Polymers and Biomaterials for Posterior Lamella of the Eyelid and the Lacrimal System
Abstract
:1. Introduction
2. Use of Functional Biomaterials in the Reconstruction of Posterior Lamellar Eyelids and Progress in the Creation of Tarsal Substitute
2.1. Anatomy of Marginal Eyelid
2.2. Overview of Marginal Eyelids Defects and Reconstruction
2.3. Indications for Reconstruction of Eyelids
2.4. Current State—Current Gold Standard, Alternative Options, and Types of Biomaterials in Posterior Lamellar Eyelids Reconstruction
2.4.1. Autogenous Tissue Utilization: Grafts and Flaps from the Eyelid and Periocular Region
2.4.2. Autogenous Tissue Utilization: Grafts from Other Regions
2.5. Ideal Properties of a Tarsal Substitute
- Structure: Should be thin and stable.
- Biocompatibility: Should be highly biocompatible.
- Integration: Should have the ability to seamlessly merge into the peripheral tarsus.
- Inflammatory Responses: Should not provoke any inflammatory responses.
- Mimicry: Should mimic the physical structures and biological functions of the native extracellular matrix.
- Cell Support: Should foster cell survival, proliferation, and growth.
2.6. Emerging Biomaterials and Their New Applications in Posterior Lamellar Eyelid Reconstruction
2.6.1. Amniotic Membranes
2.6.2. Decellularized Grafts
2.6.3. Acellular Dermal Matrices (ADM)
2.6.4. Natural Polymers
2.6.5. Synthetic Polymers for Conjunctival Reconstruction
2.6.6. Synthetic Polymers for Tarsal Plate Reconstruction
2.6.7. Cellular Approaches
Material Type | Key Features and Application | Advantages | Challenges | References |
---|---|---|---|---|
Amniotic membranes | -Provides a basement membrane and avascular stromal matrix that can induce conjunctival epithelization -Placed directly over the tarsus up to the eyelid margin or in combination with other techniques -Widely used as a substitute for conjunctival replacement | -Low immunogenicity -Antimicrobial, antiviral, antifibrotic and antioangiogenic properties -Support growth of surrounding conjunctiva-derived cells such as non-goblet epithelial cells and goblet cells -Can be applied directly or in combination with other techniques for posterior lamellar reconstruction -Gets absorbed within 6 months without scarring | -Limited availability -Inconsistent tissue properties -Risk of infectious disease transmission and inflammatory-related complications | [58,59,60,61,62,63,64,65,66] |
Decellularized grafts | -Cell-free scaffold sourced from porcine and human origins -Adipose-derived mesenchymal stromal cells (ADMSCs) are used as a graft material -Various decellularized grafts have been developed for conjunctival and tarsal plate reconstruction | -Reduced graft rejection due to removal of histocompatability complexes -Promotes faster wound closure and maintains undifferentiated conjunctiva epithelial stem cells -Enhanced epithelial stem cell proliferation through Akt signalling activation -Successful treatment of severe symblepharon with decellularized porcine conjunctiva (DPC) combined with autologous conjunctiva or oral mucosa -Effective use of TarSys® for eyelid reconstruction, resulting in improved lower eyelid height and reduced lagophthalmos in Graves patients | -Concerns of infectious disease transmission with xenogeneic products -Immunogenic and inflammatory-related issues | [67,68,69,70,71,72,73,74] |
Acellular dermal matrices (ADMs) | -Sourced from human, bovine and porcine dermis -Durable, pliable sheets made of cross-linked collagen and elastin fibers, structurally similar to human tissue -Scaffold for epithelial migration, vascularization and fibroblast infiltration | -Pliable material that can be adapted to ocular shapes -Low immunogenicity and high histocompatability -Safe and effective as lower eyelid spacer grafts -Promote conjunctival epitheliazation | -May take longer to vascularize than other materials -Potential shrinkage of material over time | [75,76,77,78,79,80,81,82,83] |
Natural polymers | -Commonly derived from extracellular matrix (ECM) components like collagen I, chitosan and keratin -Serve as a biocompatible framework for conjunctival or tarsal defect repair | -Favoured for their biocompatibility, suitable mechanical properties and porous structure -Do not release cytotoxic degradation products -Processed with sustainable methods -Degradation rates are easily modifiable -Collagen-based materials, particularly Col I, promote rapid conjunctival regeneration with re-epithelization, goblet cell repopulation, minimal fibrosis, and wound contracture -Chitosan is biocompatible, bioactive, and biodegradable and can be adapted to incorporate various biochemical groups -Combining chitosan and collagen in biphasic scaffolds shows promise in supporting tissue growth and repair | -Insufficient vascularization, unpredictable degradation rates, and limited nerve connections in large grafts -Innovation is needed to create pre-vascularized and re-innervated tissues to achieve fully functional tissue regeneration -Combining multiple biomaterials to address both cellular and mechanical requirements is a promising approach for future research | [84,85,86,87,88,89,90] |
Synthetic polymers | -Poly(acrylic acid), poly(ε-caprolactone (PCL), poly(vinyl alcohol) and poly(lactic acid) for conjunctival defects -Porous polyethylene (PE), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx), poly(lactic-co-glycolic) acid, and PCL for tarsal plate reconstruction | -Processability that can be tailored to suit the requirements of specific tissues -Some synthetic scaffolds demonstrated strong cell growth and biocompatibility | -May have mismatched orientation, distribution and density of signalling cues compared to native tissue to promote effective tissue repair -May have greater immune response risk and suboptimal tissue integration than natural biomaterials | [91,92,93,94,95,96,97,98,99,100,101,102,103] |
Cellular approaches | -Involves seeding bioscaffolds with cells that replicate desired tissue functions and facilitate transplantation for tissue regeneration -Various cell types have been explored including xenogeneic conjunctival epithelial cells, nasal mucosa cells, amniotic epithelial cells, and oral mucosal epithelial cells -For tarsal reconstruction, biomimetic substitutes are being developed using 3D-printed scaffolds, decellularized matrices, adipose-derived stem cells, and bioprinting techniques | -Can restore both structural integrity and functional aspects of the posterior lamella -Injectable hydrogel constructs loaded with conjunctival stem cells and other combinations of stem cells, plasmid DNA, and fibrin gel have shown promise in repairing ocular surface and tarsal defects | -Xenogeneic cell components may require extended laboratory cultivation, limiting clinical utility -Challenges persist regarding surgical manageability and in vivo strength of biomaterials and scaffolds -Functional restoration of regenerated meibomian glands and debate over the best cell source for these glands remain areas of research -Further validation and research are needed to confirm the effectiveness of cellular graft approaches | [12,14,99,101,104,105,106,107] |
2.7. Challenges, Barriers, Gaps in Knowledge, and Future Directions
3. Use of Biopolymers to Address Diseases Affecting the Lacrimal System
3.1. Anatomy and Physiology of Lacrymal Drainage System
3.1.1. Upper System: Lacrimal Puncta to Canaliculi
3.1.2. Lower System: Lacrimal Sac to Intraosseous Duct
3.2. Overview of Tear Duct Stents
3.3. Indications for Nasolacrimal Intubation
3.4. Ideal Properties for Tear Duct Stents and Tubes
- Biocompatibility: Nasolacrimal stent materials should be biocompatible to minimize the risk of adverse reactions and ensure proper integration with the surrounding tissues. Biocompatibility is essential for maintaining the health of the lacrimal duct and preventing complications such as inflammation and tissue damage [126]. This, in turn, reduces the likelihood of complications like granuloma formation, which is a known issue in nasolacrimal intubation.
