Single Crystals of Established Semiconducting Polymers
Abstract
:1. Introduction
2. Fabrication and Structural Characterization of Single Crystals of Established Semiconducting Polymers
2.1. Polythiophene-Based Single Crystals
Polymer | Molecular Weight (g/mol) | Crystal Type | Crystal Length (µm) | a-Axis (nm) | b-Axis (nm) | c-Axis (nm) | Unit Cell | Ref. |
---|---|---|---|---|---|---|---|---|
P3HT | Mw = 54,000 | microwire | 500 | 1.66 | 0.78 | 0.836 | orthorhombic | [34] |
P3HT | Mw = 39,600 | needle-like | 60 | 1.636 | 0.838 | 0.742 | - | [35] |
P3HT | Mn = 26,400 | needle-like | >80 | 1.31 | 0.93 | - | monoclinic | [25] |
P3HT | Mn = 4700 | needle-like | ~10 | 1.23 | 0.91 | - | monoclinic | [25] |
P3HT | Mn = 3709 | needle-like | >15 | 1.26 | 0.92 | - | monoclinic | [25] |
P3HT | Mn = 1332 | needle-like | >130 | 1.32 | 0.95 | - | monoclinic | [25] |
P3HT | Mn = 7000 | nanofiber | ~0.4 | 1.84 | 0.399 | - | - | [75] |
P3HT | Mn = 7000 | fibrillar | 60 | 1.681 | 0.364 | - | - | [75] |
P3HT | Mn = 7150 | nanofiber | 0.65 a 15.5 c | 1.95 c | 0.351 ÷ 0.367 a 0.413 ÷ 0.429 c | - | - | [77] |
P3HT | Mn = 7150 | needle-like | >40 a >70 b | 1.343 a 1.603 ÷ 1.713 b | 0.33 a 0.374 ÷ 0.389 b | - | - | [76,77] |
P3HT | Mn = 21,000 | nanofiber | 0.55 a | 1.949 c | 0.351 ÷ 0.367 a 0.394 ÷ 0.408 b 0.413 ÷ 0.429 c | - | - | [77] |
P3HT | Mn = 21,000 | needle-like | ~68 b >128 c | 1.342 a 1.605 b 1.850 ÷ 1.958 c | 0.330 a 0.374 ÷ 0.389 b 0.4 ÷ 0.413 c | - | - | [76,77] |
P3HT | Mn = 48,800 | nanofiber | 0.45 a | 1.95 c | 0.351 ÷ 0.367 a 0.394 ÷ 0.408 b 0.413 ÷ 0.429 c | - | - | [77] |
P3HT-b-PEG | Mn = 12,000 | scrolled half-rings | ~0.5 | 1.845 | 0.408 | - | - | [75] |
P3HT-b-PEG | Mn = 12,000 | cubic | 0.91 | 1.991 | 0.424 | - | - | [75] |
P3HT-b-PEG | Mn = 12,000 | fibrillar | 63 | 1.68 | 0.364 | - | - | [75] |
PEG/P3HT-b-PEG/PEG | Mn = 5000 Mn = 12,000 | epitaxial channel wire/cubic | ~1.5 | 1.99 | 0.425 | - | - | [75] |
P3HT-b-PEG | Mn = 7900 | hairy nanofiber | >9 b | 1.502 ÷ 1.617 a 1.75 ÷ 1.869 b 1.948 ÷ 2.044 c | 0.351 ÷ 0.367 a 0.394 ÷ 0.408 b 0.413 ÷ 0.429 c | - | - | [77] |
P3HT-b-PEG | Mn = 7900 | hairy needle-like | ~40 | 1.464 a 1.713 b 1.958 c | 0.347 a 0.374 ÷ 0.389 b 0.4 ÷ 0.413 c | - | - | [76,77] |
P3HT-b-PEG | Mn = 21,750 | hairy needle-like | 32 | 1.397 a 1.667 b | 0.341 a | - | - | [76,77] |
P3HT-b-PEG | Mn = 49,550 | nanofiber | 0.98 a | 1.512 a | 0.356 a 0.394 ÷ 0.408 b 0.413 ÷ 0.429 c | - | - | [77] |
P3HT-b-PEG | Mn = 49,550 | hairy needle-like | ~148 c | 1.351 a | 0.33 a | - | - | [76,77] |
P3HT-b-PS | Mn = 7669 | hairy nanofiber | 1.79 a >9 b | 1.862 b 2.036 c | 0.351 ÷ 0.367 a 0.405 b 0.413 ÷ 0.429 c | - | - | [77] |
P3HT-b-PS | Mn = 7669 | hairy needle-like | ~162 c | 1.456 a 1.705 b | 0.343 a 0.385 b 0.4 ÷ 0.413 c | - | - | [76,77] |
P3HT-b-PS | Mn = 21,519 | hairy needle-like | 82 b | 1.391 a 1.661 b 1.850 ÷ 1.958 c | 0.33 ÷ 0.347 a 0.374 ÷ 0.389 b 0.4 ÷ 0.413 c | - | - | [76,77] |
P3HT-b-PS | Mn = 49,319 | hairy nanofiber | 13.5 c | 1.95 c | 0.351 ÷ 0.367 a 0.394 ÷ 0.408 b 0.413 ÷ 0.429 c | - | - | [77] |
P3HT-b-PMMA | Mn = 7647 | hairy nanofiber | 9.38 b 21.38 c | 1.502 ÷ 1.617 a 1.75 ÷ 1.869 b 1.948 ÷ 2.044 c | 0.351 ÷ 0.367 a 0.394 ÷ 0.408 b 0.413 ÷ 0.429 c | - | - | [77] |
P3HT-b-PMMA | Mn = 7647 | hairy needle-like | ~49 a ~95 b >21 c | 1.342 ÷ 1.464 a 1.603 ÷ 1.713 b 1.850 ÷ 1.958 c | 0.33 ÷ 0.347 a 0.374 ÷ 0.389 b 0.4 ÷ 0.413 c | - | - | [77] |
