The Influence of Titanium Dioxide (TiO2) Particle Size and Crystalline Form on the Microstructure and UV Protection Factor of Polyester Substrates
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Treatments
2.3. Characterization
- Scanning Electron Microscopy (SEM)
- Molecular weight determination
- Yarns and fabric parameters
- Determination of the orientation of the molecules (sonic modulus)
- Differential Scanning Calorimetry (DSC)
- UPF determination
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yetisen, A.K.; Qu, H.; Manbachi, A.; Butt, H.; Dokmeci, M.R.; Hinestroza, J.P.; Skorobogatiy, M.; Khademhosseini, A.; Yun, S.H. Nanotechnology in Textiles. ACS Nano 2016, 10, 3042–3068. [Google Scholar] [CrossRef]
- Arenas-Chávez, C.A.; de Hollanda, L.M.; Arce-Esquivel, A.A.; Alvarez-Risco, A.; Del-Aguila-Arcentales, S.; Yáñez, J.A.; Vera-Gonzales, C. Antibacterial and Antifungal Activity of Functionalized Cotton Fabric with Nanocomposite Based on Silver Nanoparticles and Carboxymethyl Chitosan. Processes 2022, 10, 1088. [Google Scholar] [CrossRef]
- Han, K.; Yu, M. Study of the Preparation and Properties of UV-Blocking Fabrics of a PET/TiO2 Nanocomposite Prepared by in Situ Polycondensation. J. Appl. Polym. Sci. 2006, 100, 1588–1593. [Google Scholar] [CrossRef]
- Tran Thi, V.H.; Lee, B.-K. Development of Multifunctional Self-Cleaning and UV Blocking Cotton Fabric with Modification of Photoactive ZnO Coating via Microwave Method. J. Photochem. Photobiol. A Chem. 2017, 338, 13–22. [Google Scholar] [CrossRef]
- Yadav, A.; Prasad, V.; Kathe, A.A.; Raj, S.; Yadav, D.; Sundaramoorthy, C.; Vigneshwaran, N. Functional Finishing in Cotton Fabrics Using Zinc Oxide Nanoparticles. Bull. Mater. Sci. 2006, 29, 641–645. [Google Scholar] [CrossRef]
- Gupta, D.; Gulrajani, M.L. Self Cleaning Finishes for Textiles. In Functional Finishes for Textiles; Paul, R., Ed.; Elsevier: Cambridge, UK, 2015; pp. 257–281. ISBN 9780857098450. [Google Scholar]
- Montazer, M.; Pakdel, E.; Behzadnia, A. Novel Feature of Nano-Titanium Dioxide on Textiles: Antifelting and Antibacterial Wool. J. Appl. Polym. Sci. 2011, 121, 3407–3413. [Google Scholar] [CrossRef]
- Dastjerdi, R.; Montazer, M.; Stegmaier, T.; Moghadam, M.B. A Smart Dynamic Self-Induced Orientable Multiple Size Nano-Roughness with Amphiphilic Feature as a Stain-Repellent Hydrophilic Surface. Colloids. Surf. B Biointerfaces 2012, 91, 280–290. [Google Scholar] [CrossRef]
- Parvinzadeh Gashti, M.; Pakdel, E.; Alimohammadi, F. Nanotechnology-based coating techniques for smart textiles. In Active Coatings for Smart Textiles; Hu, J., Ed.; Woodhead Publishing: Duxford, UK, 2016; pp. 243–268. ISBN 978-0-08-100263-6. [Google Scholar]
- Nilagiri Balasubramanian, K.B.; Ramesh, T. Role, Effect, and Influences of Micro and Nano-Fillers on Various Properties of Polymer Matrix Composites for Microelectronics: A Review. Polym. Adv. Technol. 2018, 29, 1568–1585. [Google Scholar] [CrossRef]
- Caseri, W. Nanocomposites of Polymers and Inorganic Particles. In Hybrid Materials: Synthesis, Characterization, and Applications; Kickelbick, G., Ed.; John Wiley & Sons, Ltd.: Weinheim, Germany, 2007; pp. 49–86. ISBN 9783527610495. [Google Scholar] [CrossRef]
- Cazan, C.; Enesca, A.; Andronic, L. Synergic Effect of TiO2 Filler on the Mechanical Properties of Polymer Nanocomposites. Polymers 2021, 13, 2017. [Google Scholar] [CrossRef]
