Polyvinyl Alcohol, a Versatile Excipient for Pharmaceutical 3D Printing
Abstract
:1. Introduction
2. Short History and Applications of PVA
3. PVA Chemistry
4. PVA Physical Properties and Pharmaceutical Grades
5. The Use of PVA in 3D Printing Technology
5.1. Rheological Properties of PVA and Their Control
5.2. PVA as Filament-Forming Excipient for FDM 3D Printing
5.2.1. Immediate Release Tablets
5.2.2. Sustained Release Tablets
5.2.3. Special Designs
5.3. Other Applications of PVA in 3D Printing
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Trenfield, S.J.; Madla, C.M.; Basit, A.W.; Goyanes, A. The Shape of Things to Come: Emerging Applications of 3D Printing in Healthcare Translating 3D printed pharmaceuticals: From hype to real-world clinical applications. Adv. Drug Deliv. Rev. 2021, 174, 553–575. [Google Scholar] [CrossRef]
- Silva, I.A.; Luiza, A.; Gratieri, T.; Gelfuso, G.M.; Sa-barreto, L.L.; Cunha-filho, M. Compatibility and stability studies involving polymers used in fused deposition modeling 3D printing of medicines. J. Pharm. Anal. 2022, 12, 424–435. [Google Scholar] [CrossRef]
- Pitzanti, G.; Mathew, E.; Andrews, G.P.; Jones, D.S.; Lamprou, D.A. 3D Printing: An appealing technology for the manufacturing of solid oral dosage forms. J. Pharm. Pharmacol. 2022, 74, 1427–1449. [Google Scholar] [CrossRef]
- Parulski, C.; Jennotte, O.; Lechanteur, A.; Evrard, B. Challenges of fused deposition modeling 3D printing in pharmaceutical applications: Where are we now? Adv. Drug Deliv. Rev. 2021, 175, 113810. [Google Scholar] [CrossRef] [PubMed]
- Nasereddin, J.M.; Wellner, N.; Alhijjaj, M.; Belton, P.; Qi, S. Development of a Simple Mechanical Screening method for predicting the feedability of a pharmaceutical FDM 3D printing filament. Pharm. Res. 2018, 35, 151. [Google Scholar] [CrossRef]
- Patel, N.G.; Serajuddin, A.T.M. Improving drug release rate, drug-polymer miscibility, printability and processability of FDM 3D-printed tablets by weak acid-base interaction. Int. J. Pharm. 2023, 632, 122542. [Google Scholar] [CrossRef] [PubMed]
- Goyanes, A.; Buanz, A.B.M.; Hatton, G.B.; Gaisford, S.; Basit, A.W. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur. J. Pharm. Biopharm. 2015, 89, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Iftekar, S.F.; Aabid, A.; Amir, A.; Baig, M. Advancements and Limitations in 3D Printing Materials and Technologies: A Critical Review. Polymers 2023, 15, 2519. [Google Scholar] [CrossRef]
- Satoh, K. Poly(vinyl alcohol) (PVA). In Encyclopedia of Polymeric Nanomaterials; Springer: Berlin/Heidelberg, Germany, 2014; Springer: Nagoya, Japan, 2016; pp. 2–7. ISBN 9783642361999. [Google Scholar]
- Asthana, N.; Pal, K.; Aljabali, A.A.A.; Tambuwala, M.M.; de Souza, F.G.; Pandey, K. Polyvinyl alcohol (PVA) mixed green–clay and aloe vera based polymeric membrane optimization: Peel-off mask formulation for skin care cosmeceuticals in green nanotechnology. J. Mol. Struct. 2021, 1229, 129592. [Google Scholar] [CrossRef]
- Rowe, R.C.; Sheskey, P.J.; Quinn, M.E. Handbook of Pharmaceutical Expicients, 6th ed.; Rowe, R.C., Sheskey, P.J., Quinn, M.E., Eds.; Pharmacuetical Press: London, UK, 2009; 593p. [Google Scholar]
- Kurek, M.; Urszula, B.; Loskot, J.; Kramarczyk, D.; Paluch, M.; Jachowicz, R. Preparation and advanced characterization of highly drug-loaded, 3D printed orodispersible tablets containing fluconazole. Int. J. Pharm. 2023, 630, 122444. [Google Scholar] [CrossRef]
- Crișan, A.G.; Iurian, S.; Porfire, A.; Rus, L.M.; Bogdan, C.; Casian, T.; Lucacel, R.C.; Turza, A.; Porav, S.; Tomuță, I. QbD guided development of immediate release FDM-3D printed tablets with customizable API doses. Int. J. Pharm. 2021, 613, 121411. [Google Scholar] [CrossRef]
- Windolf, H.; Chamberlain, R.; Quodbach, J. Dose-independent drug release from 3D printed oral medicines for patient-specific dosing to improve therapy safety. Int. J. Pharm. 2022, 616, 121555. [Google Scholar] [CrossRef]
- Gioumouxouzis, C.I.; Baklavaridis, A.; Katsamenis, O.L.; Markopoulou, C.K.; Bouropoulos, N.; Tzetzis, D.; Fatouros, D.G. A 3D printed bilayer oral solid dosage form combining metformin for prolonged and glimepiride for immediate drug delivery. Eur. J. Pharm. Sci. 2018, 120, 40–52. [Google Scholar] [CrossRef]
- Windolf, H.; Chamberlain, R.; Delmotte, A.; Quodbach, J. Blind-Watermarking—Proof-of-Concept of a Novel Approach to Ensure Batch Traceability for 3D Printed Tablets. Pharmaceutics 2022, 14, 15. [Google Scholar] [CrossRef] [PubMed]
- Nthoiwa, K.K.M.; Diaz, C.A.; Chaudhari, Y. Vinyl alcohol polymers. Handb. Thermoplast. Second Ed. 2016, 8, 53–88. [Google Scholar] [CrossRef]
- Muppalaneni, S. Polyvinyl Alcohol in Medicine and Pharmacy: A Perspective. J. Dev. Drugs 2013, 2, 1–2. [Google Scholar] [CrossRef]
- Owen, K. Polyvinyl Alcohol Sponge as an Arterial Substitute. Proc. R. Soc. Med. 1955, 12, 340–342. [Google Scholar] [CrossRef]
- Baker, M.I.; Walsh, S.P.; Schwartz, Z.; Boyan, B.D. A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J. Biomed. Mater. Res. B. Appl. Biomater. 2012, 100, 1451–1457. [Google Scholar] [CrossRef] [PubMed]