P3HT-b-PMMA | Mn = 21,497 | hairy nanofiber | 1.15 a >9 b | 1.502 ÷ 1.617 a 1.75 ÷ 1.869 b 1.948 ÷ 2.044 c | 0.351 ÷ 0.367 a 0.394 ÷ 0.408 b 0.413 ÷ 0.429 c | - | - | [77] |
P3HT-b-PMMA | Mn = 49,297 | hairy needle-like | ~17.5 c | 1.342 ÷ 1.464 a 1.603 ÷ 1.713 b 1.850 ÷ 1.958 c | 0.33 ÷ 0.347 a 0.374 ÷ 0.389 b 0.4 ÷ 0.413 c | - | - | [77] |
P3BT | Mw = 16,000 | needle-like | >1000 | 1.42 | 2.35 | 1.56 | - | [78] |
P3OT | Mw = 120,000 | needle-like | ~50 | - | 0.838 | 0.742 | - | [36] |
P3OT | Mw = 51,200 | rod-like | ~50 | - | 0.838 | 0.742 | - | [35] |
PDTTDPP | - | nanowire | <40 | 1.92 | 0.37 | 2.12 | orthorhombic | [79] |
DPPBTSPE | Mn = 8000 | nanowire | 100 | 1.898 | 0.346 | 2.034 | orthorhombic | [80] |
DPPBTSPE | Mn = 68,000 | nanowire | >50 | 1.898 | 0.346 | 2.034 | orthorhombic | [80] |
TA-PPE | Mw = 51,328 | nanowire | tens | 1.363 | 0.762 | 0.512 | orthorhombic | [81] |
CDT-BTZ | Mn = 50,000 | fiber | 20 | - | 0.37 | - | - | [82] |
F16 | MMS = 6220 | rod-like d lenticular e fibrous f | 200 ~2 several | 2.16 d | 1.28 d | 3.36 d | orthorhombic d | [33,83] |
F32 | MMS = 12,437 | rod-like d lenticular e fibrous f | >10 ~2 several | 2.16 d | 1.28 d | 3.36 d | orthorhombic d | [33,84] |
F64 | MMS = 24,874 | rod-like d lenticular e fibrous f | >10 ~2 several | 2.16 d | 1.28 d | 3.36 d | orthorhombic d | [33,83,84] |
Fn | Mn = 100,957 | rod-like d | ~24 | - | - | - | - | [85] |
TANI | - | plate-like | several | 0.68 | 0.78 | 2.4 | - | [86] |
F4BDOPV-2T | Mn = 60,400 | microwire | ~100 | 3.127 | 0.412 | 2.485 | triclinic | [87] |
P(NDI2OD-T2) | Mn = 76,600 | microwire | ~50 | 2.723 | 0.451 | 1.418 | triclinic | [87] |
2.2. Polyfluorene-Based Single Crystals
2.3. Single Crystals of Other Semiconducting Oligomers/Polymers
3. Optoelectronic Properties and Applications of Single Crystals of Established Semiconducting Polymers and Oligomers
3.1. Charge Carrier Mobility in Single Crystals of Semiconducting Polymers
Polymer | Molecular Weight (g/mol) | Crystal Type | Charge Mobility (cm2V−1s−1) | Current On/Off Ratio | Threshold Voltage (V) | Applications | Ref. |
---|---|---|---|---|---|---|---|
P3HT | Mw = 39,600 | needle-like | 1.57 × 10−3 | - | - | organic field-effect transistors | [35] |
P3HT | Mn = 1332 | needle-like | 0.5 | - | 8 | charge transport studies | [37] |
P3OT | Mw = 120,000 | needle-like | 1.54 × 10−4 | 37 | 7.3 | organic field-effect transistors | [36] |
P3OT | Mw = 51,200 | rod-like | 0.62 | - | - | organic field-effect transistors | [35] |
PDTTDPP | - | nanowire | 7 | - | −15 | organic field-effect transistors | [79] |
DPPBTSPE | Mn = 8000 | nanowire | 24 | 104 | −4 | organic field-effect transistors phototransistors | [80] |
DPPBTSPE | Mn = 68,000 | nanowire | 4.15 | 108 | 0 | organic field-effect transistors phototransistors | [80] |
TA-PPE | Mw = 51,328 | nanowire | 0.1 | - | −40 | organic field-effect transistors | [81] |
CDT-BTZ | Mn = 50,000 | fiber | 5.5 | 106 | −60 | organic field-effect transistors | [82] |
F4BDOPV-2T | Mn = 60,400 | microwire | 5.58 | 103–104 | 2 | organic field-effect transistors | [87] |
P(NDI2OD-T2) | Mn = 76,600 | microwire | 2.56 | - | - | organic field-effect transistors | [87] |
3.2. Conductivity in Single Crystals of Semiconducting Oligomers
3.3. Photovoltaic Properties of Single Crystals of Semiconducting Polymers
Polymer | Molecular Weight (g/mol) | Crystal Type | JSC (mA/cm2) | FF (%) | VOC (V) | PCE (%) | Ref. |
---|---|---|---|---|---|---|---|
P3HT | Mn = 7150 | needle-like | 7.69 | 54 | 0.59 | 2.45 | [77] |
