Biobased Films Based on Chitosan and Microcrystalline Cellulose for Sustainable Packaging Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Biocomposite Films
2.3. Characterizations
2.3.1. FT-IR Analysis
2.3.2. UV–Visible Analysis
2.3.3. Differential Scanning Calorimetry
2.3.4. Mechanical Characterization
2.3.5. Morphological Analysis
2.3.6. Water Contact Angle Measurements
2.4. Photo-Oxidation Exposure
3. Results and Discussion
3.1. Spectroscopy and Contact Angle Analysis
3.2. Thermal Properties
3.3. Mechanical and Morphological Observations
3.4. Photo-Oxidation Resistance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, M.; Chen, L.; Wang, J.; Msigwa, G.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Yap, P.-S. Circular Economy Strategies for Combating Climate Change and Other Environmental Issues. Environ. Chem. Lett. 2023, 21, 55–80. [Google Scholar] [CrossRef]
- Beghetto, V.; Gatto, V.; Samiolo, R.; Scolaro, C.; Brahimi, S.; Facchin, M.; Visco, A. Plastics Today: Key Challenges and EU Strategies towards Carbon Neutrality: A Review. Environ. Pollut. 2023, 334, 122102. [Google Scholar] [CrossRef]
- European Commission. Closing the Loop—An EU Action Plan for the Circular Economy (2015); European Commission: Brussels, Belgium, 2015.
- European Commission. The European Green Deal COM(2019) 640 Final; European Commission: Brussels, Belgium, 2019.
- European Commission. A New Circular Economy Action Plan For a Cleaner and More Competitive Europe COM(2020) 98 Final; European Commission: Brussels, Belgium, 2020.
- Di Bartolo, A.; Infurna, G.; Dintcheva, N.T. A Review of Bioplastics and Their Adoption in the Circular Economy. Polymers 2021, 13, 1229. [Google Scholar] [CrossRef]
- Visco, A.; Scolaro, C.; Facchin, M.; Brahimi, S.; Belhamdi, H.; Gatto, V.; Beghetto, V. Agri-Food Wastes for Bioplastics: European Prospective on Possible Applications in Their Second Life for a Circular Economy. Polymers 2022, 14, 2752. [Google Scholar] [CrossRef] [PubMed]
- Castro-Aguirre, E.; Iñiguez-Franco, F.; Samsudin, H.; Fang, X.; Auras, R. Poly(Lactic Acid)—Mass Production, Processing, Industrial Applications, and End of Life. Adv. Drug Deliv. Rev. 2016, 107, 333–366. [Google Scholar] [CrossRef]
- Ribba, L.; Lorenzo, M.C.; Tupa, M.; Melaj, M.; Eisenberg, P.; Goyanes, S. Processing and Properties of Starch-Based Thermoplastic Matrix for Green Composites. In Green Composites; Thomas, S., Balakrishnan, P., Eds.; Materials Horizons: From Nature to Nanomaterials; Springer: Singapore, 2021; pp. 63–133. ISBN 9789811596421. [Google Scholar]
- Butt, F.I.; Muhammad, N.; Hamid, A.; Moniruzzaman, M.; Sharif, F. Recent Progress in the Utilization of Biosynthesized Polyhydroxyalkanoates for Biomedical Applications—Review. Int. J. Biol. Macromol. 2018, 120, 1294–1305. [Google Scholar] [CrossRef] [PubMed]
- Pokharel, A.; Falua, K.J.; Babaei-Ghazvini, A.; Acharya, B. Biobased Polymer Composites: A Review. J. Compos. Sci. 2022, 6, 255. [Google Scholar] [CrossRef]
- Mann, G.S.; Singh, L.P.; Kumar, P.; Singh, S. Green Composites: A Review of Processing Technologies and Recent Applications. J. Therm. Compos. Mater. 2020, 33, 1145–1171. [Google Scholar] [CrossRef]
- Chang, B.P.; Mohanty, A.K.; Misra, M. Studies on Durability of Sustainable Biobased Composites: A Review. RSC Adv. 2020, 10, 17955–17999. [Google Scholar] [CrossRef]
- Nemeş, N.S.; Ardean, C.; Davidescu, C.M.; Negrea, A.; Ciopec, M.; Duţeanu, N.; Negrea, P.; Paul, C.; Duda-Seiman, D.; Muntean, D. Antimicrobial Activity of Cellulose Based Materials. Polymers 2022, 14, 735. [Google Scholar] [CrossRef] [PubMed]
- Trache, D.; Hussin, M.H.; Hui Chuin, C.T.; Sabar, S.; Fazita, M.R.N.; Taiwo, O.F.A.; Hassan, T.M.; Haafiz, M.K.M. Microcrystalline Cellulose: Isolation, Characterization and Bio-Composites Application—A Review. Int. J. Biol. Macromol. 2016, 93, 789–804. [Google Scholar] [CrossRef]