- Nilforoushzadeh, M.A.; Amirkhani, M.A.; Zarrintaj, P.; Moghaddam, A.S.; Mehrabi, T.; Alavi, S.; Mollapour, M. Skin care and rejuvenation by cosmeceutical facial mask. J. Cosmet. Dermatol. 2018, 17, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.R.; Vavia, P.R. Evaluation of Synthesized Cross Linked Polyvinyl Alcohol as Potential Disintegrant. J. Pharm. Pharm. Sci. 2010, 13, 114–127. [Google Scholar] [CrossRef]
- Morita, R.; Honda, R.; Takahashi, Y. Development of oral controlled release preparations, a PVA swelling controlled release system (SCRS). II. In vitro and in vivo evaluation. J. Control Release 2000, 68, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Swarbrick, J. Encyclopedia of Pharmaceutical Technology VOLUME 1; Informa Healthcare USA, Inc.: New York, NY, USA, 2019; 102, 406, 1179p, ISBN 0824725387. [Google Scholar]
- Umemoto, Y.; Uchida, S.; Yoshida, T.; Shimada, K.; Kojima, H.; Takagi, A.; Tanaka, S.; Kashiwagura, Y.; Namiki, N. An effective polyvinyl alcohol for the solubilization of poorly water-soluble drugs in solid dispersion formulations. J. Drug Deliv. Sci. Technol. 2020, 55, 101401. [Google Scholar] [CrossRef]
- Krishna, N.; Brow, F. Polyvinyl alcohol as an ophthalmic vehicle. Effect on regeneration of corneal epithelium. Am. J. Ophthalmol. 1964, 57, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Saettone, M.F.; Giannaccini, B.; Chetoni, P.; GALLI, G.; Chiellini, E. Vehicle effects in ophthalmic bioavailability: An evaluation of polymeric inserts containing pilocarpine. J. Pharm. Pharmacol. 1984, 36, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Falavarjani, K.G. Implantable posterior segment drug delivery devices; novel alternatives to currently available treatments. J. Ophthalmic Vis. Res. 2009, 4, 191–193. [Google Scholar]
- Takeuchi, H.; Kojima, H.; Yamamoto, H.; Kawashima, Y. Polymer coating of liposomes with a modified polyvinyl alcohol and their systemic circulation and RES uptake in rats. J. Control Release 2000, 68, 195–205. [Google Scholar] [CrossRef]
- Gajra, B.; Pandya, S.S.; Vidyasagar, G.; Rabari, H.; Dedania, R.R.; Rao, S. Poly vinyl alcohol hydrogel and its pharmaceutical and biomedical applications: A review. Int. J. Pharm. Res. 2012, 4, 20–26. [Google Scholar]
- Ultimaker PVA Technical Data Sheet. 1–2. Available online: https://support.ultimaker.com/s/article/1667411286876 (accessed on 31 March 2023).
- Bianchi, M.; Pegoretti, A.; Fredi, G. An overview of poly(vinyl alcohol) and poly(vinyl pyrrolidone) in pharmaceutical additive manufacturing. J. Vinyl Addit. Technol. 2023, 29, 223–239. [Google Scholar] [CrossRef]
- Paul, J.S.; Walter, G.C.; Colin, G.C. Handbook of Pharmaceutical Excipients. In Remington: The Science and Practice of Pharmacy, 8th ed.; Pharmaceutical Press: London, UK, 2020; ISBN 978-0857112712. [Google Scholar]
- Saxena, S.K. Polyvinyl alcohol (PVA) chemical and technical assessment (CTA) first draft prepared by. Chem. Tech. Assess 2004, 61. [Google Scholar]
- Fong, R.J.; Robertson, A.; Mallon, P.E.; Thompson, R.L. The impact of plasticizer and degree of hydrolysis on free volume of poly(vinyl alcohol) films. Polymers 2018, 10, 1036. [Google Scholar] [CrossRef] [PubMed]
- Nagarkar, R.; Patel, J. Polyvinyl Alcohol: A Comprehensive Study. ACTA Sci. Pharm. Sci. 2019, 3, 34–44. [Google Scholar]
- Vinyl Alcohol|CH2CHOH-PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/11199#section=Other-Experimental-Properties (accessed on 31 March 2023).
- Babaie, A.; Madadkhani, S.; Stoeber, B. Evaporation-driven low Reynolds number vortices in a cavity. Phys. Fluids 2014, 26, 033102. [Google Scholar] [CrossRef]
- Kasselkus, A.; Weiskircher-Hildebrandt, E.; Schornick, E.; Bauer, F.; Zheng, M. Polyvinyl alcohol: Revival of a long lost polymer. Pharma BioPharma Raw Mater. Solut. 2018, 10, 5. [Google Scholar]
- Kuraray. Mowiflex 3D Printing Guidelines. Available online: https://www.kuraray-poval.com/fileadmin/technical_information/brochures/mowiflex/mowiflex_3d_printing_guidelines.pdf (accessed on 31 March 2023).
- Kuraray. MOWIFLEX TM C 17 Technical Data Sheet MOWIFLEXTM C 17 Properties MOWIFLEXTM C 17 Processing Guidelines Extrusion. 2023. Available online: https://www.kuraray-poval.com/fileadmin/user_upload/KURARAY_POVAL/technical_information/grades_by_region/grades_mowiflex2/TDS-Mowiflex-C17.pdf (accessed on 31 March 2023).
- Kuraray. MOWIFLEX TM C 30 Technical Data Sheet MOWIFLEX TM C 30 Properties MOWIFLEX TM C 30 Processing Guidelines. 2021. Available online: https://www.kuraray-poval.com/fileadmin/user_upload/KURARAY_POVAL/technical_information/grades_by_region/grades_mowiflex2/TDS-Mowiflex-C30.pdf (accessed on 31 March 2023).
- Kuraray America; Kuraray Europe. MOWIFLEXTM Combining Strengths of Thermoplastics and PVOH. Available online: https://www.kuraray-poval.com/fileadmin/technical_information/brochures/mowiflex/mowiflex_general_information_combining_strengths_of_thermoplastics_and_pvoh.pdf (accessed on 31 March 2023).
- Kuraray Poval. Mowiflex TM as a Water Soluble Support Material for Additive Manufacturing Your Products. Available online: https://www.kuraray-poval.com/fileadmin/technical_information/brochures/mowiflex/mowiflex_water_soluble_support_material_for_3d_printing.pdf (accessed on 31 March 2023).