P3HT | Mn = 7150 | nanofiber | 5.93 | 45 | 0.57 | 1.52 | [77] |
P3HT | Mn = 48,800 | needle-like | 9.18 | 55 | 0.58 | 2.93 | [77] |
P3HT | Mn = 48,800 | nanofiber | 7.10 | 47 | 0.59 | 1.97 | [77] |
P3HT-b-PEG | Mn = 49,550 | hairy needle-like | 9.26 | 54 | 0.58 | 2.90 | [77] |
P3HT-b-PEG | Mn = 49,550 | nanofiber | 7.11 | 53 | 0.58 | 2.18 | [77] |
P3HT-b-PS | Mn = 7669 | hairy needle-like | 7.74 | 51 | 0.58 | 2.29 | [77] |
P3HT-b-PMMA | Mn = 7647 | hairy nanofiber | 5.47 | 47 | 0.58 | 1.49 | [77] |
3.4. Absorption Properties of Single Crystals of Semiconducting Polymers
4. Conclusions and Perspectives
Funding
Conflicts of Interest
References
- Bässler, H. Opto-Electronic Properties of Conjugated Polymers. Macromol. Symp. 1996, 104, 269–284. [Google Scholar] [CrossRef]
- Sirringhaus, H.; Tessler, N.; Friend, R.H. Integrated Optoelectronic Devices Based on Conjugated Polymers. Science 1998, 280, 1741–1744. [Google Scholar] [CrossRef]
- Segalman, R.A.; McCulloch, B.; Kirmayer, S.; Urban, J.J. Block Copolymers for Organic Optoelectronics. Macromolecules 2009, 42, 9205–9216. [Google Scholar] [CrossRef]
- Moliton, A.; Hiorns, R.C. Review of Electronic and Optical Properties of Semiconducting π-Conjugated Polymers: Applications in Optoelectronics. Polym. Int. 2004, 53, 1397–1412. [Google Scholar] [CrossRef]
- Botiz, I.; Schaller, R.D.; Verduzco, R.; Darling, S.B. Optoelectronic Properties and Charge Transfer in Donor–Acceptor All-Conjugated Diblock Copolymers. J. Phys. Chem. C 2011, 115, 9260–9266. [Google Scholar] [CrossRef]
- Keller, A. A Note on Single Crystals in Polymers: Evidence for a Folded Chain Configuration. Philos. Mag. 1957, 2, 1171–1175. [Google Scholar] [CrossRef]
- De Gennes, P.G. Scaling Concepts in Polymer Physics; Cornell University Press: Ithaca, NY, USA, 1979. [Google Scholar]
- Doi, M.; Edwards, S.F. The Theory of Polymer Dynamics; Clarenderon Press: Oxford, UK, 1986. [Google Scholar]
- Noriega, R.; Rivnay, J.; Vandewal, K.; Koch, F.P.; Stingelin, N.; Smith, P.; Toney, M.F.; Salleo, A. A General Relationship between Disorder, Aggregation and Charge Transport in Conjugated Polymers. Nat. Mater. 2013, 12, 1038–1044. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Stingelin, N.; Ade, H.; Michels, J.J. A Materials Physics Perspective on Structure–Processing–Function Relations in Blends of Organic Semiconductors. Nat. Rev. Mater. 2023, 8, 439–455. [Google Scholar] [CrossRef]
- Botiz, I.; Astilean, S.; Stingelin, N. Altering the Emission Properties of Conjugated Polymers. Polym. Int. 2016, 65, 157–163. [Google Scholar] [CrossRef]
- Botiz, I. Prominent Processing Techniques to Manipulate Semiconducting Polymer Microstructures. J. Mater. Chem. C 2023, 11, 364–405. [Google Scholar] [CrossRef]
- Botiz, I.; Freyberg, P.; Leordean, C.; Gabudean, A.-M.; Astilean, S.; Yang, A.C.-M.; Stingelin, N. Emission Properties of MEH-PPV in Thin Films Simultaneously Illuminated and Annealed at Different Temperatures. Synth. Met. 2015, 199, 33–36. [Google Scholar] [CrossRef]
- Botiz, I.; Freyberg, P.; Stingelin, N.; Yang, A.C.M.; Reiter, G. Reversibly Slowing Dewetting of Conjugated Polymers by Light. Macromolecules 2013, 46, 2352–2356. [Google Scholar] [CrossRef]
