Evaluating the Incorporation of Myrtus communis L. Leaves Infusion in Alginate-Based Films and Spheres to Enhance the Oxidative Stability of Oil-in-Water Emulsions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Standards
2.2. Extract Preparation
2.3. Radical Scavenging Activity
2.3.1. Total Polyphenol Content (TPC)
2.3.2. Total Flavonoid Content
2.3.3. Trolox Equivalent Antioxidant Capacity Assay
2.3.4. Ferric-Reducing Antioxidant Power (FRAP) Assay
2.3.5. 2,2-Difenil-1-Picrilhidrazil (DPPH) Assay
2.3.6. Oxygen Radical Antioxidant Capacity (ORAC) Assay
2.4. Identification and Quantification of Phenolic Compounds by High-Performance Liquid Chromatography (HPLC-DAD)
2.5. Antioxidant Activity Evaluation by HPLC-ABTS
2.6. Spheres Preparation
2.7. Film Preparation and Characterization: Difussivity Assay
2.7.1. Preparation of Films
2.7.2. Microstructure of the Films
2.7.3. Film Diffusivity
2.8. Oil-in-Water Emulsions: Antioxidant Activity
Preparation of Emulsions
2.9. Study of the Antioxidant Activity in the Aqueous Phase of the Emulsions
2.10. Oxidation Reactions
2.10.1. Primary Oxidation Measures (Peroxide Value, PV)
2.10.2. Secondary Oxidation Reactions (Thiobarbituric Reactive Substances, TBARS)
2.11. pH Value
2.12. Statistical Analysis
3. Results and Discussion
3.1. Phenolic Profile and Scavenging Activity of M. communis L. Leaf Extracts
3.1.1. Total Phenolic (TPC) and Flavonoid Content (TFC)
3.1.2. Radical Scavenging Activity of MCL Extracts
3.2. Phenolic Compounds in M. communis L. Extract
3.3. Antioxidant Activity Evaluation by HPLC-ABTS
3.4. Alginate-Based Films and Spheres Reinforced with MCLE Extracts
3.4.1. Film Characterization
3.4.2. Diffusivity Assay
3.5. Application of Films and Spheres in Oil-in-Water Emulsions
3.5.1. pH Value Results
3.5.2. Primary Oxidation Products (Peroxide Value)
3.5.3. Secondary Oxidation Products
3.5.4. Radical Scavenging Activity of the Aqueous Phase of the Emulsions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parham, S.; Kharazi, A.Z.; Bakhsheshi-Rad, H.R.; Nur, H.; Ismail, A.F.; Sharif, S.; RamaKrishna, S.; Berto, F. Antioxidant, Antimicrobial and Antiviral Properties of Herbal Materials. Antioxidants 2020, 9, 1309. [Google Scholar] [CrossRef] [PubMed]
- Craig, W.J. Health-Promoting Properties of Common Herbs. Am. J. Clin. Nutr. 1999, 70, 491S–499S. [Google Scholar] [CrossRef]
- Stoia, M.; Oancea, S. Low-Molecular-Weight Synthetic Antioxidants: Classification, Pharmacological Profile, Effectiveness and Trends. Antioxidants 2022, 11, 638. [Google Scholar] [CrossRef]
- Zehiroglu, C.; Ozturk Sarikaya, S.B. The Importance of Antioxidants and Place in Today’s Scientific and Technological Studies. J. Food Sci. Technol. 2019, 56, 4757–4774. [Google Scholar] [CrossRef]
- Jena, A.B.; Samal, R.R.; Bhol, N.K.; Duttaroy, A.K. Cellular Red-Ox System in Health and Disease: The Latest Update. Biomed. Pharmacother. 2023, 162, 114606. [Google Scholar] [CrossRef]
- Nekvapil, T.; Kopriva, V.; Boudny, V.; Hostovsky, M.; Dvorak, P.; Malota, L. Decrease in the Antioxidant Capacity in Beverages Containing Tea Extracts during Storage. Sci. World J. 2012, 2012, 361698. [Google Scholar] [CrossRef] [PubMed]