- Kuraray. KURARAY POVAL TM 4-88 Technical Data Sheet KURARAY POVAL TM 4-88 Properties. 2022. Available online: https://www.knowde.com/stores/kuraray/products/kuraray-kuraray-poval-4-88 (accessed on 31 March 2023).
- Parteck® MXP Excipient for Hot Melt Extrusion|Small Molecule Pharmaceuticals|Merck. Available online: https://www.merckmillipore.com/BE/fr/products/small-molecule-pharmaceuticals/formulation/solid-dosage-form/parteck-excipients/parteck-mxp/Ieyb.qB.lAcAAAFYLEQeWww_,nav?ReferrerURL=https%3A%2F%2Fwww.google.com%2F&bd=1 (accessed on 2 April 2023).
- Mitsubishi Chemical Performance Polymers (MCPP). GOHSENOL TM EG-03P Technical Data Sheet GOHSENOL TM EG-03P Properties. 2022. Available online: https://omnexus.specialchem.com/product/t-mitsubishi-chemical-performance-polymers-mcpp-gohsenol-eg-03p (accessed on 2 April 2023).
- Mitsubishi Chemical Performance Polymers (MCPP). GOHSENOL TM EG-05P Technical Data Sheet GOHSENOL TM EG-05P Properties. 2022. Available online: https://omnexus.specialchem.com/product/t-mitsubishi-chemical-performance-polymers-mcpp-gohsenol-eg-05p (accessed on 2 April 2023).
- Mitsubishi Chemical Performance Polymers (MCPP). GOHSENOL TM EG-05PW Technical Data Sheet GOHSENOL TM EG-05PW Properties. 2022. Available online: https://omnexus.specialchem.com/product/t-mitsubishi-chemical-performance-polymers-mcpp-gohsenol-eg-05pw (accessed on 2 April 2023).
- Liwei Chemical (Sinochem). PVA 0588 Technical Data Sheet PVA 0588 Properties. 2022. Available online: https://omnexus.specialchem.com/product/t-liwei-chemical-sinochem-pva-0588 (accessed on 2 April 2023).
- BASF. Kollicoat ® IR ® Technical Information. 2015. Available online: https://pharma.basf.com/technicalinformation/30132288/kollicoat-ir (accessed on 2 April 2023).
- Colorcon. OPADRY® II Product Information. 2023. Available online: https://www.colorcon.com/markets/pharmaceuticals/film-coatings/immediate-release/opadry-ii (accessed on 2 April 2023).
- Okafor-muo, O.L.; Hassanin, H.; Kayyali, R.; Elshaer, A. 3D Printing of Solid Oral Dosage Forms: Numerous Challenges With Unique Opportunities. J. Pharm. Sci. 2020, 109, 3535–3550. [Google Scholar] [CrossRef]
- Durga Prasad Reddy, R.; Sharma, V. Additive manufacturing in drug delivery applications: A review. Int. J. Pharm. 2020, 589, 119820. [Google Scholar] [CrossRef]
- Cerda, J.R.; Arifi, T.; Ayyoubi, S.; Knief, P.; Paloma Ballesteros, M.; Keeble, W.; Barbu, E.; Marie Healy, A.; Lalatsa, A.; Serrano, D.R. Personalised 3d printed medicines: Optimising material properties for successful passive diffusion loading of filaments for fused deposition modelling of solid dosage forms. Pharmaceutics 2020, 12, 345. [Google Scholar] [CrossRef]
- Alhijjaj, M.; Belton, P.; Qi, S. An investigation into the use of polymer blends to improve the printability of and regulate drug release from pharmaceutical solid dispersions prepared via fused deposition modeling (FDM) 3D printing. Eur. J. Pharm. Biopharm. 2016, 108, 111–125. [Google Scholar] [CrossRef]
- Fuenmayor, E.; Forde, M.; Healy, A.V.; Devine, D.M.; Lyons, J.G.; McConville, C.; Major, I. Material considerations for fused-filament fabrication of solid dosage forms. Pharmaceutics 2018, 10, 44. [Google Scholar] [CrossRef] [PubMed]
- Boetker, J.; Water, J.J.; Aho, J.; Arnfast, L.; Bohr, A.; Rantanen, J. Modifying release characteristics from 3D printed drug-eluting products. Eur. J. Pharm. Sci. 2016, 90, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Kramarczyk, D.; Knapik-Kowalczuk, J.; Kurek, M.; Jamróz, W.; Jachowicz, R.; Paluch, M. Hot Melt Extruded Posaconazole-Based Amorphous Solid Dispersions—The Effect of Different Types of Polymers. Pharmaceutics 2023, 15, 799. [Google Scholar] [CrossRef] [PubMed]
- Digkas, T.; Porfire, A.; Van Renterghem, J.; Samaro, A.; Borodi, G.; Vervaet, C.; Crișan, A.G.; Iurian, S.; De Beer, T.; Tomuta, I. Development of Diclofenac Sodium 3D Printed Cylindrical and Tubular-Shaped Tablets through Hot Melt Extrusion and Fused Deposition Modelling Techniques. Pharmaceuticals 2023, 16, 1062. [Google Scholar] [CrossRef]
- Palekar, S.; Kumar, P.; Mishra, S.M.; Kipping, T.; Patel, K. Application of 3D printing technology and quality by design approach for development of age-appropriate pediatric formulation of baclofen. Int. J. Pharm. 2019, 556, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Melocchi, A.; Parietti, F.; Maroni, A.; Foppoli, A.; Gazzaniga, A.; Zema, L. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling. Int. J. Pharm. 2016, 509, 255–263. [Google Scholar] [CrossRef]
- Ilyés, K.; Kovács, N.K.; Balogh, A.; Borbás, E.; Farkas, B.; Casian, T.; Marosi, G.; Tomuță, I.; Nagy, Z.K. The applicability of pharmaceutical polymeric blends for the fused deposition modelling (FDM) 3D technique: Material considerations–printability–process modulation, with consecutive effects on in vitro release, stability and degradation. Eur. J. Pharm. Sci. 2019, 129, 110–123. [Google Scholar] [CrossRef] [PubMed]
- Pinho, L.A.G.; Luiza, A.; Livia, L.; Barreto, L.S.; Gratieri, T.; Gelfuso, G.M. Preformulation Studies to Guide the Production of Medicines by Fused Deposition Modeling 3D Printing. PharmSciTech 2021, 22, 1–12. [Google Scholar] [CrossRef]
- Elbadawi, M. Rheological and Mechanical Investigation into the Effect of Different Molecular Weight Poly(ethylene glycol)s on Polycaprolactone-Ciprofloxacin Filaments. ACS Omega 2019, 4, 5412–5423. [Google Scholar] [CrossRef]