- Todor-Boer, O.; Petrovai, I.; Tarcan, R.; Vulpoi, A.; David, L.; Astilean, S.; Botiz, I. Enhancing Photoluminescence Quenching in Donor–Acceptor PCE11:PPCBMB Films through the Optimization of Film Microstructure. Nanomaterials 2019, 9, 1757. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.M.; Tonzola, C.J.; Jenekhe, S.A. Nanophase-Separated Blends of Acceptor and Donor Conjugated Polymers. Efficient Electroluminescence from Binary Polyquinoline/poly(2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene) and Polyquinoline/poly(3-octylthiophene) Blends. Macromolecules 2003, 36, 6577–6587. [Google Scholar] [CrossRef]
- Albalak, R.J.; Thomas, E.L. Microphase Separation of Block Copolymer Solutions in a Flow Field. J. Polym. Sci. Part B Polym. Phys. 1993, 31, 37–46. [Google Scholar] [CrossRef]
- Liang, Q.; Han, J.; Song, C.; Wang, Z.; Xin, J.; Yu, X.; Xie, Z.; Ma, W.; Liu, J.; Han, Y. Tuning Molecule Diffusion to Control the Phase Separation of the P-DTS(FBTTh2)2/EP-PDI Blend System via Thermal Annealing. J. Mater. Chem. C 2017, 5, 6842–6851. [Google Scholar] [CrossRef]
- MacFarlane, L.R.; Shaikh, H.; Garcia-Hernandez, J.D.; Vespa, M.; Fukui, T.; Manners, I. Functional Nanoparticles through π-Conjugated Polymer Self-Assembly. Nat. Rev. Mater. 2021, 6, 7–26. [Google Scholar] [CrossRef]
- Todor-Boer, O.; Petrovai, I.; Tarcan, R.; David, L.; Astilean, S.; Botiz, I. Control of Microstructure in Polymer: Fullerene Active Films by Convective Self-Assembly. Thin Solid Films 2020, 697, 137780. [Google Scholar] [CrossRef]
- Botiz, I.; Codescu, M.-A.; Farcau, C.; Leordean, C.; Astilean, S.; Silva, C.; Stingelin, N. Convective Self-Assembly of π-Conjugated Oligomers and Polymers. J. Mater. Chem. C 2017, 5, 2513–2518. [Google Scholar] [CrossRef]
- Verduzco, R.; Botiz, I.; Pickel, D.L.; Kilbey, S.M.; Hong, K.; Dimasi, E.; Darling, S.B. Polythiophene-block-polyfluorene and Polythiophene-block-poly(fluorene-co-benzothiadiazole): Insights into the Self-Assembly of All-Conjugated Block Copolymers. Macromolecules 2011, 44, 530–539. [Google Scholar] [CrossRef]
- Le, T.P.; Smith, B.H.; Lee, Y.; Litofsky, J.H.; Aplan, M.P.; Kuei, B.; Zhu, C.; Wang, C.; Hexemer, A.; Gomez, E.D. Enhancing Optoelectronic Properties of Conjugated Block Copolymers through Crystallization of Both Blocks. Macromolecules 2020, 53, 1967–1976. [Google Scholar] [CrossRef]
- Yu, L.; Davidson, E.; Sharma, A.; Andersson, M.R.; Segalman, R.; Müller, C. Isothermal Crystallization Kinetics and Time–Temperature–Transformation of the Conjugated Polymer: Poly(3-(2′-ethyl)hexylthiophene). Chem. Mater. 2017, 29, 5654–5662. [Google Scholar] [CrossRef]
- Rahimi, K.; Botiz, I.; Stingelin, N.; Kayunkid, N.; Sommer, M.; Koch, F.P.V.; Nguyen, H.; Coulembier, O.; Dubois, P.; Brinkmann, M.; et al. Controllable Processes for Generating Large Single Crystals of Poly(3-hexylthiophene). Angew. Chem. Int. Ed. 2012, 51, 11131–11135. [Google Scholar] [CrossRef]
- Marsh, H.S.; Reid, O.G.; Barnes, G.; Heeney, M.; Stingelin, N.; Rumbles, G. Control of Polythiophene Film Microstructure and Charge Carrier Dynamics through Crystallization Temperature. J. Polym. Sci. B Polym. Phys. 2014, 52, 700–707. [Google Scholar] [CrossRef]
- Hu, D.; Yu, J.; Wong, K.; Bagchi, B.; Rossky, P.J.; Barbara, P.F. Collapse of Stiff Conjugated Polymers with Chemical Defects into Ordered, Cylindrical Conformations. Nature 2000, 405, 1030–1033. [Google Scholar] [CrossRef]
- Adachi, T.; Tong, L.; Kuwabara, J.; Kanbara, T.; Saeki, A.; Seki, S.; Yamamoto, Y. Spherical Assemblies from π-Conjugated Alternating Copolymers: Toward Optoelectronic Colloidal Crystals. J. Am. Chem. Soc. 2013, 135, 870–876. [Google Scholar] [CrossRef]
- Lim, J.A.; Liu, F.; Ferdous, S.; Muthukumar, M.; Briseno, A.L. Polymer Semiconductor Crystals. Mater. Today 2010, 13, 14–24. [Google Scholar] [CrossRef]