- Larson, R.A. The Antioxidants of Higher Plants. Phytochemistry 1988, 27, 969–978. [Google Scholar] [CrossRef]
- Ramarathnam, N.; Osawa, T.; Ochi, H.; Kawakishi, S. The Contribution of Plant Food Antioxidants to Human Health. Trends Food Sci. Technol. 1995, 6, 75–82. [Google Scholar] [CrossRef]
- Berka-Zougali, B. Extraction of Essential Oils from Algerian Myrtle Leaves Using Instant Controlled Pressure Drop Technology. J. Chromatogr. A 2010, 1217, 6134–6142. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of Phenolic Compounds: A Review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; et al. An Overview of Plant Phenolic Compounds and Their Importance in Human Nutrition and Management of Type 2 Diabetes. Molecules 2016, 21, 1374. [Google Scholar] [CrossRef]
- Shah, M.A.; Bosco, S.J.D.; Mir, S.A. Plant Extracts as Natural Antioxidants in Meat and Meat Products. Meat Sci. 2014, 98, 21–33. [Google Scholar] [CrossRef]
- Brewer, M.S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A Review of the Antioxidant Potential of Medicinal Plant Species. Food Bioprod. Process. 2011, 89, 217–233. [Google Scholar] [CrossRef]
- Gadkari, P.V.; Balaraman, M. Catechins: Sources, Extraction and Encapsulation: A Review. Food Bioprod. Process. 2015, 93, 122–138. [Google Scholar] [CrossRef]
- Beatrice, C.A.G.; Rosa-Sibakov, N.; Lille, M.; Sözer, N.; Poutanen, K.; Ketoja, J.A. Structural Properties and Foaming of Plant Cell Wall Polysaccharide Dispersions. Carbohydr. Polym. 2017, 173, 508–518. [Google Scholar] [CrossRef]
- Mir, S.A.; Dar, B.N.; Wani, A.A.; Shah, M.A. Effect of Plant Extracts on the Techno-Functional Properties of Biodegradable Packaging Films. Trends Food Sci. Technol. 2018, 80, 141–154. [Google Scholar] [CrossRef]
- Manzoor, A.; Yousuf, B.; Pandith, J.A.; Ahmad, S. Plant-Derived Active Substances Incorporated as Antioxidant, Antibacterial or Antifungal Components in Coatings/Films for Food Packaging Applications. Food Biosci. 2023, 53, 102717. [Google Scholar] [CrossRef]
- Gallego, M.G.; Rodríguez, T.; Rodríguez, I.; Almajano, M.P. Analytical Characterization of Polyphenols from Tara and Caesalpinia Decapetala as Stabilizers of O/W Emulsions. J. Food Sci. 2016, 81, C2676–C2685. [Google Scholar] [CrossRef] [PubMed]
- Segovia, F.; Lupo, B.; Peiró, S.; Gordon, M.; Almajano, M. Extraction of Antioxidants from Borage (Borago Officinalis L.) Leaves—Optimization by Response Surface Method and Application in Oil-in-Water Emulsions. Antioxidants 2014, 3, 339–357. [Google Scholar] [CrossRef] [PubMed]
- Gallego, M.; Skowyra, M.; Gordon, M.; Azman, N.; Almajano, M. Effect of Leaves of Caesalpinia Decapetala on Oxidative Stability of Oil-in-Water Emulsions. Antioxidants 2017, 6, 19. [Google Scholar] [CrossRef]
- Guzelmeric, E.; Ugurlu, P.; Celik, C.; Sen, N.B.; Helvacıoglu, S.; Charehsaz, M.; Erdogan, M.; Ockun, M.A.; Kırmızıbekmez, H.; Aydın, A.; et al. Myrtus Communis L. (Myrtle) Plant Parts: Comparative Assessment of Their Chemical Compositions and Antioxidant, Anticancer, and Antimutagenic Activities. S. Afr. J. Bot. 2022, 150, 711–720. [Google Scholar] [CrossRef]