- Kowalczyk, M.; Piorkowska, E.; Kulpinski, P.; Pracella, M. Mechanical and Thermal Properties of PLA Composites with Cellulose Nanofibers and Standard Size Fibers. Compos. Part A Appl. Sci. Manuf. 2011, 42, 1509–1514. [Google Scholar] [CrossRef]
- Liu, D.Y.; Yuan, X.W.; Bhattacharyya, D.; Easteal, A.J. Characterisation of Solution Cast Cellulose Nanofibre—Reinforced Poly(Lactic Acid). Express Polym. Lett. 2010, 4, 26–31. [Google Scholar] [CrossRef]
- Botta, L.; Titone, V.; Mistretta, M.C.; La Mantia, F.P.; Modica, A.; Bruno, M.; Sottile, F.; Lopresti, F. PBAT Based Composites Reinforced with Microcrystalline Cellulose Obtained from Softwood Almond Shells. Polymers 2021, 13, 2643. [Google Scholar] [CrossRef]
- Giri, J.; Lach, R.; Le, H.H.; Grellmann, W.; Saiter, J.-M.; Henning, S.; Radusch, H.-J.; Adhikari, R. Structural, Thermal and Mechanical Properties of Composites of Poly(Butylene Adipate-Co-Terephthalate) with Wheat Straw Microcrystalline Cellulose. Polym. Bull. 2021, 78, 4779–4795. [Google Scholar] [CrossRef]
- Sabo, R.; Jin, L.; Stark, N.; Ibach, R.E. Effect of Environmental Conditiopns on the Mechanical Properties and Fungal Degradation of Plycaprolactone/Microcrystalline Cellulose/Wood Flour Composites. BioResources 2013, 8, 3322–3335. [Google Scholar]
- Paquet, O.; Krouit, M.; Bras, J.; Thielemans, W.; Belgacem, M.N. Surface Modification of Cellulose by PCL Grafts. Acta Mater. 2010, 58, 792–801. [Google Scholar] [CrossRef]
- Santi, R.; Cigada, A.; Del Curto, B.; Farè, S. Modulable Properties of PVA/Cellulose Fiber Composites. J. Appl. Biomater. Funct. Mater. 2019, 17, 228080001983122. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, H.; Xiao, F.; Xia, L.; Li, L.; Jiang, S. Functional Effectiveness of Double Essential Oils@yam Starch/Microcrystalline Cellulose as Active Antibacterial Packaging. Int. J. Biol. Macromol. 2021, 186, 873–885. [Google Scholar] [CrossRef]
- Bangar, S.P.; Esua, O.J.; Nickhil, C.; Whiteside, W.S. Microcrystalline Cellulose for Active Food Packaging Applications: A Review. Food Packag. Shelf Life 2023, 36, 101048. [Google Scholar] [CrossRef]
- Kou, S.G.; Peters, L.M.; Mucalo, M.R. Chitosan: A Review of Sources and Preparation Methods. Int. J. Biol. Macromol. 2021, 169, 85–94. [Google Scholar] [CrossRef]
- Falamarzpour, P.; Behzad, T.; Zamani, A. Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid. Int. J. Mol. Sci. 2017, 18, 396. [Google Scholar] [CrossRef]
- Fernandes, S.C.; Freire, C.S.; Silvestre, A.J.; Pascoal Neto, C.; Gandini, A. Novel Materials Based on Chitosan and Cellulose. Polym. Int. 2011, 60, 875–882. [Google Scholar] [CrossRef]
- Marullo, S.; Gallo, G.; Infurna, G.; Dintcheva, N.T.; D’Anna, F. Antimicrobial and Antioxidant Supramolecular Ionic Liquid Gels from Biopolymer Mixtures. Green Chem. 2023, 25, 3692–3704. [Google Scholar] [CrossRef]
- Wang, H.; Qian, J.; Ding, F. Emerging Chitosan-Based Films for Food Packaging Applications. J. Agric. Food Chem. 2018, 66, 395–413. [Google Scholar] [CrossRef]
- Sogut, E.; Cakmak, H. Utilization of Carrot (Daucus carota L.) Fiber as a Filler for Chitosan Based Films. Food Hydrocoll. 2020, 106, 105861. [Google Scholar] [CrossRef]
- Younis, H.G.R.; Zhao, G. Physicochemical Properties of the Edible Films from the Blends of High Methoxyl Apple Pectin and Chitosan. Int. J. Biol. Macromol. 2019, 131, 1057–1066. [Google Scholar] [CrossRef]
- Muhammed, A.P.; Thangarasu, S.; Oh, T.H. Green Interconnected Network Structure of Chitosan-Microcrystalline Cellulose-Lignin Biopolymer Film for Active Packaging Applications. Int. J. Biol. Macromol. 2023, 253, 127471. [Google Scholar] [CrossRef]