- Pivsa-Art, S.; Sunyikhan, K.; Pivsa-Art, W. Bicomponent Multifilament Yarns of Recycled Poly(Ethylene Terephthalate) and Nano-Titanium Dioxide for Antibacterial Carpet. J. Ind. Text. 2022, 51, 1034S–1047S. [Google Scholar] [CrossRef]
- Huang, Y.P.; Chen, T.K.; Tang, J.W.; Yen, C.; Tien, C.H. Effect of PET Melt Spinning on TiO2 Nanoparticle Aggregation and Friction Behavior of Fiber Surface. Ind. Eng. Chem. Res. 2007, 46, 5548–5554. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, Y.; Wang, Y.; Gan, X.; Wang, N. Preparation and Properties of Opaque Polyethylene Terephthalate/TiO2 Filaments. Medziagotyra 2021, 27, 325–329. [Google Scholar] [CrossRef]
- Montazer, M.; Pakdel, E. Functionality of Nano Titanium Dioxide on Textiles with Future Aspects: Focus on Wool. J. Photochem. Photobiol. C Photochem. Rev. 2011, 12, 293–303. [Google Scholar] [CrossRef]
- Chen, X.; Mao, S.S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef] [PubMed]
- Weibel, A.; Bouchet, R.; Boulc’, F.; Knauth, P. The Big Problem of Small Particles: A Comparison of Methods for Determination of Particle Size in Nanocrystalline Anatase Powders. Chem. Mater. 2005, 17, 2378–2385. [Google Scholar] [CrossRef]
- Tayca Corporation. TiO2 MT-500HD Specifications. Data Sheet B033-2.0; Tayca Corporation: Okayama, Japan, 2015. [Google Scholar]
- Tayca Corporation Photocatalytic Titanium Dioxide. TiO2 AMT-600 Specifications; Tayca Corporation: Okayama, Japan, 2004. [Google Scholar]
- Kronos International. TiO2 KRONOS 2360 Specifications; Kronos: Leverkusen, Germany, 2009. [Google Scholar]
- Kronos International. TiO2 KRONOS 1071 Specifications; Kronos: Leverkusen, Germany, 2008. [Google Scholar]
- Mijas, G.; Riba-Moliner, M.; Cayuela, D. The Effect of Accelerated Aging on the Molecular Weight and Thermal and Mechanical Properties of Polyester Yarns Containing Ceramic Particles. Polymers 2023, 15, 1348. [Google Scholar] [CrossRef]
- Cayuela, D.; Cot, M.; Algaba, I.; Manich, A.M. Effect of Different Dispersing Agents in the Non-Isothermal Kinetics and Thermomechanical Behavior of PET/TiO2 Composites. J. Macromol. Sci. Part A 2016, 53, 237–244. [Google Scholar] [CrossRef]
- Manich, A.M.; Cot, M.; Algaba, I.; Cayuela, D. Effect of the Presence of an Ester of Montanic Acids With Multifunctional Alcohols in the Composites of Titanium Dioxide Nanoparticles with Poly (Ethylene Terephthalate) in Their Non-Isothermal Crystallization. J. Macromol. Sci. Part A 2015, 52, 770–777. [Google Scholar] [CrossRef]
- Manich, A.M.; Cot, M.; Algaba, I.; Cayuela, D. Effect of the Titania Polymorph and Concentration of Dispersant on Thermal Transitions of PET/Titania Composites, Determined by Thermomechanical Analysis (TMA) and Differential Scanning Calorimetry (DSC). In Proceedings of the XXXVI Biennial Meeting of the Royal Spanish Society of Chemistry, Zaragoza, Spain, 27–30 June 2017. [Google Scholar]
- AENOR UNE-EN ISO 139:2005/A1; Textiles. Atmósferas Normales para Acondicionamiento y Ensayo. AENOR: Madrid, Spain, 2011.
- AENOR UNE-EN ISO 2060:1996; Textiles. Hilos Arrollados. Determinación de la Masa Lineal (Masa por Unidad de longitud) por El Método de la Madeja. AENOR: Madrid, Spain, 1996.
- AENOR UNE-EN ISO 12127:1998; Textiles. Determinación de La Masa Por Unidad de Superficie de Muestras Pequeñas. AENOR: Madrid Spain, 1998.
- AENOR UNE-EN ISO 5084:1997; Textiles. Determinación del Espesor de los Textiles y de los Productos. AENOR: Madrid, Spain, 1997.