- Resistance to biofilm formation: Biofilm formation on the surface of nasolacrimal stents can lead to infections and other complications. Therefore, stent materials should be resistant to biofilm formation to minimize the risk of infection and ensure the long-term success of the stent [127]. Recent studies have identified a connection between infections in the nasolacrimal drainage system and biofilm formation, particularly from organisms such as nontuberculous mycobacteria [128]. Notably, advancements in stent material have been made to mitigate this risk. For instance, Shape Memory Polymer (SMP) stents have been demonstrated to exhibit superior resistance to biofilm formation when compared to traditional silicone stents [127].
- Elasticity for self-expansion: Nasolacrimal stents should have the ability to self-expand to fit the shape and size of the lacrimal duct. Elasticity is crucial for ensuring proper tear drainage and minimizing the risk of stent migration or dislodgement. SMP stents, for instance, have demonstrated better tear drainage capacity due to their elasticity and self-expansion properties [127].
3.5. Biopolymers for Tear Duct Stents and Tubes
3.6. Biopolymers for Lacrimal Gland Tissue Engineering
Material Type | Key Features | Advantages | Challenges | References |
---|---|---|---|---|
Polyurethane | -Stents to manage blocked lacrimal duct | -Up to 96% success rate observed in clinical studies -Comparable results of external dacryocystorhinostomy (DCR) | -Unfavourable long-term viability -Potential factors contributing to poor long-term outcomes include stent surface structure, disruption of lacrimal mucosa properties, stent design, induction of chronic inflammatory responses, and the duration of stent placement -Surgical interventions may be needed in cases of stent treatment failure | [34,132,147,148] |
Polypropylene | -Cost-effective alternative to silicone stents in DCR | -Cheaper and more readily available than silicone -Potential option in resource-constrained settings | -Lower success rate compared to silicone | [133,134] |
PLLA, PCL and polyethylene glycol (PEG) complexes | -FDA-approved biodegradable material for lacrimal duct repair | -Some stents have demonstrated superior biodegradability, less irritation and quicker tissue recovery compared to silical gel stents -Initial studies show promising results | -Lack of subsequent research confirming effectiveness -Stents made from these materials have typically been considered unsuitable for lacrimal duct support due to degradation, strength, and remodeling issues | [135] |
Polyethersulfone (PES) | -PES dead-end tubes and membranes applied as scaffold for artificial exocrine lacrimal glands | -Beneficial oxidative, thermal, and hydrolytic stability -Good mechanical and film-forming properties -Allow passage of nutrients like ascorbic acid, L-tryptophan, and glucose while preventing immune cell entry and diminishing cell growth -Tubes supported the attachment and growth of lacrimal acinar cells in rat models | -Limited application due to challenges in achieving robust cell growth and development -Lack of human studies | [136] |
PLLA-based materials | -Purified rabbit lacrimal gland acinar cells on various matrix protein-coated polymers has been studied for lacrimal tissue engineering -Included silicon, collagen I, poly-D,L-lactide-co-glycolide (PLGA; 85:15 and 50:50), poly-L-lactic acid (PLLA), and Thermanox® plastic cell culture coverslips | -PLLA found to best support expression of acinar cells compared to other agents making it a promising candidate for lacrimal gland scaffolds | -While PLLA-based membranes show permeability to glucose, L-tryptophan, and dextran, they demonstrated decreased diffusion of immunoglobulin G | [137,138] |
Hydrogels from decellularized and cellular tissues | -Formulated hydrogel gel for lacrimal gland tissue engineering | -Positive epithelial cell proliferation and functionality in contrast to other materials -Crosslinking hydrogels with genipin can prevent degradation without negatively affecting the viability of lacrimal-associated cells and the secretary capacity of epithelial cells -3D culture systems using hydrogels and lacrimal gland progenitor cells have shown the formation of duct- and acinar-like lacrimal gland structures with secretory capability -Cellularized lacrimal gland scaffolds derived from porcine tissue have been generated and displayed lacrimal gland-like morphology and secretory activity when reseeded with lacrimal cells | -Lack of in vivo studies -Additional research required to assess safety and efficacy | [139,140,141,142] |
SFMA/FTN hydrogen plug | -In situ hydrogel tailored for tear ducts -Incorporate indocyanine green fluorescent tracer nanoparticles (FTN) within a network of methacrylate-modified silk fibroin (SFMA) | -Silk fibroin chosen for its hydrophobic crystalline structure, providing strength and versatility -Improved lacrimal fluid retention with no inflammatory response in rabbit dry eye model | -Further research and testing needed to validate the safety and efficacy of these hydrogels | [143] |