- Cao, X.; Zhao, K.; Chen, L.; Liu, J.; Han, Y. Conjugated Polymer Single Crystals and Nanowires. Polym. Cryst. 2019, 2, e10064. [Google Scholar] [CrossRef]
- Botiz, I.; Grozev, N.; Schlaad, H.; Reiter, G. The Influence of Protic Non-Solvents Present in the Environment on Structure Formation of Poly(γ-Benzyl-L-Glutamate in Organic Solvents. Soft Matter 2008, 4, 993–1002. [Google Scholar] [CrossRef] [PubMed]
- Jahanshahi, K.; Botiz, I.; Reiter, R.; Thomann, R.; Heck, B.; Shokri, R.; Stille, W.; Reiter, G. Crystallization of Poly(γ-benzyl L-glutamate) in Thin Film Solutions: Structure and Pattern Formation. Macromolecules 2013, 46, 1470–1476. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Q.; Tian, H.; Geng, Y.; Yan, D. Extended-Chain Lamellar Crystals of Monodisperse Polyfluorenes. Polymer 2013, 54, 2459–2465. [Google Scholar] [CrossRef]
- Kim, D.H.; Han, J.T.; Park, Y.D.; Jang, Y.; Cho, J.H.; Hwang, M.; Cho, K. Single-Crystal Polythiophene Microwires Grown by Self-Assembly. Adv. Mater. 2006, 18, 719–723. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, Z.; Hu, Z.; He, T. Single Crystals of Polythiophene with Different Molecular Conformations Obtained by Tetrahydrofuran Vapor Annealing and Controlling Solvent Evaporation. J. Phys. Chem. B 2010, 114, 7452–7460. [Google Scholar] [CrossRef]
- Xiao, X.; Hu, Z.; Wang, Z.; He, T. Study on the Single Crystals of Poly(3-octylthiophene) Induced by Solvent-Vapor Annealing. J. Phys. Chem. B 2009, 113, 14604–14610. [Google Scholar] [CrossRef] [PubMed]
- Hourani, W.; Rahimi, K.; Botiz, I.; Koch, F.; Reiter, G.; Lienerth, P.; Heiser, T.; Bubendorff, J.-L.; Simon, L. Anisotropic Charge Transport in Large Single Crystals of π-Conjugated Organic Molecules. Nanoscale 2014, 6, 4774–4780. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, K.; Botiz, I.; Agumba, J.O.; Motamen, S.; Stingelin, N.; Reiter, G. Light Absorption of Poly(3-hexylthiophene) Single Crystals. RSC Adv. 2014, 4, 11121–11123. [Google Scholar] [CrossRef]
- Brambilla, L.; Tommasini, M.; Botiz, I.; Rahimi, K.; Agumba, J.O.; Stingelin, N.; Zerbi, G. Regio-Regular Oligo and Poly (3-hexyl thiophene): Precise Structural Markers from the Vibrational Spectra of Oligomer Single Crystals. Macromolecules 2014, 47, 6730–6739. [Google Scholar] [CrossRef]
- Peng, Z.; Ye, L.; Ade, H. Understanding, Quantifying, and Controlling the Molecular Ordering of Semiconducting Polymers: From Novices to Experts and Amorphous to Perfect Crystals. Mater. Horiz. 2022, 9, 577–606. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, H.; Dong, H.; Meng, L.; Jiang, L.; Jiang, L.; Wang, Y.; Yu, J.; Sun, Y.; Hu, W.; et al. High Mobility Emissive Organic Semiconductor. Nat. Commun. 2015, 6, 10032. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, H.; Hu, W. Organic Semiconductor Single Crystals for Electronics and Photonics. Adv. Mater. 2018, 30, 1801048. [Google Scholar] [CrossRef]
- Jin, X.-H.; Price, M.B.; Finnegan, J.R.; Boott, C.E.; Richter, J.M.; Rao, A.; Menke, S.M.; Friend, R.H.; Whittell, G.R.; Manners, I. Long-Range Exciton Transport in Conjugated Polymer Nanofibers Prepared by Seeded Growth. Science 2018, 360, 897–900. [Google Scholar] [CrossRef]
- Xue, M.; Yang, J.; Kang, F.; Wang, X.; Zhang, Q. Recent Progress in Single-Crystal Structures of Organic Polymers. J. Mater. Chem. C 2022, 10, 17027–17047. [Google Scholar] [CrossRef]