- Aho, J.; Bøtker, J.P.; Genina, N.; Edinger, M.; Arnfast, L.; Rantanen, J. Roadmap to 3D-Printed Oral Pharmaceutical Dosage Forms: Feedstock Filament Properties and Characterization for Fused Deposition Modeling. J. Pharm. Sci. 2019, 108, 26–35. [Google Scholar] [CrossRef]
- Ilieva, S.; Georgieva, D.; Petkova, V.; Dimitrov, M. Study and Characterization of Polyvinyl Alcohol-Based Formulations for 3D Printlets Obtained via Fused Deposition Modeling. Pharmaceutics 2023, 15, 1867. [Google Scholar] [CrossRef]
- Wu, J.; Chen, N.; Wang, Q. Preparation of novel thermoplastic poly(vinyl alcohol) with improved processability for fused deposition modeling. Polym. Adv. Technol. 2018, 29, 1447–1455. [Google Scholar] [CrossRef]
- Pereira, B.C.; Isreb, A.; Forbes, R.T.; Dores, F.; Habashy, R.; Petit, J.B.; Alhnan, M.A.; Oga, E.F. ‘Temporary Plasticiser’: A novel solution to fabricate 3D printed patient-centred cardiovascular ‘Polypill’ architectures. Eur. J. Pharm. Biopharm. 2019, 135, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Solanki, N.G.; Vasoya, J.M.; Shah, A.V.; Serajuddin, A.T.M. Development of 3D Printed Tablets by Fused Deposition Modeling Using Polyvinyl Alcohol as Polymeric Matrix for Rapid Drug Release. J. Pharm. Sci. 2020, 109, 1558–1572. [Google Scholar] [CrossRef]
- Thanawuth, K.; Sutthapitaksakul, L.; Konthong, S.; Suttiruengwong, S. Impact of Drug Loading Method on Drug Release from 3D-Printed Tablets Made from Filaments Fabricated by Hot-Melt Extrusion and Impregnation Processes. Pharmaceutics 2021, 13, 1067. [Google Scholar] [CrossRef]
- Uboldi, M.; Chiappa, A.; Pertile, M.; Piazza, A.; Tagliabue, S.; Foppoli, A.; Palugan, L.; Gazzaniga, A.; Zema, L.; Melocchi, A.; et al. Investigation on the use of fused deposition modeling for the production of IR dosage forms containing Timapiprant. Int. J. Pharm. X 2023, 5, 100–152. [Google Scholar] [CrossRef]
- Crișan, A.G.; Porfire, A.; Ambrus, R.; Katona, G.; Rus, L.M.; Porfire, A. Polyvinyl Alcohol-Based 3D Printed Tablets: Novel Insight into the Influence of Polymer Particle Size on Filament Preparation and Drug Release Performance. Pharmaceuticals 2021, 14, 418. [Google Scholar] [CrossRef] [PubMed]
- Obeid, S.; Mad, M.; Krkobabi, M.; Ibri, S. Predicting drug release from diazepam FDM printed tablets using deep learning approach: Influence of process parameters and tablet surface/volume ratio. Int. J. Pharm. 2021, 601, 120507. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, N.; Quodbach, J.; Elia, A.; Hess, F.; Bogdahn, M. Determination of feed forces to improve process understanding of Fused Deposition Modeling 3D printing and to ensure mass conformity of printed solid oral dosage forms. Int. J. Pharm. 2022, 614, 121416. [Google Scholar] [CrossRef]
- Gioumouxouzis, C.I.; Katsamenis, O.L.; Bouropoulos, N.; Fatouros, D.G. 3D printed oral solid dosage forms containing hydrochlorothiazide for controlled drug delivery. J. Drug Deliv. Sci. Technol. 2017, 40, 164–171. [Google Scholar] [CrossRef]
- Tagami, T.; Nagata, N.; Hayashi, N.; Ogawa, E.; Fukushige, K. Defined drug release from 3D-printed composite tablets consisting of drug- loaded polyvinylalcohol and a water-soluble or water-insoluble polymer filler. Int. J. Pharm. 2018, 543, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Goyanes, A.; Robles, P.; Buanz, A.; Basit, A.W.; Gaisford, S. Effect of geometry on drug release from 3D printed tablets. Int. J. Pharm. 2015, 494, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Saviano, M.; Aquino, R.P.; Del Gaudio, P.; Sansone, F.; Russo, P. Poly(vinyl alcohol) 3D printed tablets: The effect of polymer particle size on drug loading and process efficiency. Int. J. Pharm. 2019, 561, 1–8. [Google Scholar] [CrossRef]
- Obeid, S.; Madzarevic, M.; Ibric, S. Tailoring amlodipine release from 3D printed tablets: Influence of infill patterns and wall thickness. Int. J. Pharm. 2021, 610, 121261. [Google Scholar] [CrossRef]
- Matijašić, G.; Gretić, M.; Kezerić, K.; Petanjek, J.; Ema, V. Preparation of Filaments and the 3D Printing of Dronedarone HCl Tablets for Treating Cardiac Arrhythmias. PharmSciTech 2019, 20, 310. [Google Scholar] [CrossRef]
- Kozakiewicz-lata, M.; Junak, A.; Adrianna, Z.; Prusik, K.; Szymczyk-zi, P. Adjusting the melting point of an Active Pharmaceutical Ingredient (API) via cocrystal formation enables processing of high melting drugs via combined hot melt and materials extrusion (HME and ME). Addit. Manuf. 2022, 60, 103196. [Google Scholar] [CrossRef]
- Qijun, L.; Haoyang, W.; Danyang, J.; Xiaoying, G.; Pan, H. Preparation and investigation of controlled-release glipizide novel oral device with three-dimensional printing. Int. J. Pharm. 2017, 525, 5–11. [Google Scholar]
- Vervaet, C.; Macedo, J.; Samaro, A. Processability of poly (vinyl alcohol) Based Filaments with Paracetamol Prepared by Hot-Melt Extrusion for Additive Manufacturing. J. Pharm. Sci. 2020, 109, 3636–3644. [Google Scholar] [CrossRef]
- Đuranovic, M.; Madzarevic, M.; Ivkovi, B.; Ibri, S.; Cviji, S. The evaluation of the effect of different superdisintegrants on the drug release from FDM 3D printed tablets through different applied strategies: In vitro-in silico assessment. Int. J. Pharm. 2021, 610, 121194. [Google Scholar] [CrossRef]