Chitosan | -Sourced from crustacean exoskeletons | -Valued for its biocompatibility, biodegradability, antibacterial properties, and wound-healing capabilities -In experiments involving embryonic lacrimal gland explants, chitosan exhibited a dose-dependent stimulation of branching morphogenesis, with optimal results observed at a 0.3 mg/mL concentration -Amplified the in vivo binding affinity of HGF-related molecules, contributing to tissue development | -Use of inhibitors targeting specific pathways, such as PD98059 (MAPK pathway) and LY294002 (Akt/PKB pathway), can annul chitosan’s branching-promoting effects -Limited research to date | [144,145] |
3D bioprinting techniques | -Replication of biological tissues -Magnetic 3D bioprinting (M3DB) utilizes magnetic nanoparticles to bring cells together for 3D in vitro biofabrication of cellularized tissues | -M3DB has shown potential in creating lacrimal gland organoids from murine and porcine primary cells, resulting in strong organoids suitable for high-throughput analysis and drug discovery -Lacrimal gland organoids can serve as a functional model for tear production, a platform for drug screening, and may have clinical applications in treating dry eye disease | -While the preliminary research is promising, further studies are needed to validate the safety, efficacy, and clinical potential of lacrimal gland organoids created through M3DB | [146] |
3.7. Challenges, Barriers, Gaps in Knowledge, and Future Directions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, Y.; Ji, Q.; Fu, R.; Liu, C.; Yang, J.; Yin, X.; Li, Q.; Huang, R.-L. Biomaterials and Tissue Engineering Strategies for Posterior Lamellar Eyelid Reconstruction: Replacement or Regeneration? Bioeng. Transl. Med. 2023, 8, e10497. [Google Scholar] [CrossRef]
- Coban, I.; Sirinturk, S.; Unat, F.; Pinar, Y.; Govsa, F. Anatomical Description of the Upper Tarsal Plate for Reconstruction. Surg. Radiol. Anat. SRA 2018, 40, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
- DeParis, S.W.; Zhu, A.Y.; Majumdar, S.; Tian, J.; Elisseeff, J.; Jun, A.S.; Mahoney, N.R. Effects of Collagen Crosslinking on Porcine and Human Tarsal Plate. BMC Ophthalmol. 2019, 19, 255. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Hwang, K. Shape and Height of Tarsal Plates. J. Craniofac. Surg. 2016, 27, 496–497. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.T.; O’Connor, A.J.; Wood, J.; Casson, R.; Selva, D. Tissue Engineering in Ophthalmology: Implications for Eyelid Reconstruction. Ophthal. Plast. Reconstr. Surg. 2017, 33, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.T.; Pham, D.T.; O’Connor, A.J.; Wood, J.; Casson, R.; Selva, D.; Costi, J.J. The Biomechanics of Eyelid Tarsus Tissue. J. Biomech. 2015, 48, 3455–3459. [Google Scholar] [CrossRef]
- Ugradar, S.; Le, A.; Lesgart, M.; Goldberg, R.A.; Rootman, D.; Demer, J.L. Biomechanical and Morphologic Effects of Collagen Cross-Linking in Human Tarsus. Transl. Vis. Sci. Technol. 2019, 8, 25. [Google Scholar] [CrossRef]
- Smith, T.M.; Suzuki, S.; Sabat, N.; Rayner, C.L.; Harkin, D.G.; Chirila, T.V. Further Investigations on the Crosslinking of Tarsal Collagen as a Treatment for Eyelid Laxity: Optimizing the Procedure in Animal Tissue. Ophthal. Plast. Reconstr. Surg. 2019, 35, 600–603. [Google Scholar] [CrossRef]
- Dietrich, J.; Garreis, F.; Paulsen, F. Pathophysiology of Meibomian Glands—An Overview. Ocul. Immunol. Inflamm. 2021, 29, 803–810. [Google Scholar] [CrossRef]
- Chhadva, P.; Goldhardt, R.; Galor, A. Meibomian Gland Disease: The Role of Gland Dysfunction in Dry Eye Disease. Ophthalmology 2017, 124, S20–S26. [Google Scholar] [CrossRef]
- Makuloluwa, A.K.; Hamill, K.J.; Rauz, S.; Bosworth, L.; Haneef, A.; Romano, V.; Williams, R.L.; Dartt, D.A.; Kaye, S.B. The Conjunctival Extracellular Matrix, Related Disorders and Development of Substrates for Conjunctival Restoration. Ocul. Surf. 2021, 28, 322–335. [Google Scholar] [CrossRef] [PubMed]
- Eidet, J.R.; Dartt, D.A.; Utheim, T.P. Concise Review: Comparison of Culture Membranes Used for Tissue Engineered Conjunctival Epithelial Equivalents. J. Funct. Biomater. 2015, 6, 1064–1084. [Google Scholar] [CrossRef]
- Swamynathan, S.K.; Wells, A. Conjunctival Goblet Cells: Ocular Surface Functions, Disorders That Affect Them, and the Potential for Their Regeneration. Ocul. Surf. 2020, 18, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Yan, C.; Chen, J.; Yao, Q.; Lu, Y.; Yu, F.; Sun, H.; Fu, Y. Conjunctival Reconstruction via Enrichment of Human Conjunctival Epithelial Stem Cells by P75 through the NGF-P75-SALL2 Signaling Axis. Stem Cells Transl. Med. 2020, 9, 1448–1461. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.I.; Esmaeli, B.; Butler, C.E. Eyelid Reconstruction. Plast. Reconstr. Surg. 2017, 140, 724e–735e. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Fu, R.; Ji, Q.; Liu, C.; Yang, J.; Yin, X.; Oranges, C.M.; Li, Q.; Huang, R.-L. Surgical Strategies for Eyelid Defect Reconstruction: A Review on Principles and Techniques. Ophthalmol. Ther. 2022, 11, 1383–1408. [Google Scholar] [CrossRef]
- Vaca, E.E.; Surek, C.; Klosowiak, J.; Dumanian, G.A.; Alghoul, M.S. Neurotized Free Platysma Flap for Functional Eyelid Reconstruction: A Cadaveric Study of Anatomical Feasibility. Plast. Reconstr. Surg. 2020, 145, 1049–1057. [Google Scholar] [CrossRef]
- Malik, M.M.; Vahdani, K. Lower Eyelid Reconstruction: A New Classification Incorporating the Vertical Dimension. Plast. Reconstr. Surg. 2020, 145, 877e–878e. [Google Scholar] [CrossRef]
- Segal, K.L.; Nelson, C.C. Periocular Reconstruction. Facial Plast. Surg. Clin. N. Am. 2019, 27, 105–118. [Google Scholar] [CrossRef]