- Yao, Y.; Dong, H.; Hu, W. Ordering of Conjugated Polymer Molecules: Recent Advances and Perspectives. Polym. Chem. 2013, 4, 5197–5205. [Google Scholar] [CrossRef]
- Dong, H.; Hu, W. Multilevel Investigation of Charge Transport in Conjugated Polymers. Acc. Chem. Res. 2016, 49, 2435–2443. [Google Scholar] [CrossRef]
- Huang, C.-F.; Wu, S.-L.; Huang, Y.-F.; Chen, Y.-C.; Chang, S.-T.; Wu, T.-Y.; Wu, K.-Y.; Chuang, W.-T.; Wang, C.-L. Packing Principles for Donor–Acceptor Oligomers from Analysis of Single Crystals. Chem. Mater. 2016, 28, 5175–5190. [Google Scholar] [CrossRef]
- Yang, J.; Kang, F.; Wang, X.; Zhang, Q. Design Strategies for Improving the Crystallinity of Covalent Organic Frameworks and Conjugated Polymers: A Review. Mater. Horiz. 2022, 9, 121–146. [Google Scholar] [CrossRef] [PubMed]
- Thakur, M.; Meyler, S. Growth of Large-Area Thin-Film Single Crystals of Poly(diacetylenes). Macromolecules 1985, 18, 2341–2344. [Google Scholar] [CrossRef]
- Batchelder, D.N.; Bloor, D. Strain Dependence of the Dominant Electronic Excitation of a Conjugated Polymer Crystal. J. Phys. C Solid State Phys. 1978, 11, L629. [Google Scholar] [CrossRef]
- Baughman, R.H.; Chance, R.R. Comments on the Optical Properties of Fully Conjugated Polymers: Analogy between Polyenes and Polydiacetylenes. J. Polym. Sci. B Polym. Phys. 1976, 14, 2037–2045. [Google Scholar] [CrossRef]
- Winter, M.; Grupp, A.; Mehring, M.; Sixl, H. Transient Esr Observation of Triplet-Soliton Pairs in a Conjugated Polymer Single Crystal. Chem. Phys. Lett. 1987, 133, 482–484. [Google Scholar] [CrossRef]
- Siddiqui, A.S.; Wilson, E.G. Dark-Current Measurements in a Conjugated-Polymer Single Crystal. J. Phys. C Solid State Phys. 1979, 12, 4237. [Google Scholar] [CrossRef]
- Bhola, R.; Payamyar, P.; Murray, D.J.; Kumar, B.; Teator, A.J.; Schmidt, M.U.; Hammer, S.M.; Saha, A.; Sakamoto, J.; Schlüter, A.D.; et al. A Two-Dimensional Polymer from the Anthracene Dimer and Triptycene Motifs. J. Am. Chem. Soc. 2013, 135, 14134–14141. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Q.; Dong, H.; Hu, W. Conjugated Polymer Crystals via Topochemical Polymerization. Sci. China Chem. 2019, 62, 1271–1274. [Google Scholar] [CrossRef]
- Yao, Y.; Dong, H.; Liu, F.; Russell, T.P.; Hu, W. Approaching Intra- and Interchain Charge Transport of Conjugated Polymers Facilely by Topochemical Polymerized Single Crystals. Adv. Mater. 2017, 29, 1701251. [Google Scholar] [CrossRef] [PubMed]
- Lauher, J.W.; Fowler, F.W.; Goroff, N.S. Single-Crystal-to-Single-Crystal Topochemical Polymerizations by Design. Acc. Chem. Res. 2008, 41, 1215–1229. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, Y.; Liu, H.; Li, J.; Li, T.; Wu, Y.; Okada, S.; Nakanishi, H. Topochemical Polymerization of Unsymmetrical Aryldiacetylene Supramolecules with Nitrophenyl Substituents Utilizing C–H⋯π Interactions. Org. Biomol. Chem. 2015, 13, 5467–5474. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Fowler, F.W.; Lauher, J.W. Weak Interactions Dominating the Supramolecular Self-Assembly in a Salt: A Designed Single-Crystal-to-Single-Crystal Topochemical Polymerization of a Terminal Aryldiacetylene. J. Am. Chem. Soc. 2009, 131, 634–643. [Google Scholar] [CrossRef]
- Samanta, R.; Ghosh, S.; Devarapalli, R.; Reddy, C.M. Visible Light Mediated Photopolymerization in Single Crystals: Photomechanical Bending and Thermomechanical Unbending. Chem. Mater. 2018, 30, 577–581. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.; Qi, H.; Ortega-Guerrero, A.; Wang, L.; Xu, K.; Wang, M.; Park, S.; Hennersdorf, F.; Dianat, A.; et al. On-Water Surface Synthesis of Charged Two-Dimensional Polymer Single Crystals via the Irreversible Katritzky Reaction. Nat. Synth. 2022, 1, 69–76. [Google Scholar] [CrossRef]