- AENOR UNE-EN ISO 2062:2010; Textiles. Determinación de la Fuerza o Carga de Rotura y del Alargamiento en la Rotura de Hilos Individuales con un Equipo de Velocidad Constante de Alargamiento (CRE). AENOR: Madrid, Spain, 2010.
- Hussain, G.F.S.; Iyer, K.R.K.; Patil, N.B. Sonic Modulus of Cotton Yarn and Its Relationship with Recovery Parameters. Text. Res. J. 1984, 54, 761–765. [Google Scholar] [CrossRef]
- Cayuela, D.; Gacén, J.; Tzvetkova, M.; Gacén, I.; Amrein, M. Determination by DSC of Secondary Crystallization Due to Heatsetting of Thermoplastic Fibres. Polym. Test 2008, 27, 667–674. [Google Scholar] [CrossRef]
- AS/NZS 4399:1996; Sun Protective Clothing: Evaluation and Classification. Australian/New Zealand Standards: Ingleburn, NSW, Australia, 1996.
- Seymour, R.B.; Carraher, C.E.J.; Guerra, R.A. Introducción a la Química de los Polímeros; Reverte: Barcelona, Spain, 2021; ISBN 9788429192032. [Google Scholar]
- Todorov, L.V.; Viana, J.C. Characterization of PET Nanocomposites Produced by Different Melt-Based Production Methods. J. Appl. Polym. Sci. 2007, 106, 1659–1669. [Google Scholar] [CrossRef]
- Su, W.-F. Principles of Polymer Design and Synthesis; Springer: Berlin/Heidelberg, Germany, 2013; Volume 82. [Google Scholar]
- Peacock, A.J.; Calhoun, A.R. Polymer Chemistry: Properties and Applications; Hanser Gardner Publications: Munich, Germany, 2006; ISBN 9781569903971. [Google Scholar]
- Shayestehfar, S.; Yazdanshenas, M.E.; Khajavi, R.; Rashidi, A.S. Physical and Mechanical Properties of Nylon 6/Titanium Dioxide Micro and Nano-Composite Multifilament Yarns. J. Eng. Fiber. Fabr. 2014, 9, 158–167. [Google Scholar] [CrossRef]
- Selvin, T.P.; Kuruvilla, J.; Sabu, T. Mechanical Properties of Titanium Dioxide-Filled Polystyrene Microcomposites. Mater. Lett. 2004, 58, 281–289. [Google Scholar] [CrossRef]
- Haupert, F.; Wetzel, B. Reinforcement of Thermosetting Polymers by the Incorporation of Micro- and Nanoparticles. In Polymer Composites: From Nano- to Macro-Scale; Springer: Boston, MA, USA, 2005; pp. 45–62. ISBN 978-0-387-26213-0. [Google Scholar]
- Kumar, S.; Verma, N.; Singla, M. Size Dependent Reflective Properties of TiO2 Nanoparticles and Reflectors Made Thereof. Dig. J. Nanomater. Biostruct. 2012, 7, 607–619. [Google Scholar]
RN | RM | AN | AM | |
---|---|---|---|---|
Commercial reference | MT-500HD Tayca Corporation | KRONOS 2360 | AMT-600 Tayca Corporation | KRONOS 1071 |
Particle size (nm) | 30 | 190 | 30 | 220 |
Crystalline form | Rutile | Rutile | Anatase | Anatase |
Specific surface area (m2/g) | 48 | 13–17 | 52 | 9–11 |
Composition (%) | TiO2: 85 Al2O3: 1–15 ZrO2: 1–10 | TiO2 ≥ 92 Al2O3: 3–3.8 SiO2: 2.4–3 C: 0.18–0.2 | TiO2: 80–98 | TiO2 ≥ 96 Al2O3: 1–1.2 SiO2: 0.5–0.7 P2O5: 0.3–0.4 C: 0.15–0.25 |
Characteristics | Value |
---|---|
Appearance | Pale yellow pellets |
Acid Index (mg KOH/g) | 15–20 |
Saponification index (mg KOH/g) | 140–160 |
Viscosity (mPa·s) | ~20 |
Density (23 °C) (g/cm3) | ~1.02 |