- Fin, A.; De Biasio, F.; Lanzetta, P.; Mura, S.; Tarantini, A.; Parodi, P.C. Posterior Lamellar Reconstruction: A Comprehensive Review of the Literature. Orbit Amst. Neth. 2019, 38, 51–66. [Google Scholar] [CrossRef]
- Park, E.; Lewis, K.; Alghoul, M.S. Comparison of Efficacy and Complications Among Various Spacer Grafts in the Treatment of Lower Eyelid Retraction: A Systematic Review. Aesthet. Surg. J. 2017, 37, 743–754. [Google Scholar] [CrossRef]
- Jennings, E.; Krakauer, M.; Nunery, W.R.; Aakalu, V.K. Advancements in the Repair of Large Upper Eyelid Defects: A 10-Year Review. Orbit Amst. Neth. 2021, 40, 470–480. [Google Scholar] [CrossRef]
- Tenland, K.; Berggren, J.; Engelsberg, K.; Bohman, E.; Dahlstrand, U.; Castelo, N.; Lindstedt, S.; Sheikh, R.; Malmsjö, M. Successful Free Bilamellar Eyelid Grafts for the Repair of Upper and Lower Eyelid Defects in Patients and Laser Speckle Contrast Imaging of Revascularization. Ophthal. Plast. Reconstr. Surg. 2021, 37, 168–172. [Google Scholar] [CrossRef]
- Pham, C.M.; Heinze, K.D.; Mendes-Rufino-Uehara, M.; Setabutr, P. Single-Stage Repair of Large Full Thickness Lower Eyelid Defects Using Free Tarsoconjunctival Graft and Transposition Flap: Experience and Outcomes. Orbit Amst. Neth. 2022, 41, 178–183. [Google Scholar] [CrossRef]
- Ominato, J.; Oyama, T.; Cho, H.; Shiozaki, N.; Eguchi, K.; Fukuchi, T. Evaluation of the Postoperative Course of East Asian Eyelid Reconstruction with Free Tarsoconjunctival Graft Transplantation: A Japanese Single-Centre Retrospective Study. JPRAS Open 2022, 33, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Hishmi, A.M.; Koch, K.R.; Matthaei, M.; Bölke, E.; Cursiefen, C.; Heindl, L.M. Modified Hughes Procedure for Reconstruction of Large Full-Thickness Lower Eyelid Defects Following Tumor Resection. Eur. J. Med. Res. 2016, 21, 27. [Google Scholar] [CrossRef] [PubMed]
- McKelvie, J.; Ferguson, R.; Ng, S.G.J. Eyelid Reconstruction Using the “Hughes” Tarsoconjunctival Advancement Flap: Long-Term Outcomes in 122 Consecutive Cases over a 13-Year Period. Orbit Amst. Neth. 2017, 36, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Rahmi, D.; Mehmet, B.; Ceyda, B.; Sibel, O. Management of the Large Upper Eyelid Defects with Cutler-Beard Flap. J. Ophthalmol. 2014, 2014, 424567. [Google Scholar] [CrossRef] [PubMed]
- Bengoa-González, Á.; Laslău, B.M.; Martín-Clavijo, A.; Mencía-Gutiérrez, E.; Lago-Llinás, M.D. Reconstruction of Upper Eyelid Defects Secondary to Malignant Tumors with a Newly Modified Cutler-Beard Technique with Tarsoconjunctival Graft. J. Ophthalmol. 2019, 2019, 6838415. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; Dai, H.Y.; Xing, X.; Lv, C.; Zhu, J.; Xue, C.Y. Pedicled Lower Lid-Sharing Flap for Full-Thickness Reconstruction of the Upper Eyelid. Eye Lond. Engl. 2014, 28, 1292–1296. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, K.; Yotsuyanagi, T.; Sugai, A.; Gonda, A.; Kita, A.; Kitada, A.; Onuma, M.; Kudo, M. Full-Thickness Total Upper Eyelid Reconstruction with a Lid Switch Flap and a Reverse Superficial Temporal Artery Flap. J. Plast. Reconstr. Aesthetic Surg. JPRAS 2020, 73, 1312–1317. [Google Scholar] [CrossRef]
- Toft, P.B. Reconstruction of Large Upper Eyelid Defects with a Free Tarsal Plate Graft and a Myocutaneous Pedicle Flap plus a Free Skin Graft. Orbit Amst. Neth. 2016, 35, 1–5. [Google Scholar] [CrossRef]
- Hawes, M.J.; Jamell, G.A. Complications of Tarsoconjunctival Grafts. Ophthal. Plast. Reconstr. Surg. 1996, 12, 45–50. [Google Scholar] [CrossRef]
- Yazici, B.; Ozturker, C.; Cetin Efe, A. Reconstruction of Large Upper Eyelid Defects With Bilobed Flap and Tarsoconjunctival Graft. Ophthal. Plast. Reconstr. Surg. 2020, 36, 372–374. [Google Scholar] [CrossRef]
- Rajak, S.N.; Malhotra, R.; Selva, D. The “over-the-Top” Modified Cutler-Beard Procedure for Complete Upper Eyelid Defect Reconstruction. Orbit Amst. Neth. 2019, 38, 133–136. [Google Scholar] [CrossRef]
- Vimont, T.; Arnaud, D.; Rouffet, A.; Giot, J.-P.; Florczak, A.S.; Rousseau, P. Hübner’s Tarsomarginal Grafts in Eyelid Reconstruction: 94 Cases. J. Stomatol. Oral Maxillofac. Surg. 2018, 119, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Yoshitatsu, S.; Shiraishi, M. A Modified Method for Upper Eyelid Reconstruction with Innervated Orbicularis Oculi Myocutaneous Flaps and Lower Lip Mucosal Grafts. JPRAS Open 2021, 28, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Narang, P.; Mittal, V. Labial Mucosa Grafting for Lid Margin, Anterior Lamellar, and Posterior Lamellar Correction in Recurrent Cicatricial Entropion. Orbit Amst. Neth. 2021, 40, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.-J.; Gao, Y. Using Buccal Mucosa and Auricular Cartilage With a Local Flap for Full-Thickness Defect of Lower Eyelid. J. Craniofac. Surg. 2021, 32, e660–e661. [Google Scholar] [CrossRef] [PubMed]
- Talwar, B.; Khader, M.; Monis, P.L.; Aftab, A. Surgical Treatment of Recurrent Lower Eyelid Sebaceous Gland Carcinoma and Reconstruction with Pedicled Nasolabial and Non-Vascularised Buccal Mucosal Flaps. J. Maxillofac. Oral Surg. 2019, 18, 536–538. [Google Scholar] [CrossRef] [PubMed]
- Baltu, Y. Posterior Lamellar Reconstruction of the Lower Eyelid With a Gingivoalveolar Mucosal Graft. J. Craniofac. Surg. 2018, 29, 1017–1019. [Google Scholar] [CrossRef]