- Aleksic, V.; Knezevic, P. Antimicrobial and Antioxidative Activity of Extracts and Essential Oils of Myrtus Communis L. Microbiol. Res. 2014, 169, 240–254. [Google Scholar] [CrossRef]
- Brahmi, F.; Mokhtari, O.; Idrissi Yahyaoui, M.; Zraibi, L.; Eddine Bentouhami, N.; Abdeslam, A.; Legssyer, B. Phytochemical Composition, Antioxidant, and Antifungal Activity of Essential Oil from Myrtus Communis, L. Mater. Today Proc. 2023, 72, 3826–3830. [Google Scholar] [CrossRef]
- Dabbaghi, M.M.; Fadaei, M.S.; Soleimani Roudi, H.; Baradaran Rahimi, V.; Askari, V.R. A Review of the Biological Effects of Myrtus Communis. Physiol. Rep. 2023, 11, e15770. [Google Scholar] [CrossRef]
- Amensour, M.; Sánchez-Zapata, E.; Abrini, J.; Sendra, E.; Sayas, E.; Navarro, C.; Pérez-Alvarez, J.A.; Fernández-López, J. Estabilidad del color en salchichas de pollo tipo Frankfurt adicionadas con extracto acuoso de hoja de Myrtus communis. Óptica Pura Apl. 2010, 43, 251–257. [Google Scholar]
- Boroujeni, L.S.; Hojjatoleslamy, M. Using Thymus Carmanicus and Myrtus Communis Essential Oils to Enhance the Physicochemical Properties of Potato Chips. Food Sci. Nutr. 2018, 6, 1006–1014. [Google Scholar] [CrossRef]
- Ouerfelli, M.; Metón, I.; Codina-Torrella, I.; Almajano, M.P. Antibacterial and Antiproliferative Activities of Azadirachta Indica Leaf Extract and Its Effect on Oil-in-Water Food Emulsion Stability. Molecules 2022, 27, 7772. [Google Scholar] [CrossRef]
- Odumosu, P.; Ojerinde, S.; Egbuchiem, M. Polyphenolic Contents of Some Instant Tea Brands and Their Anti-Oxidant Activities. J. App. Pharm. Sci. 2015, 5, 100–105. [Google Scholar] [CrossRef]
- Gallego, M.G.; Gordon, M.H.; Segovia, F.J.; Skowyra, M.; Almajano, M.P. Antioxidant Properties of Three Aromatic Herbs (Rosemary, Thyme and Lavender) in Oil-in-Water Emulsions. J. Am. Oil Chem. Soc. 2013, 90, 1559–1568. [Google Scholar] [CrossRef]
- Bevan, P.; Pastor, M.V.; Almajano, M.P.; Codina-Torrella, I. Antioxidant and Antiradical Activities of Hibiscus Sabdariffa L. Extracts Encapsulated in Calcium Alginate Spheres. Polymers 2023, 15, 1740. [Google Scholar] [CrossRef]
- Segovia Gómez, F.; Almajano Pablos, M.P. Pineapple Waste Extract for Preventing Oxidation in Model Food Systems. J. Food Sci. 2016, 81, C1622–C1628. [Google Scholar] [CrossRef]
- Le Grandois, J.; Guffond, D.; Hamon, E.; Marchioni, E.; Werner, D. Combined Microplate-ABTS and HPLC-ABTS Analysis of Tomato and Pepper Extracts Reveals Synergetic and Antagonist Effects of Their Lipophilic Antioxidative Components. Food Chem. 2017, 223, 62–71. [Google Scholar] [CrossRef]
- Farias, N.S.D.; Silva, B.; De Oliveira Costa, A.C.; Müller, C.M.O. Alginate Based Antioxidant Films with Yerba Mate (Ilex Paraguariensis St. Hil.): Characterization and Kinetics of Phenolic Compounds Release. Food Packag. Shelf Life 2021, 28, 100548. [Google Scholar] [CrossRef]
- Villasante, J.; Codina, E.; Hidalgo, G.I.; Martínez De Ilarduya, A.; Muñoz-Guerra, S.; Almajano, M.P. Poly (α-Dodecyl γ-Glutamate) (PAAG-12) and Polylactic Acid Films Charged with α-Tocopherol and Their Antioxidant Capacity in Food Models. Antioxidants 2019, 8, 284. [Google Scholar] [CrossRef]