- Goyanes, A.; Kobayashi, M.; Martínez-pacheco, R.; Gaisford, S.; Basit, A.W. Fused- filament 3D printing of drug products: Microstructure analysis and drug release characteristics of PVA-based caplets. Int. J. Pharm. 2016, 514, 290–295. [Google Scholar] [CrossRef]
- Nukala, P.K.; Palekar, S.; Patki, M.; Patel, K. Abuse Deterrent Immediate Release Egg-Shaped Tablet (Egglets) Using 3D Printing Technology: Quality by Design to Optimize Drug Release and Extraction. PharmSciTech 2019, 20. [Google Scholar] [CrossRef]
- Goyanes, A.; Chang, H.; Sedough, D.; Hatton, G.B.; Wang, J.; Buanz, A.; Gaisford, S.; Basit, A.W. Fabrication of controlled-release budesonide tablets via desktop (FDM). Int. J. Pharm. 2015, 496, 414–420. [Google Scholar] [CrossRef]
- Goyanes, A.; Wang, J.; Buanz, A.; Martínez-Pacheco, R.; Telford, R.; Gaisford, S.; Basit, A.W. 3D Printing of Medicines- Engineering Novel Oral Devices with Unique Design and Drug Release Characteristics. Mol. Pharm. 2015, 12, 4077–4084. [Google Scholar] [CrossRef]
- Jamróz, W.; Kurek, M.; Ewelina, Ł.; Szafraniec, J.; Knapik-kowalczuk, J.; Syrek, K.; Paluch, M.; Jachowicz, R. 3D printed orodispersible films with Aripiprazole. Int. J. Pharm. 2017, 533, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Xu, X.; Li, R.; Zang, G.; Zhang, Y.; Wang, M.; Xiong, M.; Xu, J.; Wang, T.; Fu, H.; et al. Preparation and In vitro Evaluation of FDM 3D-Printed Ellipsoid-Shaped Gastric Floating Tablets with Low Infill Percentages. PharmSciTech 2020, 21, 6. [Google Scholar] [CrossRef]
- Windolf, H.; Chamberlain, R.; Breitkreutz, J.; Quodbach, J. 3D Printed Mini-Floating-Polypill for Parkinson’s Disease: Combination of Levodopa, Benserazide, and Pramipexole in Various Dosing for Personalized Therapy. Pharmaceutics 2022, 14, 931. [Google Scholar] [CrossRef]
- Matija, G.; Greti, M.; Vin, J.; Poropat, A.; Cuculi, L.; Raheli, T. Design and 3D printing of multi-compartmental PVA capsules for drug delivery. J. Drug Deliv. Sci. Technol. 2019, 52, 677–686. [Google Scholar] [CrossRef]
- Kraisit, P.; Limpamanoch, P.; Hirun, N.; Limmatvapirat, S.; Filam, P.V.A. Design and development of 3D-printed bento box model for controlled drug release of propranolol HCl following pharmacopeia dissolution guidelines. Int. J. Pharm. 2022, 628, 122272. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.; Kapoor, Y.; Hermans, A.; Nofsinger, R.; Kesisoglou, F.; Gustafson, P.; Procopio, A. 3D printed capsules for quantitative regional absorption studies in the GI tract. Int. J. Pharm. 2018, 550, 418–428. [Google Scholar] [CrossRef]
- Charoenying, T.; Patrojanasophon, P.; Ngawhirunpat, T. Three-dimensional (3D)-printed devices composed of hydrophilic cap and hydrophobic body for improving buoyancy and gastric retention of domperidone tablets. Eur. J. Pharm. Sci. 2020, 155, 105555. [Google Scholar] [CrossRef]
- Cotabarren, I.; Gallo, L. 3D printing of PVA capsular devices for modified drug delivery: Design and in-vitro dissolution studies. Drug Dev. Ind. Pharm. 2020, 46, 1416–1426. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, J.; Wang, M.; Wang, L.; Yang, J. 3D Printed Polyvinyl Alcohol Tablets with Multiple Release Profiles. Nat. Sci. Rep. 2019, 9, 12487. [Google Scholar] [CrossRef]
- Shi, K.; Salvage, J.P.; Maniruzzaman, M.; Nokhodchi, A. Role of release modifiers to modulate drug release from fused deposition modelling (FDM) 3D printed tablets. Int. J. Pharm. 2021, 597, 120315. [Google Scholar] [CrossRef]
- Ibrahim, M.; Barnes, M.; Mcmillin, R.; Cook, D.W.; Smith, S.; Halquist, M.; Wijesinghe, D.; Roper, T.D. 3D Printing of Metformin HCl PVA Tablets by Fused Deposition Modeling: Drug Loading, Tablet Design, and Dissolution Studies. PharmSciTech 2019, 20, 195. [Google Scholar] [CrossRef]
- Skowyra, J.; Pietrzak, K.; Alhnan, M.A. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur. J. Pharm. Sci. 2015, 68, 11–17. [Google Scholar] [CrossRef]
- Charoenying, T.; Patrojanasophon, P.; Ngawhirunpat, T.; Rojanarata, T.; Akkaramongkolporn, P.; Opanasopit, P. Fabrication of floating capsule-in- 3D-printed devices as gastro-retentive delivery systems of amoxicillin. J. Drug Deliv. Sci. Technol. 2020, 55, 101393. [Google Scholar] [CrossRef]
- Varun, S.; Moinuddin Shaik, K.; Choudhury, A.; Kumar, P.; Kala, P. Investigations of process parameters during dissolution studies of drug loaded 3D printed tablets. J. Eng. Med. 2021, 235, 523–529. [Google Scholar]
- Junqueira, L.A.; Tabriz, A.G.; Jos, F.; Carobini, L.R.; Pard, U.; Ant, M.; Brand, F.; Douroumis, D. Coupling of Fused Deposition Modeling and Inkjet Printing to Produce Drug Loaded 3D Printed Tablets. Pharmaceutics 2022, 14, 159. [Google Scholar] [CrossRef]
- Basa, B.; Jakab, G.; Kallai-Szabo, N.; Borbas, B.; Fulop, V.; Balogh, E.; Antal, I. Evaluation of Biodegradable PVA-Based 3D Printed Carriers during Dissolution. Materials 2021, 14, 1350. [Google Scholar] [CrossRef]
- Chaudhari, V.S.; Malakar, T.K.; Murty, U.S.; Banerjee, S. Fused deposition modeling (FDM)-mediated 3D-printed mouth-dissolving wafers loaded with nanostructured lipid carriers (NLCs) for in vitro release. J. Mater. Res. 2021, 36, 3963–3973. [Google Scholar] [CrossRef]
Name, Manufacturing Company | Physical Properties | Advantages and Applications | References |
---|---|---|---|