- Wang, W.; Meng, H.; Yu, S.; Liu, T.; Shao, Y. Reconstruction of Giant Full-Thickness Lower Eyelid Defects Using a Combination of Palmaris Longus Tendon with Superiorly Based Nasolabial Skin Flap and Palatal Mucosal Graft. J. Plast. Surg. Hand Surg. 2021, 55, 147–152. [Google Scholar] [CrossRef]
- Yue, H.; Tian, L.; Bi, Y.; Qian, J. Hard Palate Mucoperiosteal Transplantation for Defects of the Upper Eyelid: A Pilot Study and Evaluation. Ophthal. Plast. Reconstr. Surg. 2020, 36, 469–474. [Google Scholar] [CrossRef]
- Lee, J.H.; Woo, S.S.; Shin, S.H.; Kim, H.J.; Kim, J.H.; Kim, S.H.; Suh, I.S. Upper Eyelid Reconstruction Using a Combination of a Nasal Septal Chondromucosal Graft and a Fricke Flap: A Case Report. Arch. Craniofacial Surg. 2021, 22, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Lemaître, S.; Lévy-Gabriel, C.; Desjardins, L.; González-Candial, M.; Gardrat, S.; Dendale, R.; Cassoux, N.; Couturaud, B. Outcomes after Surgical Resection of Lower Eyelid Tumors and Reconstruction Using a Nasal Chondromucosal Graft and an Upper Eyelid Myocutaneous Flap. J. Fr. Ophtalmol. 2018, 41, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Grixti, A.; Malhotra, R. Oral Mucosa Grafting in Periorbital Reconstruction. Orbit Amst. Neth. 2018, 37, 411–428. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, N.; Ogi, H.; Yanagibayashi, S.; Yoshida, R.; Takikawa, M.; Nishijima, A.; Kiyosawa, T. Eyelid Reconstruction Using Oral Mucosa and Ear Cartilage Strips as Sandwich Grafting. Plast. Reconstr. Surg. Glob. Open 2017, 5, e1301. [Google Scholar] [CrossRef]
- Mai, C.; Bertelmann, E. Oral Mucosal Grafts: Old Technique in New Light. Ophthalmic Res. 2013, 50, 91–98. [Google Scholar] [CrossRef]
- Ding, J.; Ma, X.; Xin, Y.; Li, D. Correction of Lower Eyelid Retraction with Hard Palate Graft in the Anophthalmic Socket. Can. J. Ophthalmol. J. Can. Ophtalmol. 2018, 53, 458–461. [Google Scholar] [CrossRef]
- Hendriks, S.; Bruant-Rodier, C.; Lupon, E.; Zink, S.; Bodin, F.; Dissaux, C. The Palatal Mucosal Graft: The Adequate Posterior Lamellar Reconstruction in Extensive Full-Thickness Eyelid Reconstruction. Ann. Chir. Plast. Esthet. 2020, 65, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, D.A.; Tham, V.; Hardin, N.; Antley, C.; Cohen, A.J.; Hunt, K.; Glasgow, B.J.; Baylis, H.I.; Shorr, N.; Goldberg, R.A. Eyelid Mucous Membrane Grafts: A Histologic Study of Hard Palate, Nasal Turbinate, and Buccal Mucosal Grafts. Ophthal. Plast. Reconstr. Surg. 2007, 23, 211–216. [Google Scholar] [CrossRef]
- Keçeci, Y.; Bali, Z.U.; Ahmedov, A.; Yoleri, L. Angular Artery Island Flap for Eyelid Defect Reconstruction. J. Plast. Surg. Hand Surg. 2020, 54, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Eser, C.; Kesiktaş, E.; Gencel, E.; Tabakan, İ.; Yavuz, M. Total or Near-Total Lower Eyelid Defect Reconstruction Using Malar Myocutaneous Bridge and Nasojugal Flaps and Septal Chondromucosal Graft. Ophthal. Plast. Reconstr. Surg. 2016, 32, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Cristofari, S.; Rem, K.; Revol, M.; Atlan, M.; Stivala, A. Reconstruction of Full-Thickness Lower Lid Defects Using Texier’s Procedure: Retrospective Assessment of the Indications. J. Oral Maxillofac. Surg. Off. J. Am. Assoc. Oral Maxillofac. Surg. 2019, 77, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Pushker, N.; Modaboyina, S.; Meel, R.; Agrawal, S. Auricular Skin-Cartilage Sandwich Graft Technique for Full-Thickness Eyelid Reconstruction. Indian J. Ophthalmol. 2022, 70, 1404–1407. [Google Scholar] [CrossRef] [PubMed]
- Barrancos, C.; García-Cruz, I.; Ventas-Ayala, B.; Sales-Sanz, M. The Addition of a Conjunctival Flap to a Posterior Lamella Auricular Cartilage Graft: A Technique to Avoid Corneal Complications. Eur. J. Ophthalmol. 2021, 31, 2165–2170. [Google Scholar] [CrossRef] [PubMed]
- Suga, H.; Ozaki, M.; Narita, K.; Kurita, M.; Shiraishi, T.; Ohura, N.; Takushima, A.; Harii, K. Comparison of Nasal Septum and Ear Cartilage as a Graft for Lower Eyelid Reconstruction. J. Craniofac. Surg. 2016, 27, 305–307. [Google Scholar] [CrossRef] [PubMed]
- Walkden, A. Amniotic Membrane Transplantation in Ophthalmology: An Updated Perspective. Clin. Ophthalmol. Auckl. NZ 2020, 14, 2057–2072. [Google Scholar] [CrossRef]
- Sabater-Cruz, N.; Figueras-Roca, M.; González Ventosa, A.; Padró-Pitarch, L.; Tort, J.; Casaroli-Marano, R.P. Current Clinical Application of Sclera and Amniotic Membrane for Ocular Tissue Bio-Replacement. Cell Tissue Bank. 2020, 21, 597–603. [Google Scholar] [CrossRef]
- Jirsova, K.; Jones, G.L. Amniotic Membrane in Ophthalmology: Properties, Preparation, Storage and Indications for Grafting—A Review. Cell Tissue Bank. 2017, 18, 193–204. [Google Scholar] [CrossRef]
- Miyakoshi, A.; Nishida, Y.; Tanaka, A.; Hayashi, A. Histological Equivalence of a Hyper-Dry Amniotic Membrane and the Ambio2TM after Implantation in the Rabbit Conjunctiva. Ophthalmic Res. 2020, 63, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Bandeira, F.; Yam, G.H.-F.; Fuest, M.; Ong, H.S.; Liu, Y.-C.; Seah, X.-Y.; Shen, S.Y.; Mehta, J.S. Urea-De-Epithelialized Human Amniotic Membrane for Ocular Surface Reconstruction. Stem Cells Transl. Med. 2019, 8, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Palamar, M.; Yaman, B.; Akalın, T.; Yağcı, A. Amniotic Membrane Transplantation in Surgical Treatment of Conjunctival Melanoma: Long-Term Results. Turk. J. Ophthalmol. 2018, 48, 15–18. [Google Scholar] [CrossRef]