- Beaudoin, D.; Maris, T.; Wuest, J.D. Constructing Monocrystalline Covalent Organic Networks by Polymerization. Nat. Chem. 2013, 5, 830–834. [Google Scholar] [CrossRef]
- Evans, A.M.; Parent, L.R.; Flanders, N.C.; Bisbey, R.P.; Vitaku, E.; Kirschner, M.S.; Schaller, R.D.; Chen, L.X.; Gianneschi, N.C.; Dichtel, W.R. Seeded Growth of Single-Crystal Two-Dimensional Covalent Organic Frameworks. Science 2018, 361, 52–57. [Google Scholar] [CrossRef]
- Gao, C.; Li, J.; Yin, S.; Lin, G.; Ma, T.; Meng, Y.; Sun, J.; Wang, C. Isostructural Three-Dimensional Covalent Organic Frameworks. Angew. Chem. Int. Ed. 2019, 58, 9770–9775. [Google Scholar] [CrossRef]
- Ma, T.; Kapustin, E.A.; Yin, S.X.; Liang, L.; Zhou, Z.; Niu, J.; Li, L.-H.; Wang, Y.; Su, J.; Li, J.; et al. Single-Crystal x-Ray Diffraction Structures of Covalent Organic Frameworks. Science 2018, 361, 48–52. [Google Scholar] [CrossRef]
- Liang, L.; Qiu, Y.; Wang, W.D.; Han, J.; Luo, Y.; Yu, W.; Yin, G.-L.; Wang, Z.-P.; Zhang, L.; Ni, J.; et al. Non-Interpenetrated Single-Crystal Covalent Organic Frameworks. Angew. Chem. Int. Ed. 2020, 59, 17991–17995. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, K.; Gerngross, O.; Abitz, W. Zur Röntgenographischen Strukturerforschung des Gelatinemicells. Z. Phys. Chem. 1930, 10B, 371–394. [Google Scholar] [CrossRef]
- Storks, K.H. An Electron Diffraction Examination of Some Linear High Polymers. J. Am. Chem. Soc. 1938, 60, 1753–1761. [Google Scholar] [CrossRef]
- Jaccodine, R. Observations of Spiral Growth Steps in Ethylene Polymer. Nature 1955, 176, 305–306. [Google Scholar] [CrossRef]
- Till, P.H., Jr. The Growth of Single Crystals of Linear Polyethylene. J. Polym. Sci. 1957, 24, 301–306. [Google Scholar] [CrossRef]
- Fischer, E.W. Notizen: Stufen- Und Spiralförmiges Kristallwachstum Bei Hochpolymeren. Z. Naturforschung A 1957, 12, 753–754. [Google Scholar] [CrossRef]
- Lauritzen, J.I., Jr.; Hoffman, J.D. Theory of Formation of Polymer Crystals with Folded Chains in Dilute Solution. J. Res. Natl. Bur. Stand. A Phys. Chem. 1960, 64A, 73–102. [Google Scholar] [CrossRef] [PubMed]
- Laudise, R.A.; Kloc, C.; Simpkins, P.G.; Siegrist, T. Physical Vapor Growth of Organic Semiconductors. J. Cryst. Growth 1998, 187, 449–454. [Google Scholar] [CrossRef]
- Kloc, C.; Simpkins, P.G.; Siegrist, T.; Laudise, R.A. Physical Vapor Growth of Centimeter-Sized Crystals of α-Hexathiophene. J. Cryst. Growth 1997, 182, 416–427. [Google Scholar] [CrossRef]
- Agbolaghi, S.; Zenoozi, S.; Hosseini, Z.; Abbasi, F. Scrolled/Flat Crystalline Structures of Poly(3-hexylthiophene) and Poly(ethylene glycol) Block Copolymers Subsuming Unseeded Half-Ring-Like and Seeded Cubic, Epitaxial, and Fibrillar Crystals. Macromolecules 2016, 49, 9531–9541. [Google Scholar] [CrossRef]
- Zenoozi, S.; Agbolaghi, S.; Gheybi, H.; Abbasi, F. High-Quality Nano/Micro Hairy Single Crystals Developed from Poly(3-hexylthiophene)-Based Conductive–Dielectric Block Copolymers Having Flat-on and Edge-on Orientations. Macromol. Chem. Phys. 2017, 218, 1700067. [Google Scholar] [CrossRef]
- Zenoozi, S.; Agbolaghi, S.; Poormahdi, E.; Hashemzadeh-Gargari, M.; Mahmoudi, M. Verification of Scherrer Formula for Well-Shaped Poly(3-hexylthiophene)-Based Conductive Single Crystals and Nanofibers and Fabrication of Photovoltaic Devices from Thin Film Coating. Macromol. Res. 2017, 25, 826–840. [Google Scholar] [CrossRef]