- Abeyrathne, E.D.N.S.; Nam, K.; Ahn, D.U. Analytical Methods for Lipid Oxidation and Antioxidant Capacity in Food Systems. Antioxidants 2021, 10, 1587. [Google Scholar] [CrossRef]
- Kapadia, P.; Newell, A.S.; Cunningham, J.; Roberts, M.R.; Hardy, J.G. Extraction of High-Value Chemicals from Plants for Technical and Medical Applications. Int. J. Mol. Sci. 2022, 23, 10334. [Google Scholar] [CrossRef]
- Tuberoso, C.I.G.; Rosa, A.; Bifulco, E.; Melis, M.P.; Atzeri, A.; Pirisi, F.M.; Dessì, M.A. Chemical Composition and Antioxidant Activities of Myrtus Communis L. Berries Extracts. Food Chem. 2010, 123, 1242–1251. [Google Scholar] [CrossRef]
- Snoussi, A.; Essaidi, I.; Ben Haj Koubaier, H.; Zrelli, H.; Alsafari, I.; Živoslav, T.; Mihailovic, J.; Khan, M.; El Omri, A.; Ćirković Veličković, T.; et al. Drying Methodology Effect on the Phenolic Content, Antioxidant Activity of Myrtus Communis L. Leaves Ethanol Extracts and Soybean Oil Oxidative Stability. BMC Chem. 2021, 15, 31. [Google Scholar] [CrossRef] [PubMed]
- Aidi Wannes, W.; Mhamdi, B.; Sriti, J.; Ben Jemia, M.; Ouchikh, O.; Hamdaoui, G.; Kchouk, M.E.; Marzouk, B. Antioxidant Activities of the Essential Oils and Methanol Extracts from Myrtle (Myrtus Communis Var. Italica L.) Leaf, Stem and Flower. Food Chem. Toxicol. 2010, 48, 1362–1370. [Google Scholar] [CrossRef] [PubMed]
- Martillanes, S.; Rocha-Pimienta, J.; Cabrera-Bañegil, M.; Martín-Vertedor, D.; Delgado-Adámez, J. Application of Phenolic Compounds for Food Preservation: Food Additive and Active Packaging. In Phenolic Compounds—Biological Activity; Soto-Hernndez, M., Palma-Tenango, M., Garcia-Mateos, M.D.R., Eds.; InTech: Berlin, Germany, 2017; ISBN 978-953-51-2959-2. [Google Scholar]
- Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.; Latha, L. Extraction, Isolation and Characterization of Bioactive Compounds From Plants’ Extracts. Afr. J. Trad. Compl. Alt. Med. 2010, 8, 1–10. [Google Scholar] [CrossRef]
- Dordevic, S.; Dordevic, D.; Sedlacek, P.; Kalina, M.; Tesikova, K.; Antonic, B.; Tremlova, B.; Treml, J.; Nejezchlebova, M.; Vapenka, L.; et al. Incorporation of Natural Blueberry, Red Grapes and Parsley Extract By-Products into the Production of Chitosan Edible Films. Polymers 2021, 13, 3388. [Google Scholar] [CrossRef] [PubMed]
- Dou, L.; Li, B.; Zhang, K.; Chu, X.; Hou, H. Physical Properties and Antioxidant Activity of Gelatin-Sodium Alginate Edible Films with Tea Polyphenols. Int. J. Biol. Macromol. 2018, 118, 1377–1383. [Google Scholar] [CrossRef] [PubMed]
- Nair, M.S.; Tomar, M.; Punia, S.; Kukula-Koch, W.; Kumar, M. Enhancing the Functionality of Chitosan- and Alginate-Based Active Edible Coatings/Films for the Preservation of Fruits and Vegetables: A Review. Int. J. Biol. Macromol. 2020, 164, 304–320. [Google Scholar] [CrossRef] [PubMed]
- Detsi, A.; Kavetsou, E.; Kostopoulou, I.; Pitterou, I.; Pontillo, A.R.N.; Tzani, A.; Christodoulou, P.; Siliachli, A.; Zoumpoulakis, P. Nanosystems for the Encapsulation of Natural Products: The Case of Chitosan Biopolymer as a Matrix. Pharmaceutics 2020, 12, 669. [Google Scholar] [CrossRef]