- Agraval, U.; Rundle, P.; Rennie, I.G.; Salvi, S. Fresh Frozen Amniotic Membrane for Conjunctival Reconstruction after Excision of Neoplastic and Presumed Neoplastic Conjunctival Lesions. Eye 2017, 31, 884–889. [Google Scholar] [CrossRef]
- Naxer, S.; Horn, M.; Schittkowski, M. Processed Amniotic Membrane for Conjunctival Reconstruction in Complex Strabismus Surgery. Strabismus 2018, 26, 191–197. [Google Scholar] [CrossRef]
- Reed, D.S.; Giles, G.B.; Johnson, A.; Santamaria, J.A.; Nelson, F.; Appelo, B.; DeMartelaere, S.; Davies, B.W. Acute Reconstruction of Periorbital Trauma Resulting in Eyelid Anterior Lamella Loss With Simultaneous Full-Thickness Skin Grafting and Amniotic Membrane Grafting: A Case Report. Mil. Med. 2022, 187, e246–e249. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Yan, C.; Yu, F.; Zhang, S.; Chen, L.; Wu, N.; Shao, C.; Yao, Q.; Sun, H.; Fu, Y. Exploitation of Human Mesenchymal Stromal Cell Derived Matrix towards the Structural and Functional Restoration of the Ocular Surface. Biomater. Sci. 2020, 8, 4712–4727. [Google Scholar] [CrossRef]
- Zhao, L.; Jia, Y.; Zhao, C.; Li, H.; Wang, F.; Dong, M.; Liu, T.; Zhang, S.; Zhou, Q.; Shi, W. Ocular Surface Repair Using Decellularized Porcine Conjunctiva. Acta Biomater. 2020, 101, 344–356. [Google Scholar] [CrossRef]
- Shan, F.; Feng, X.; Li, J.; Yang, S.; Wang, F.; Shi, W.; Zhao, L.; Zhou, Q. Decellularized Porcine Conjunctiva in Treating Severe Symblepharon. J. Funct. Biomater. 2023, 14, 318. [Google Scholar] [CrossRef]
- Chen, F.; Deng, J.; Luo, L.; Zhu, Y.; Dong, Y.; Yang, Y.; Zhang, R.; Chen, J.; Zhou, Q. Crosslinked Decellularized Porcine Pericardium as a Substrate for Conjunctival Reconstruction. Stem Cells Int. 2022, 2022, 7571146. [Google Scholar] [CrossRef]
- Witt, J.; Dietrich, J.; Mertsch, S.; Schrader, S.; Spaniol, K.; Geerling, G. Decellularized Porcine Conjunctiva as an Alternative Substrate for Tissue-Engineered Epithelialized Conjunctiva. Ocul. Surf. 2020, 18, 901–911. [Google Scholar] [CrossRef]
- Liao, S.L.; Wei, Y.H. Correction of Lower Lid Retraction Using TarSys Bioengineered Grafts for Graves Ophthalmopathy. Am. J. Ophthalmol. 2013, 156, 387–392.e1. [Google Scholar] [CrossRef] [PubMed]
- Mancera, N.; Schneider, A.; Margo, C.E.; Bajric, J. Inflammatory Reaction to Decellularized Porcine-Derived Xenograft for Lower Eyelid Retraction. Ophthal. Plast. Reconstr. Surg. 2019, 35, e95–e97. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, M.; Unterlauft, J.; Kleinsasser, N.; Geerling, G. Decellularized Porcine Derived Membrane (Tarsys ®) for Correction of Lower Eyelid Retraction. Orbit 2012, 31, 187–189. [Google Scholar] [CrossRef]
- Ma, X.; Thomas, H.S.; Kanmounye, U.S. Beyond Technology: Review of Systemic Innovation Stories in Global Surgery. J. Public Health Emerg. 2020, 4, 19. [Google Scholar] [CrossRef]
- Huang, X.; Ding, Y.; Lu, L.; Jin, R.; Di, S.; Yang, J.; Luo, X. Biomaterials for Tarsal Plate Reconstruction and Our Innovative Work. Chin. J. Plast. Reconstr. Surg. 2021, 3, 150–154. [Google Scholar] [CrossRef]
- Huang, Q.; Fang, Y.; Wang, Y.; Liao, H. Clinical Observation on Healing of Tarsal Plate Defect after Reconstruction with Xenogeneic Acellular Dermal Matrix. BMC Ophthalmol. 2022, 22, 326. [Google Scholar] [CrossRef]
- McGrath, L.A.; Hardy, T.G.; McNab, A.A. Efficacy of Porcine Acellular Dermal Matrix in the Management of Lower Eyelid Retraction: Case Series and Review of the Literature. Graefes Arch. Clin. Exp. Ophthalmol. 2020, 258, 1999–2006. [Google Scholar] [CrossRef]
- Eah, K.S.; Sa, H.-S. Reconstruction of Large Upper Eyelid Defects Using the Reverse Hughes Flap Combined With a Sandwich Graft of an Acellular Dermal Matrix. Ophthal. Plast. Reconstr. Surg. 2021, 37, S27–S30. [Google Scholar] [CrossRef] [PubMed]
- Sarkozyova, N.; Dragunova, J.; Bukovcan, P.; Ferancikova, N.; Breza, J.; Zilinska, Z.; Koller, J. Preparation and Processing of Human Allogenic Dermal Matrix for Utilization in Reconstructive Surgical Procedures. Bratisl. Med. J. 2020, 121, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Custer, P.L.; Maamari, R.N. Porcine Dermal Matrix Sandwich Graft for Lower Eyelid Reconstruction. Orbit 2021, 40, 138–144. [Google Scholar] [CrossRef]
- Park, S.J.; Kim, Y.; Jang, S.Y. The Application of an Acellular Dermal Allograft (AlloDerm) for Patients with Insufficient Conjunctiva during Evisceration and Implantation Surgery. Eye 2018, 32, 136–141. [Google Scholar] [CrossRef]
- Teo, L.; Woo, Y.J.; Kim, D.K.; Kim, C.Y.; Yoon, J.S. Surgical Outcomes of Porcine Acellular Dermis Graft in Anophthalmic Socket: Comparison with Oral Mucosa Graft. Korean J. Ophthalmol. 2017, 31, 9. [Google Scholar] [CrossRef] [PubMed]