- Ma, Z.; Geng, Y.; Yan, D. Extended-Chain Lamellar Packing of Poly(3-butylthiophene) in Single Crystals. Polymer 2007, 48, 31–34. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, D.H.; Yang, D.S.; Heo, D.U.; Kim, K.H.; Shin, J.; Kim, H.-J.; Baek, K.-Y.; Lee, K.; Baik, H.; et al. Novel Polymer Nanowire Crystals of Diketopyrrolopyrrole-Based Copolymer with Excellent Charge Transport Properties. Adv. Mater. 2013, 25, 4102–4106. [Google Scholar] [CrossRef]
- Um, H.A.; Lee, D.H.; Heo, D.U.; Yang, D.S.; Shin, J.; Baik, H.; Cho, M.J.; Choi, D.H. High Aspect Ratio Conjugated Polymer Nanowires for High Performance Field-Effect Transistors and Phototransistors. ACS Nano 2015, 9, 5264–5274. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Jiang, S.; Jiang, L.; Liu, Y.; Li, H.; Hu, W.; Wang, E.; Yan, S.; Wei, Z.; Xu, W.; et al. Nanowire Crystals of a Rigid Rod Conjugated Polymer. J. Am. Chem. Soc. 2009, 131, 17315–17320. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Kappl, M.; Liebewirth, I.; Müller, M.; Kirchhoff, K.; Pisula, W.; Müllen, K. Organic Field-Effect Transistors Based on Highly Ordered Single Polymer Fibers. Adv. Mater. 2012, 24, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, Q.; Tian, H.; Liu, J.; Geng, Y.; Yan, D. Insight into Lamellar Crystals of Monodisperse Polyfluorenes—Fractionated Crystallization and the Crystal’s Stability. Polymer 2013, 54, 1251–1258. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Q.; Tian, H.; Liu, J.; Geng, Y.; Yan, D. Control of Crystal Morphology in Monodisperse Polyfluorenes by Solvent and Molecular Weight. J. Phys. Chem. B 2013, 117, 8880–8886. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Sui, A.; Wang, Q.; Tian, H.; Geng, Y.; Yan, D. Fractionated Crystallization of Polydisperse Polyfluorenes. Polymer 2013, 54, 3150–3155. [Google Scholar] [CrossRef]
- Wang, Y.; Torres, J.A.; Stieg, A.Z.; Jiang, S.; Yeung, M.T.; Rubin, Y.; Chaudhuri, S.; Duan, X.; Kaner, R.B. Graphene-Assisted Solution Growth of Vertically Oriented Organic Semiconducting Single Crystals. ACS Nano 2015, 9, 9486–9496. [Google Scholar] [CrossRef]
- Yao, Z.-F.; Zheng, Y.-Q.; Dou, J.-H.; Lu, Y.; Ding, Y.-F.; Ding, L.; Wang, J.-Y.; Pei, J. Approaching Crystal Structure and High Electron Mobility in Conjugated Polymer Crystals. Adv. Mater. 2021, 33, 2006794. [Google Scholar] [CrossRef]
- Utochnikova, V.V. Chapter 318—Lanthanide Complexes as OLED Emitters. In Handbook on the Physics and Chemistry of Rare Earths; Bünzli, J.-C.G., Pecharsky, V.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 59, pp. 1–91. ISBN 0168-1273. [Google Scholar]
- Wang, Y.; Tran, H.D.; Liao, L.; Duan, X.; Kaner, R.B. Nanoscale Morphology, Dimensional Control, and Electrical Properties of Oligoanilines. J. Am. Chem. Soc. 2010, 132, 10365–10373. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botiz, I. Single Crystals of Established Semiconducting Polymers. Polymers 2024, 16, 761. https://doi.org/10.3390/polym16060761
Botiz I. Single Crystals of Established Semiconducting Polymers. Polymers. 2024; 16(6):761. https://doi.org/10.3390/polym16060761
Chicago/Turabian StyleBotiz, Ioan. 2024. "Single Crystals of Established Semiconducting Polymers" Polymers 16, no. 6: 761. https://doi.org/10.3390/polym16060761
APA StyleBotiz, I. (2024). Single Crystals of Established Semiconducting Polymers. Polymers, 16(6), 761. https://doi.org/10.3390/polym16060761