- Katakojwala, R.; Mohan, S.V. Microcrystalline Cellulose Production from Sugarcane Bagasse: Sustainable Process Development and Life Cycle Assessment. J. Clean. Prod. 2020, 249, 119342. [Google Scholar] [CrossRef]
- Chuayplod, P.; Aht-Ong, D. Duangdao AHT-ONG A Study of Microcrystalline Cellulose Prepared from Parawood (Hevea Brasiliensis) Sawdust Waste Using Different Acid Types. J. Metals Mater. Miner. 2018, 28, 106114. [Google Scholar] [CrossRef]
- Ren, D.; Fang, J.; Liu, P.; Sun, X.; Zhang, R.H. Preparation and Property Characterization of Chitosan/Microcrystalline Cellulose Antimicrobial Preservative Films. Appl. Mech. Mater. 2012, 200, 416–422. [Google Scholar] [CrossRef]
- Infurna, G.; Cavallaro, G.; Lazzara, G.; Milioto, S.; Dintcheva, N.T. Effect of Different Processing Techniques and Presence of Antioxidant on the Chitosan Film Performance. Vinyl Addit. Technol. 2022, 28, 343–351. [Google Scholar] [CrossRef]
- Mehtiö, T.; Nurmi, L.; Rämö, V.; Mikkonen, H.; Harlin, A. Synthesis and Characterization of Copolyanhydrides of Carbohydrate-Based Galactaric Acid and Adipic Acid. Carbohydr. Res. 2015, 402, 102–110. [Google Scholar] [CrossRef]
- Talebi, H.; Ghasemi, F.A.; Ashori, A. The Effect of Nanocellulose on Mechanical and Physical Properties of Chitosan-Based Biocomposites. J. Elastom. Plast. 2022, 54, 22–41. [Google Scholar] [CrossRef]
- Chie, S.C.; Wahab, M.K.A. Preparation and Characterization of Micro- Crystalline Cellulose / Chitosan Films. IOP Conf. Ser. Mater. Sci. Eng. 2019, 701, 012054. [Google Scholar] [CrossRef]
- Bussiere, P.-O.; Gardette, J.-L.; Rapp, G.; Masson, C.; Therias, S. New Insights into the Mechanism of Photodegradation of Chitosan. Carbohydr. Polym. 2021, 259, 117715. [Google Scholar] [CrossRef]
- Infurna, G.; Cavallaro, G.; Lazzara, G.; Milioto, S.; Dintcheva, N.T. Bionanocomposite Films Containing Halloysite Nanotubes and Natural Antioxidants with Enhanced Performance and Durability as Promising Materials for Cultural Heritage Protection. Polymers 2020, 12, 1973. [Google Scholar] [CrossRef]
- Infurna, G.; Cavallaro, G.; Lazzara, G.; Milioto, S.; Dintcheva, N.T. Understanding the Effects of Crosslinking and Reinforcement Agents on the Performance and Durability of Biopolymer Films for Cultural Heritage Protection. Molecules 2021, 26, 3468. [Google Scholar] [CrossRef]
Sample | Opacity (A mm−1) | WCA (°) |
---|---|---|
Chit-AA | 0.39 | 80.1 ± 2.5 |
Chit-MA | 0.38 | 82.5 ± 2.7 |
Chit-MCC-Gly-AA | 7.69 | 91.1 ± 3.0 |
Chit-MCC-Gly-MA | 8.89 | 93.9 ± 2.3 |
Sample | Ton (°C) | Tm (°C) | ΔH (J g−1) |
---|---|---|---|
Chit powder | 73.5 | 124.1 | 357.64 |
MCC powder | 58.4 | 105.2 | 205.14 |
MA powder | 219.7 | 224.2 | 560.6 |
Chit-AA film | 48.72 | 94.1 | 161.24 |
Chit-MA film | 73.5 | 101.7; 136.9; 167.0 | 178.33 |
Chit-MCC-Gly-AA film | 74.4 | 106.4 | 147.21 |
Chit-MCC-Gly-MA film | 75.1 | 120.0 | 114.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Liberto, E.A.; Dintcheva, N.T. Biobased Films Based on Chitosan and Microcrystalline Cellulose for Sustainable Packaging Applications. Polymers 2024, 16, 568. https://doi.org/10.3390/polym16050568
Di Liberto EA, Dintcheva NT. Biobased Films Based on Chitosan and Microcrystalline Cellulose for Sustainable Packaging Applications. Polymers. 2024; 16(5):568. https://doi.org/10.3390/polym16050568
Chicago/Turabian StyleDi Liberto, Erika Alessia, and Nadka Tzankova Dintcheva. 2024. "Biobased Films Based on Chitosan and Microcrystalline Cellulose for Sustainable Packaging Applications" Polymers 16, no. 5: 568. https://doi.org/10.3390/polym16050568
APA StyleDi Liberto, E. A., & Dintcheva, N. T. (2024). Biobased Films Based on Chitosan and Microcrystalline Cellulose for Sustainable Packaging Applications. Polymers, 16(5), 568. https://doi.org/10.3390/polym16050568