- Stoppel, W.L.; Ghezzi, C.E.; McNamara, S.L.; III, L.D.B.; Kaplan, D.L. Clinical Applications of Naturally Derived Biopolymer-Based Scaffolds for Regenerative Medicine. Ann. Biomed. Eng. 2015, 43, 657–680. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.T.; O’Connor, A.J.; Milne, I.; Biswas, D.; Casson, R.; Wood, J.; Selva, D. Development of Macroporous Chitosan Scaffolds for Eyelid Tarsus Tissue Engineering. Tissue Eng. Regen. Med. 2019, 16, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Witt, J.; Borrelli, M.; Mertsch, S.; Geerling, G.; Spaniol, K.; Schrader, S. Evaluation of Plastic-Compressed Collagen for Conjunctival Repair in a Rabbit Model. Tissue Eng. Part A 2019, 25, 1084–1095. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, M.; Joepen, N.; Reichl, S.; Finis, D.; Schoppe, M.; Geerling, G.; Schrader, S. Keratin Films for Ocular Surface Reconstruction: Evaluation of Biocompatibility in an in-Vivo Model. Biomaterials 2015, 42, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Drechsler, C.C.; Kunze, A.; Kureshi, A.; Grobe, G.; Reichl, S.; Geerling, G.; Daniels, J.T.; Schrader, S. Development of a Conjunctival Tissue Substitute on the Basis of Plastic Compressed Collagen. J. Tissue Eng. Regen. Med. 2017, 11, 896–904. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Lu, Q.; Guo, Q.; Chae, J.; Fan, X.; Elisseeff, J.H.; Grant, M.P. Vitrified Collagen-Based Conjunctival Equivalent for Ocular Surface Reconstruction. Biomaterials 2014, 35, 7398–7406. [Google Scholar] [CrossRef]
- Xu, P.; Feng, X.; Zheng, H.; Feng, Z.; Fu, Z.; Gao, C.; Ye, J. A Tarsus Construct of a Novel Branched Polyethylene with Good Elasticity for Eyelid Reconstruction in Vivo. Regen. Biomater. 2020, 7, 259–269. [Google Scholar] [CrossRef]
- He, M.; Storr-Paulsen, T.; Wang, A.L.; Ghezzi, C.E.; Wang, S.; Fullana, M.; Karamichos, D.; Utheim, T.P.; Islam, R.; Griffith, M.; et al. Artificial Polymeric Scaffolds as Extracellular Matrix Substitutes for Autologous Conjunctival Goblet Cell Expansion. Investig. Opthalmology Vis. Sci. 2016, 57, 6134. [Google Scholar] [CrossRef]
- Bosworth, L.A.; Doherty, K.G.; Hsuan, J.D.; Cray, S.P.; D’Sa, R.A.; Pineda Molina, C.; Badylak, S.F.; Williams, R.L. Material Characterisation and Stratification of Conjunctival Epithelial Cells on Electrospun Poly(ε-Caprolactone) Fibres Loaded with Decellularised Tissue Matrices. Pharmaceutics 2021, 13, 318. [Google Scholar] [CrossRef]
- Sharma, S.; Gupta, D.; Mohanty, S.; Jassal, M.; Agrawal, A.K.; Tandon, R. Surface-Modified Electrospun Poly(ε-Caprolactone) Scaffold With Improved Optical Transparency and Bioactivity for Damaged Ocular Surface Reconstruction. Investig. Opthalmology Vis. Sci. 2014, 55, 899. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Zhang, W.; Hu, Y.; Chen, J.; Shao, C.; Fan, X.; Fu, Y. Electrospun Collagen/Poly(L-Lactic Acid-co-ε-caprolactone) Scaffolds for Conjunctival Tissue Engineering. Exp. Ther. Med. 2017, 14, 4141–4147. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Zhang, S.; Yu, F.; Gong, D.; Lin, J.; Yao, Q.; Fu, Y. Insight into Levofloxacin Loaded Biocompatible Electrospun Scaffolds for Their Potential as Conjunctival Substitutes. Carbohydr. Polym. 2021, 269, 118341. [Google Scholar] [CrossRef] [PubMed]
- Parikh, A.; Pfeiffer, M.; Yim, C.; Burnstine, M. Implants and Spacers for Paralytic Ectropion: Literature Review and Assessment of a Thin-Profile Porous Polyethylene Implant. Indian J. Ophthalmol. 2023, 71, 444. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Peng, S.-W.; Wang, Y.-Y.; Zheng, S.-B.; Wang, Y.; Chen, G.-Q. The Use of Poly(3-Hydroxybutyrate-Co-3-Hydroxyhexanoate) Scaffolds for Tarsal Repair in Eyelid Reconstruction in the Rat. Biomaterials 2010, 31, 7512–7518. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Chen, P.; Gao, Q.; Sun, Y.; Cao, J.; Wu, H.; Ye, J. Azithromycin-Carrying and Microtubule-Orientated Biomimetic Poly (Lactic-Co-Glycolic Acid) Scaffolds for Eyelid Reconstruction. Front. Med. 2023, 10, 1129606. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Jin, K.; Feng, X.; Ye, J.; Gao, C. Regeneration of Different Types of Tissues Depends on the Interplay of Stem Cells-Laden Constructs and Microenvironments In Vivo. Mater. Sci. Eng. C 2019, 94, 938–948. [Google Scholar] [CrossRef]
- Hong, S.; Yun, J.H.; Kim, E.-S.; Kim, J.S.; Tchah, H.; Hwang, C. Human Conjunctival Epithelial Sheets Grown on Poly(Lactic-Co-Glycolic) Acid Membranes and Cocultured With Human Tenon’s Fibroblasts for Corneal Repair. Investig. Opthalmology Vis. Sci. 2018, 59, 1475. [Google Scholar] [CrossRef]
- Chen, L.; Yan, D.; Wu, N.; Zhang, W.; Yan, C.; Yao, Q.; Zouboulis, C.C.; Sun, H.; Fu, Y. 3D-Printed Poly-Caprolactone Scaffolds Modified With Biomimetic Extracellular Matrices for Tarsal Plate Tissue Engineering. Front. Bioeng. Biotechnol. 2020, 8, 219. [Google Scholar] [CrossRef] [PubMed]
- Mavrikakis, I.; Francis, N.; Poitelea, C.; Parkin, B.; Brittain, P.; Olver, J. Medpor® Lower Eyelid Spacer: Does It Biointegrate? Orbit 2009, 28, 58–62. [Google Scholar] [CrossRef]
- Gao, Q.; Hu, B.; Ning, Q.; Ye, C.; Xie, J.; Ye, J.; Gao, C. A Primary Study of Poly(Propylene Fumarate)–2-Hydroxyethyl Methacrylate Copolymer Scaffolds for Tarsal Plate Repair and Reconstruction in Rabbit Eyelids. J. Mater. Chem. B 2015, 3, 4052–4062. [Google Scholar] [CrossRef]
- Yang, S.P.; Yang, X.Z.; Cao, G.P. Conjunctiva Reconstruction by Induced Differentiation of Human Amniotic Epithelial Cells. Genet Mol. Res. 2015, 14, 13823–13834. [Google Scholar] [CrossRef] [PubMed]
- Gopakumar, V.; Agarwal, S.; Srinivasan, B.; Krishnakumar, S.; Krishnan, U.M.; Iyer, G. Clinical Outcome of Autologous Cultivated Oral Mucosal Epithelial Transplantation in Ocular Surface Reconstruction. Cornea 2019, 38, 1273–1279. [Google Scholar] [CrossRef]
- Sotozono, C.; Inatomi, T.; Nakamura, T.; Koizumi, N.; Yokoi, N.; Ueta, M.; Matsuyama, K.; Kaneda, H.; Fukushima, M.; Kinoshita, S. Cultivated Oral Mucosal Epithelial Transplantation for Persistent Epithelial Defect in Severe Ocular Surface Diseases with Acute Inflammatory Activity. Acta Ophthalmol. (Copenh.) 2014, 92, e447–e453. [Google Scholar] [CrossRef]