MowiflexTM C 17, Kuraray, Tokyo, Japan MowiflexTM C 30, Kuraray, Tokyo, Japan | soluble in cold water, at 25 °C melt viscosity of 12 g/10 min processing temperature between 190 and 210 °C for C 17 and 190 and 200 °C for C 30 | water-soluble support material for additive manufacturing based on fused filament fabrication (FFF) methods; can yield high filament stiffness; use: to print intricate structures; | [40,41,42,43,44] |
KURARAY POVALTM 4-88, Kuraray, Tokyo, Japan Parteck® MXP 4-88, Merck, Darmstadt, Germany | granules/fine powder fine powder | stabilizing certain compounds with a wide variety of melting temperatures in their amorphous form; | [45,46] |
Parteck® MXP 3-82 from Merck, Darnstadt, Germany | crystalline powder | strong interactions with hydrophobic molecules, both in the solid state and in solution; prevents precipitation; can sustain high supersaturation levels; specifically designed for HME. | [46] |
GOHSENOLTM EG-03P, Mitsubishi Chemical Performance Polymers (MCPP), Tokyo, Japan | granules | surfactant behavior; minimal skin irritation properties, can be used in cosmetics. | [47] |
GOHSENOLTM EG-05P, Mitsubishi Chemical Performance Polymers (MCPP), Tokyo, Japan GOHSENOLTM EG-05PW, Mitsubishi Chemical Performance Polymers (MCPP), Tokyo, Japan | physical form of granules for EG-05P and of powder for EG-05PW; water-soluble; | surfactant behavior; minimal skin irritation properties, can be used in cosmetics. | [48,49] |
PVA 0588, Liwei chemical (Sinochem), Guangdong, China | water-soluble | film-forming ability; good stability; chemical and oil resistance; can be combined with rubber, plastics, and water-soluble polymers. | [50] |
Objective | Composition | Extrusion | FDM | References | ||
---|---|---|---|---|---|---|
Equipment (Name, Provider, Type) | Working Parameters | Equipment | Working Parameters (Build Plate Temperature/Nozzle Temperature/Printing Speed) | |||
Immediate release tablets | ||||||
To investigate the effects of lowering processing temperatures by utilizing a temporary plasticizer, water, as well as the impact of polypill design on drug release. | Lisinopril dihydrate, indapamide, amlodipine besylate, rosuvastatin calcium; Parteck MXP; Plasticizer: sorbitol, water; | HAAKE™ MiniCTW, Thermo Scientific™, Karlsruhe, Germany, micro-conical twin-screw compounder | 90 °C and 35 rpm | Makerbot 2x, Makerbot, Brooklyn, NY, USA | 40 °C/ 150 °C/210 °C/n.d. | [69] |
To focus on the processability of PVA. | Carvedilol and Haloperidol; Parteck® MXP; Plasticizer: Parteck® SI 150, sorbitol; | Process 11, Thermo Scientific™, Bridgewater, NJ, USA, corotating twin-screw extruder | Various temperatures and screw speeds, depending on the formulations | Makerbot Replicator 2, MakerBot, Brooklyn, NY, USA | room temperature/ 210 °C/ 50 mm/s | [70] |
To develop immediate release tablets under QbD guidance with a high drug loading. | Diclofenac sodium from 10% to 60%; Parteck® MXP; | Noztek Pro, Noztek, Shoreham-By-Sea, UK, single-screw extruder | 65 rpm, 190 °C and a 1–2 g/min feeding rate | Makerbot Replicator 2X, Makerbot, Brooklyn, NY, USA | 45° C/185–190 °C/30 mm/s | [13] |
To compare the fabrication through HME and impregnation. | Indomethacin (30%); Mowiflex® C17 granules from Kuraray, pulverized and commercial PVA filament; | WellzoomTM C desktop, Shenzhen Mistar Technology Co., Ltd., Shenzen, China, single-screw extruder | 180 °C and 12 rpm | Flashforge Creator Pro Printing, Zhejiang Flashforge 3D Technology Co., Ltd., Zhejiang, China | 60 °C/200 °C/20 mm/s | [71] |
To test formulations based on several polymeric carriers. | Timapripant; Gohsenol® EG 03P; EMDEX®, GalenIQ® Tackidex® polyethyleneglycol (PEG) types; | HaakeTM MiniLab II, Thermo Scientific™, Madison, US-WI, USA, twin-screw extruder | 145 to 180 °C, 40/50 rpm | Kloner3D 240® Twin, Kloner3D, Florence, Italy | 50 °C/various temperatures depending on the carriers/25 mm/s | [72] |
To reach a novel viewpoint on material concerns when a PVA-based FDM 3D-printed system is the desired outcome. | Ketoprofen (30%); partially hydrolyzed (88%) PVA: Mowiol® 4-88 and Parteck® MXP; | Noztek Pro, Noztek, Shoreham-By-Sea, UK, single-screw extruder | 180 °C and 65 rpm | MakerBot Replicator 2X, Makerbot, Brooklyn, NY, USA | 80 °C/ 185 °C/ 30 mm/s | [73] |
To use deep learning in order to analyze the impact of infill density, infill pattern, and SA/V ratio on medication dissolution rate. | Diazepam (2.5%); 97.5% PVA, from 3D Republic; | Noztek Pro, Noztek, Shoreham-By-Sea, UK, single-screw extruder | 205 °C | Ultimaker 3, Ultimaker, Geldermalsen, Netherlands | 70 °C/ 185 °C/n.d. | [74] |
To determine the feed forces. | Ketoconazole (20% and 40%); Parteck MXP®, technical PVA filament. | Pharma 11, Thermo Fisher Scientific™, Waltham, MA, USA, co-rotating twin-screw extruder | zone 1: 80 °C and zone 2: 160 °C, zone 3–7: 210/220 -260/270 °C; 300 rpm | Ultimaker 3, Ultimaker, Geldermalsen, Netherlands | 60 °C/220/240 °C/30 mm/s | [75] |
Blind watermarking, a notion that encodes binary digits (bits) on the surface of 3D-printed geometries, was investigated. | Praziquantel (5%), pramipexole (5%), and triamcinolone acetonide (5%) in different 3D-printed tablets; Parteck MXP®; | Pharmalab HME 16, Thermo Fisher Scientific™, Waltham, MA, USA, co-rotating twin-screw extruder | - | Prusa i3MK3, Prusa Research, Prague, Czech Republic | n.d./differing temperatures depending on the API/n.d. | [16] |
Modified release: sustained release tablets | ||||||