Sample | TiO2 (%) | Dispersing Agent (%) | Linear Density of Non-Drawn Yarn (tex) | Linear Density of Drawn Yarn (tex) |
---|---|---|---|---|
RN | 1.8 | 1.8 | 26.9 | 17.6 |
RM | 2 | 2 | 23.7 | 14.1 |
AN | 2 | 2 | 27.4 | 18.3 |
AM | 2 | 2 | 27.7 | 17.0 |
PET | -- | -- | 28.9 | 15.8 |
Sample | (kg/mol) | (kg/mol) | Polydispersity () |
---|---|---|---|
PET-RN | 21.0 | 42.9 | 2.0 |
PET-RM | 23.0 | 45.1 | 2.0 |
PET-AN | 23.3 | 46.7 | 2.0 |
PET-AM | 23.2 | 44.4 | 2.0 |
PET | 27.6 | 51.5 | 2.0 |
Sample | Tc (°C) | ΔHc (J/g) |
---|---|---|
PET-RN | 202.8 | −52.4 ± 0.2 |
PET-RM | 205.3 | −52.7 ± 1.2 |
PET-AN | 206.3 | −52.9 ± 0.4 |
PET-AM | 206.3 | −54.7 ± 0.4 |
PET | 200.3 | −48.4 ± 0.3 |
Sample | Lineal Density (tex) | Tenacity (cN/dtex) | Elongation (%) | |||
---|---|---|---|---|---|---|
Non-Drawn | Drawn | Non-Drawn | Drawn | Non-Drawn | Drawn | |
PET-RN | 26.9 | 17.6 | 1.14 ± 0.12 | 1.4 ± 0.2 | 150.9 ± 9.2 | 20.6 ± 3.9 |
PET-RM | 23.7 | 14.1 | 1.25 ± 0.11 | 2.8 ± 0.2 | 140.1 ± 7.2 | 17.5 ± 2.4 |
PET-AN | 27.4 | 18.3 | 1.32 ± 0.12 | 1.8 ± 0.3 | 148.7 ± 6.1 | 27.2 ± 4.7 |
PET-AM | 27.7 | 17.0 | 1.18 ± 0.10 | 2.6 ± 0.2 | 140.3 ± 6.2 | 21.5 ± 2.1 |
PET | 28.9 | 15.8 | 1.73 ± 0.11 | 3.5 ± 0.1 | 149.5 ± 8.2 | 27.6 ± 2.3 |
Sample | Sonic Modulus | Crystallinity (%) | |||
---|---|---|---|---|---|
Non-Drawn | Drawn | Non-Drawn | Drawn | Heatset Fabric | |
PET-RN | 28.4 ± 0.2 | 86.2 ± 0.5 | 6.5 | 50.9 | 52.0 |
PET-RM | 27.4 ± 1.5 | 106.6 ± 6.7 | 6.0 | 47.4 | 51.0 |
PET-AN | 28.0 ± 2.0 | 91.0 ± 4.6 | 7.7 | 51.0 | 52.0 |
PET-AM | 28.1 ± 0.8 | 106.7 ± 7.2 | 11.7 | 49.7 | 54.9 |
PET | 26.1 ± 0.7 | 106.2 ± 6.1 | 8.0 | 47.1 | 53.5 |
Fabric | UPF | UPF Index |
---|---|---|
PET-RN | 108 | 50+ |
PET-RM | 165 | 50+ |
PET-AN | 66 | 50+ |
PET-AM | 105 | 50+ |
PET | 33 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cot, M.; Mijas, G.; Prieto-Fuentes, R.; Riba-Moliner, M.; Cayuela, D. The Influence of Titanium Dioxide (TiO2) Particle Size and Crystalline Form on the Microstructure and UV Protection Factor of Polyester Substrates. Polymers 2024, 16, 475. https://doi.org/10.3390/polym16040475
Cot M, Mijas G, Prieto-Fuentes R, Riba-Moliner M, Cayuela D. The Influence of Titanium Dioxide (TiO2) Particle Size and Crystalline Form on the Microstructure and UV Protection Factor of Polyester Substrates. Polymers. 2024; 16(4):475. https://doi.org/10.3390/polym16040475
Chicago/Turabian StyleCot, María, Gabriela Mijas, Remedios Prieto-Fuentes, Marta Riba-Moliner, and Diana Cayuela. 2024. "The Influence of Titanium Dioxide (TiO2) Particle Size and Crystalline Form on the Microstructure and UV Protection Factor of Polyester Substrates" Polymers 16, no. 4: 475. https://doi.org/10.3390/polym16040475
APA StyleCot, M., Mijas, G., Prieto-Fuentes, R., Riba-Moliner, M., & Cayuela, D. (2024). The Influence of Titanium Dioxide (TiO2) Particle Size and Crystalline Form on the Microstructure and UV Protection Factor of Polyester Substrates. Polymers, 16(4), 475. https://doi.org/10.3390/polym16040475