- Xu, Y.; Yan, X.; Zheng, H.; Li, J.; Wu, X.; Xu, J.; Zhen, Z.; Du, C. The Application of Encapsulation Technology in the Food Industry: Classifications, Recent Advances, and Perspectives. Food Chem. X 2024, 21, 101240. [Google Scholar] [CrossRef]
Compounds ¹ | M. communis L. Leaf Extracts 2 | ||
---|---|---|---|
MCLE40 | MCLE60 | MCLE80 | |
TPC (g GAE/L) | 63.67 ± 0.02 c | 66.06 ± 0.11 a | 64.18 ± 0.05 b |
TFC (g QE/L) | 17.36 ± 0.05 b | 18.91 ± 0.09 a | 18.74 ± 0.02 a |
Antiradical Methods (mmol TE/L) 1 | M. communis L. Leaf Extracts 2 | ||
---|---|---|---|
MCLE40 | MCLE60 | MCLE80 | |
FRAP | 13.04 ± 0.03 c | 24.85 ± 0.07 b | 32.21 ± 0.05 a |
DPPH | 14.79 ± 0.05 b | 28.75 ± 0.06 a | 26.62 ± 0.07 a |
ABTS | 14.96 ± 0.02 b | 30.61 ± 0.04 a | 29.71 ± 0.06 a |
ORAC | 5.06 ± 0.07 b | 14.94 ± 0.08 a | 15.27 ± 0.05 a |
Compound (mg/L of Infusion) | M. communis L. Leaf Extracts 1 | ||
---|---|---|---|
MCLE40 | MCLE60 | MCLE80 | |
Arbutin | 68.14 ± 0.15 c | 122.08 ± 0.17 b | 155.16 ± 0.09 a |
Commaric acid | 20.31 ± 0.01 a | 18.56 ± 0.01 b | 20.4 ± 0.26 a |
Epicatechin | 69.25 ± 0.03 b | 73.89 ± 0.03 ab | 75,64 ± 0.14 a |
Ferulic acid | 20.61 ± 0.01 a | 16.08 ± 0.01 b | 13.85 ± 0.04 c |
Gallic acid | 33.81 ± 0.01 c | 36.72 ± 0.03 a | 34.98 ± 0.05 b |
Kaempferol | 20.23 ± 0.01 c | 23.76 ± 0.02 a | 22.56 ± 0.02 b |
Myrcetin | 22.19 ± 0.06 b | 23.84 ± 0.04 a | 21.29 ± 0.04 c |
Sinapic acid | 44.19 ± 0.04 b | 51.85 ± 0.06 a | 32.12 ± 0.04 c |
Compounds ¹ | Retention Time (min.) | Positive Peaks | Negative Peaks |
---|---|---|---|
Content (mg/L) | Antioxidant Activity (mg GAE/L) | ||
Commaric acid | 13.3 | 19.43 ± 0.08 c | 0.98 ± 0.01 c |
Epicatechin | 11.02 | 71.32 ± 0.03 d | 5.99 ± 0.04 c |
Gallic acid | 4.4 | 36.11 ± 0.13 a | 1.31 ± 0.03 a |
Myrcetin | 15.2 | 22.97 ± 0.09 b | 1.21 ± 0.03 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Hammadi, N.; Almajano, M.P.; Pastor, M.V.; Codina-Torrella, I. Evaluating the Incorporation of Myrtus communis L. Leaves Infusion in Alginate-Based Films and Spheres to Enhance the Oxidative Stability of Oil-in-Water Emulsions. Polymers 2024, 16, 649. https://doi.org/10.3390/polym16050649
El Hammadi N, Almajano MP, Pastor MV, Codina-Torrella I. Evaluating the Incorporation of Myrtus communis L. Leaves Infusion in Alginate-Based Films and Spheres to Enhance the Oxidative Stability of Oil-in-Water Emulsions. Polymers. 2024; 16(5):649. https://doi.org/10.3390/polym16050649
Chicago/Turabian StyleEl Hammadi, Nisserine, María Pilar Almajano, Maria Vicenta Pastor, and Idoia Codina-Torrella. 2024. "Evaluating the Incorporation of Myrtus communis L. Leaves Infusion in Alginate-Based Films and Spheres to Enhance the Oxidative Stability of Oil-in-Water Emulsions" Polymers 16, no. 5: 649. https://doi.org/10.3390/polym16050649
APA StyleEl Hammadi, N., Almajano, M. P., Pastor, M. V., & Codina-Torrella, I. (2024). Evaluating the Incorporation of Myrtus communis L. Leaves Infusion in Alginate-Based Films and Spheres to Enhance the Oxidative Stability of Oil-in-Water Emulsions. Polymers, 16(5), 649. https://doi.org/10.3390/polym16050649