To create a three-compartment solid dosage form via FDM, with an intermediate layer made of a hydrochlorothiazide-loaded PVA-mannito blend and an upper and lower layer made up of inert PLA caps. | 10% Hydrochlorotiazide; 84% Mowiol® 4-88; 10% mannitol; | Filabot Original®, Filabot, VT, USA, single-screw extruder | 170 °C, 35 rpm | MakerBot Replicator 2X, Makerbot, Brooklyn, NY, USA | 65 °C/ 200 °C/n.d. | [76] |
To modulate medication release with a polymer filler. | Calcein; Gohsenol EG-05P; | n.d., Nippon Synthetic Chemical Industry Co., Ltd.,Osaka, Japan, twin-screw extruder | 90/120/180/190/200/200/200/205/210 °C | FDM-200 W, NinjaBot, Shizuoka, Japan | 60 °C/ 190 °C/20 mm/s | [77] |
To create a model that permits dose adjustments in a tablet without changing the API’s release profile. | Pramipexole, levodopa and praziquantel; Parteck MXP®; Mannitol (plasticizer) and silica (glidant). | Pharmalab HME 16, Thermo Fisher Scientific™, Rockford, IL, USA, co-rotating twin-screw extruder | Pramipexole-PVA formulation printing temperatures: 30/100/180/180/180/180/180/195/195 °C; Praziquantel-PVA formulation zones 2–10 temperatures: 21/31/78/180/180/180/180/180/195 °C; Screw speed: 30 rpm. | Prusa i3 Mk3, Prusa Research, Prague, Czech Republic | 60 °C/185 °C/20 mm/s | [14] |
To create tablets with various geometries, many of which would be difficult to create using powder compaction. | Paracetamol (4%); Commercially available PVA filament, cut and mixed with the API. | FilaBot® hot melt extruder, Filabot, Barre, VT, USA, single-screw extruder. | 180 °C and 35 rpm | MakerBot Replicator 2X, Makerbot, Brooklyn, NY, USA | n.d./180 °C/90 mm/s | [78] |
To produce felodipine solid dispersions utilizing FDM 3D printing and polymer mixtures of PEG, PEO, and Tween 80 with either Eudragit E PO or Soluplus. | Felodipine (10%); 33–38% partially hydrolyzed PVA; Tween 80 22.5%; | Haake MiniLab II Micro Compounder, Thermo Fisher Scientific™, Karlsruhe, Germany, co-rotating twin-screw extruder | 130 °C and screw speed 100 rpm, decreasing to 25 rpm through the process | MakerBot Replicator 2, Makerbot, Brooklyn, NY, USA | Room temperature/ 150 °C/n.d. | [56] |
To study and demonstrate the significance of PVA particle size for the extrusion and printing processes, in addition to drug adhesion to the polymer. | Ciprofloxacin hydrochloride; Commercially available PVA, five PVA samples (4000–5000 μm, 1000–2000 μm, 600–1000 μm, 250–600 μm, 250 μm). | Noztek Touch HT, Noztek,, Shoreham-By-Sea, UK, single-screw extruder | T1 varied in accordance with the PVA size; T2 at 175 °C; 30 to 60 rpm | Ultimaker 3, Ultimaker, Geldermalsen, Netherlands | 80 °C/195 °C/8 mm/s | [79] |
To emphasize the significance of modifying printer settings and using excipients to create tailored-release medication. | Amlodipine; Parteck®; Sodium starch glycolate and hydroxypropyl methylcellulose, HPMC HME 4 M HYDROMELLOSE; | Noztek Pro, Noztek, Shoreham-By-Sea, England, single-screw extruder | 150–160 °C | Ultimaker 3, Ultimaker, Geldermalsen, Netherlands | 80 °C/180–190 °C/n.d. | [80] |
To create filaments for 3D printing by choosing the right processing parameters and creating polymer blends with the suitable composition. | Powder mixture: 10% dronedarone powder, 80% of small-diameter PVA filament and 10% PEG in powder form, plasticizer; | Noztek Pro, Noztek, Shoreham-By-Sea, UK, single-screw extruder | 170 °C, 2.5 m/min | Flashforge Inventor I, Zhejiang Flashforge 3D Technology Co., Ltd., Zhejiang, China | 40 °C/200 °C/10 mm/s | [81] |
To assess the impact of the drug phase and its miscibility with polymer/plasticizer mixtures on the mechanical characteristics of generated filaments. | Hydrochlorothiazide; nicotinamide to obtain a co-crystal; Parteck® MXP; Plasticizer: Sorbitol (Parteck® SI 150) 10%, 20%, and 30%; | Process 11, Thermo Fisher Scientific™, Karlsruhe, Germany, co-rotating twin-screw extruder | 70 to 170 °C, 120 rpm | ME Builder Premium Small 3D device, Builder, Noordwijkerhout, Netherlands | n.d./190 °C/40 mm/s | [82] |
To use modeling software in order to create oral drug delivery systems with intricate internal structures. | Glipizide, 2.2 and 4.8%; Commercially available PVA filament, sheared, milled and mixed with the drug; | LSJ20, Shanghai Kechuang Ltd., Shanghai, China, single-screw extruder | 180 °C, 15 rpm | Clouovo Delta-MK2, Clouovo Technologies Inc., Shenyang, China | n.d./195 °C/15 mm/s | [83] |
Modified release tablets, multiple APIs | ||||||
To create a two-compartment anti-diabetic formulation for co-administration in one dosage form, once a day. | Glimepiride and metformin; Mowiol® 4-88 for the immediate-release glimepiride-loaded layer; Eudragit® RL: prolonged release for the metformin-loaded layer; Plasticizers: mannitol/citric acid monohydrate/PEG 400/triethyl citrate; | Filabot Original® single-screw Extruder, Filabot Inc., VT, USA, single-screw extruder & HAAKE MiniLab® extruder, Thermo Scientific, MA, USA, co-rotating twin-screw extruder | 190 °C, 23 rpm | MakerBot Replicator® 2, Makerbot, Brooklyn, NY, USA | 90 °C/205 °C/70 mm/s | [15] |
Immediate and modified release tablets | ||||||
