechanical performance of porous aluminium and aluminium syntactic foams made by vacuum-assisted casting. Mater. Sci. Eng. A 2020, 789, 139528. [Google Scholar] [CrossRef]
- Bafti, H.; Habibolahzadeh, A. Compressive properties of aluminum foam produced by powder-Carbamide spacer route. Mater. Des. 2013, 52, 404–411. [Google Scholar] [CrossRef]
- Chai, H.; Xie, Z.; Xiao, X.; Xie, H.; Huang, J.; Luo, S. Microstructural characterization and constitutive modeling of deformation of closed-cell foams based on in situ x-ray tomography. Int. J. Plast. 2020, 131, 102730. [Google Scholar] [CrossRef]
- Jang, W.-Y.; Kraynik, A.M.; Kyriakides, S. On the microstructure of open-cell foams and its effect on elastic properties. Int. J. Solids Struct. 2008, 45, 1845–1875. [Google Scholar] [CrossRef]
PET Foam | Density (kg/m3) |
---|---|
YD100 | 100.12 ± 1.72 |
YD150 | 154.58 ± 2.84 |
YD200 | 204.51 ± 3.19 |
YD320 | 321.37 ± 3.55 |
PET Foam | Strand Border Thickness (μm) | Strand Body Thickness (μm) |
---|---|---|
YD100 | 7.46 ± 3.29 | 7.24 ± 3.40 |
YD150 | 13.13 ± 6.78 | 10.90 ± 5.63 |
YD200 | 22.43 ± 13.53 | 16.26 ± 8.28 |
YD320 | 34.59 ± 18.14 | 29.77 ± 17.76 |
Foam | L1 (mm) | L2 (mm) | W (mm) | T (μm) | af (%) |
---|---|---|---|---|---|
YD100 | 9.83 ± 0.26 | 6.73 ± 0.19 | 7.11 ± 0.25 | 736.4 ± 85 | 17.07 |
YD150 | 9.75 ± 0.34 | 6.47 ± 0.23 | 7.08 ± 0.37 | 789.4 ± 93 | 18.35 |
YD200 | 10.23 ± 0.29 | 6.35 ± 0.30 | 6.91 ± 0.21 | 762.4 ± 69 | 17.66 |
YD320 | 9.67 ± 0.27 | 6.71 ± 0.18 | 6.87 ± 0.17 | 830.8 ± 107 | 19.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Xin, C.; Ma, C.; Xu, W.; Ren, F.; He, Y. Morphology and Compressive Properties of Extruded Polyethylene Terephthalate Foam. Polymers 2024, 16, 776. https://doi.org/10.3390/polym16060776
Zhang Z, Xin C, Ma C, Xu W, Ren F, He Y. Morphology and Compressive Properties of Extruded Polyethylene Terephthalate Foam. Polymers. 2024; 16(6):776. https://doi.org/10.3390/polym16060776
Chicago/Turabian StyleZhang, Zhicheng, Chunling Xin, Chiyuan Ma, Wenchong Xu, Feng Ren, and Yadong He. 2024. "Morphology and Compressive Properties of Extruded Polyethylene Terephthalate Foam" Polymers 16, no. 6: 776. https://doi.org/10.3390/polym16060776
APA StyleZhang, Z., Xin, C., Ma, C., Xu, W., Ren, F., & He, Y. (2024). Morphology and Compressive Properties of Extruded Polyethylene Terephthalate Foam. Polymers, 16(6), 776. https://doi.org/10.3390/polym16060776