To assess how easily paracetamol-containing PVA-based filaments could be processed by preparing tablets with slow release–more PVA, and with immediate release–more paracetamol. | Paracetamol; EMPROVE® poly(vinyl) alcohol 4-88; | Prism Eurolab 16, Thermo Fisher, Karlsruhe, Germany, co-rotating twin-screw extruder | 100 rpm | MakerBot Replicator 2, Makerbot, Brooklyn, NY, USA | n.d./different temperatures depending on the formulation/ 90 mm per minute | [84] |
To investigate the impact on the drug release using four alternative approaches with release boosters. | Paracetamol (30–40% w/w); Parteck® MXP (45–55% w/w); AffinisolTM HPMC HME 4 M (5% w/w), Primellose®, Kollidon CL, PARTECK® M 200, EXPLOTAB®. | Noztek Pro, Noztek, Shoreham-By-Sea, UK, single-screw extruder | 120 °C | Ultimaker 3, Ultimaker, Geldermalsen, Netherlands | 70 °C/150 °C/35 mm/s | [85] |
Special designs | ||||||
To prepare capsule-shaped tablets and assess how drug loading, content, and internal structure (micropore volume) affect drug dissolution characteristics. | Paracetamol (4.3 and 8.2%) and caffeine (4.7 and 9.5%); commercially available PVA filament from Makerbot. | Noztek Pro, Noztek, Shoreham-By-Sea, UK, single-screw extruder | 180 °C, 15 rpm | MakerBot Replicator 2X, Makerbot, Brooklyn, NY, USA | n.d./200 °C/90 mm/s | [86] |
To prove that the combination of HME and FDM provides a platform for the creation of abuse deterrent patient-tailored opioid immediate release egg-shaped dosage forms. | Metformin hydrochloride (5; 10; 15%); Parteck® MXP; Plasticizer: sorbitol. | Process 11, Thermo Fisher Scientific™, Waltham, MA, USA, parallel twin-screw extruder | Placebo filament: 170 °C; Metformin-loaded filament: 170 °C and 100 rpm. | MakerBot® Replicator 2, Makerbot, Brooklyn, NY, USA | Room temperature/200 °C/45 mm/s | [87] |
To combine HME with FDM and film coating in order to create modified release caplets. | Budesonide; PVA commercial filaments from Makerbot Inc.; Coating polymer: Eudragit® L100; | Noztek Pro, Noztek, Shoreham-By-Sea, UK, single-screw extruder | 170 °C, 15 rpm | MakerBot Replicator 2X, Makerbot, Brooklyn, NY, USA | n.d./190 °C/90 mm/s | [88] |
To create solid capsule-shaped devices with two layers, DuoCaplets, one with immediate release and one with delayed release. | Paracetamol (4.3/8.2%), caffeine (4.7/9.5%); Commercially available PVA filament (milled and sieved). | Noztek Pro, Noztek, Shoreham-By-Sea, UK, single-screw extruder | 180 °C, 15 rpm | MakerBot Replicator 2X, Makerbot, Brooklyn, NY, USA | n.d./200 °C/90 mm/s | [89] |
To investigate the use of 3D printing to create customized baclofen modified release minicaplets for the pediatric market. | Baclofen; Parteck® MXP; Plasticizer: Sorbitol (Parteck® SI 150); | Process 11, Thermo Fisher Scientific™, Waltham, Massachusetts, USA, parallel twin-screw extruder | 160 °C, 200 rpm | MakerBot, Makerbot, Brooklyn, NY, USA | n.d./190 °C/40 mm/s | [61] |
To produce an FDM-printable filament with a high API concentration and then print it in the form of orodispersible tablets. | Fluconazole (10% to 70%); Parteck® MXP; | RES-2P/12A Explorer, Zamak Mercator®, Skawina, Poland., corotating twin-screw extruder | Varying temperatures depending on fluconazole concentration | ZMorph® 2.0S, Zmorph®, Wroclaw, Poland | n.d./n.d./10 mm/s | [12] |
To test and compare the mechanical and physicochemical characteristics of 3D-printed and casted orodispersible films. | Aripiprazole; Poval 4-88 from Kuraray, PVA commercially available filament. | Noztek1 Pro, Noztek, Shoreham-By-Sea, UK, single-screw extruder | 172 °C | Zmorph1 2.0S, Zmorph®, Wroclaw, Poland | Control films: n.d./185 °C/10 mm/s; API-containing films: n.d./190 °C/5 mm/s | [90] |
To assess the effect of the infill percentage on the gastric floating tablets’ qualities. | 10% Propranolol hydrochloride; PVA 0588; Plasticizer: glycerol; | FilaBot® FOV1, Filabot, Barre, VT, USA, single-screw hot melt extruder | 142 °C, 35 rpm | MakerBot Replicator 2X desktop 3D printer, Makerbot, Brooklyn, NY, USA | 111 °C/185 °C/10–15 mm/s | [91] |
To create the first printed oral dosage form including pramipexole, levodopa, and benserazide in the form of a prolonged release floatable polypill. | Levodopa/benserazide (4:1) (extended drug release), pramipexole (with PVA for quick drug release); Parteck MXP; Plasticizer: 10% mannitol | Pharmalab, Thermo Fisher Scientific™, Waltham, MA, USA, co-rotating twin-screw extruder | 20/20/100/180/180/180/180/195/195 °C | Prusa 3D printer, Prusa Research, Prague, Czech Republic | 70 °C/185 °C/n.d. | [92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Couți, N.; Porfire, A.; Iovanov, R.; Crișan, A.G.; Iurian, S.; Casian, T.; Tomuță, I. Polyvinyl Alcohol, a Versatile Excipient for Pharmaceutical 3D Printing. Polymers 2024, 16, 517. https://doi.org/10.3390/polym16040517
Couți N, Porfire A, Iovanov R, Crișan AG, Iurian S, Casian T, Tomuță I. Polyvinyl Alcohol, a Versatile Excipient for Pharmaceutical 3D Printing. Polymers. 2024; 16(4):517. https://doi.org/10.3390/polym16040517
Chicago/Turabian StyleCouți, Nadine, Alina Porfire, Rareș Iovanov, Andrea Gabriela Crișan, Sonia Iurian, Tibor Casian, and Ioan Tomuță. 2024. "Polyvinyl Alcohol, a Versatile Excipient for Pharmaceutical 3D Printing" Polymers 16, no. 4: 517. https://doi.org/10.3390/polym16040517
APA StyleCouți, N., Porfire, A., Iovanov, R., Crișan, A. G., Iurian, S., Casian, T., & Tomuță, I. (2024). Polyvinyl Alcohol, a Versatile Excipient for Pharmaceutical 3D Printing. Polymers, 16(4), 517. https://doi.org/10.3390/polym16040517