- Zhong, Z.; Deng, X.; Wang, P.; Yu, C.; Kiratitanaporn, W.; Wu, X.; Schimelman, J.; Tang, M.; Balayan, A.; Yao, E.; et al. Rapid Bioprinting of Conjunctival Stem Cell Micro-Constructs for Subconjunctival Ocular Injection. Biomaterials 2021, 267, 120462. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Wu, Z.; Xu, K.; Wang, X.; Wang, S.; Qiu, H.; Li, X.; Chen, J. Multifunctional Coatings of Titanium Implants Toward Promoting Osseointegration and Preventing Infection: Recent Developments. Front. Bioeng. Biotechnol. 2021, 9, 783816. [Google Scholar] [CrossRef]
- Guo, Y.; Gao, T.; Lin, M.; Fan, W.; Rokohl, A.C.; Kakkassery, V.; Heindl, L.M.; Ye, J. Posterior Lamella Substitutes in Full-Thickness Eyelid Reconstruction: A Narrative Review. Front. Oral Maxillofac. Med. 2023, 5, 24. [Google Scholar] [CrossRef]
- Dailey, R.A.; Marx, D.P.; Ahn, E.S. Porcine Dermal Collagen in Lower Eyelid Retraction Repair. Ophthal. Plast. Reconstr. Surg. 2015, 31, 233–241. [Google Scholar] [CrossRef]
- Tao, J.P.; Aakalu, V.K.; Wladis, E.J.; Sobel, R.K.; Freitag, S.K.; Foster, J.A.; Yen, M.T. Bioengineered Acellular Dermal Matrix Spacer Grafts for Lower Eyelid Retraction Repair. Ophthalmology 2020, 127, 689–695. [Google Scholar] [CrossRef]
- Chen, M.; Jiang, R.; Deng, N.; Zhao, X.; Li, X.; Guo, C. Natural Polymer-Based Scaffolds for Soft Tissue Repair. Front. Bioeng. Biotechnol. 2022, 10, 954699. [Google Scholar] [CrossRef]
- Periman, L.M.; Perez, V.L.; Saban, D.R.; Lin, M.C.; Neri, P. The Immunological Basis of Dry Eye Disease and Current Topical Treatment Options. J. Ocul. Pharmacol. Ther. 2020, 36, 137–146. [Google Scholar] [CrossRef]
- Tchegnon, E.; Liao, C.-P.; Ghotbi, E.; Shipman, T.; Wang, Y.; McKay, R.M.; Le, L.Q. Epithelial Stem Cell Homeostasis in Meibomian Gland Development, Dysfunction, and Dry Eye Disease. JCI Insight 2021, 6, e151078. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Gong, D.; Chen, J.; Chen, J.; Chen, L.; Sun, H.; Fu, Y. Design of Functional Decellularized Matrix for Conjunctival Epithelial Stem Cell Maintenance and Ocular Surface Reconstruction. Mater. Des. 2022, 224, 111278. [Google Scholar] [CrossRef]
- Takahashi, Y.; Kakizaki, H.; Nakano, T.; Asamoto, K.; Ichinose, A.; Iwaki, M. Anatomy of the Vertical Lacrimal Canaliculus and Lacrimal Punctum: A Macroscopic Study. Ophthal. Plast. Reconstr. Surg. 2011, 27, 384–386. [Google Scholar] [CrossRef] [PubMed]
- Tucker, N.A.; Tucker, S.M.; Linberg, J.V. The Anatomy of the Common Canaliculus. Arch. Ophthalmol. Chic. Ill 1960 1996, 114, 1231–1234. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.J.; Schicht, M.; Paulsen, F. Morphology and Morphometry of Lacrimal Drainage System in Relation to Bony Landmarks in Caucasian Adults: A Cadaveric Study. Int. Ophthalmol. 2018, 38, 2463–2469. [Google Scholar] [CrossRef]
- Tong, J.; Lopez, M.J.; Patel, B.C. Anatomy, Head and Neck: Eye Orbicularis Oculi Muscle. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Henderson, J.W. Management of Strictures of the Lacrimal Canaliculi with Polyethylene Tubes. Arch. Ophthalmol. Chic. Ill 1929 1950, 44, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Nerald, J.A. Oculoplastic Surgery: The Requisites in Ophthalmology; Mosby: St. Louis, MI, USA, 2001; ISBN 978-0-323-00174-8. [Google Scholar]
- Liarakos, V.S.; Boboridis, K.G.; Mavrikakis, E.; Mavrikakis, I. Management of Canalicular Obstructions. Curr. Opin. Ophthalmol. 2009, 20, 395–400. [Google Scholar] [CrossRef]
- Zadeng, Z.; Singh, M.; Singh, U. Role of Lacrimal Canalicular Trephination and Mini-Monoka Stent in the Management of Idiopathic Distal Canalicular Obstructions: Our Experience of 23 Cases. Asia-Pac. J. Ophthalmol. Phila. Pa 2014, 3, 27–31. [Google Scholar] [CrossRef]
- Doucet, T.W.; Hurwitz, J.J. Canaliculodacryocystorhinostomy in the Treatment of Canalicular Obstruction. Arch. Ophthalmol. Chic. Ill 1960 1982, 100, 306–309. [Google Scholar] [CrossRef]
- Devoto, M.H.; Bernardini, F.P.; de Conciliis, C. Minimally Invasive Conjunctivodacryocystorhinostomy with Jones Tube. Ophthal. Plast. Reconstr. Surg. 2006, 22, 253–255. [Google Scholar] [CrossRef]
- Zhan, X.; Guo, X.; Hu, W.; Xiang, N. A Novel Lacrimal Duct Prosthesis and Its Biodegradation and Biocompatibility. Chin. J. Exp. Ophthalmol. 2017, 35, 129–134. [Google Scholar]
- Park, J.Y.; Lee, J.B.; Shin, W.B.; Kang, M.-L.; Shin, Y.C.; Son, D.H.; Yi, S.W.; Yoon, J.-K.; Kim, J.Y.; Ko, J.; et al. Nasolacrimal Stent with Shape Memory as an Advanced Alternative to Silicone Products. Acta Biomater. 2020, 101, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Samimi, D.B.; Ediriwickrema, L.S.; Bielory, B.P.; Miller, D.; Lee, W.; Johnson, T.E. Microbiology and Biofilm Trends of Silicone Lacrimal Implants: Comparing Infected Versus Routinely Removed Stents. Ophthal. Plast. Reconstr. Surg. 2016, 32, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Baek, J.S.; Lee, S.; Lee, J.H.; Choi, H.S.; Jang, J.W.; Kim, S.J. Predictors of Silicone Tube Intubation Success in Patients with Lacrimal Drainage System Stenosis. Korean J. Ophthalmol. 2016, 30, 157. [Google Scholar] [CrossRef]
- Kasaee, A.; Eshraghi, B.; Ameli, K.; Ghahvehchian, H.; Jamshidian-Tehrani, M.; Nabavi, A.; Inanloo, B. Pulled versus Pushed Monocanalicular Silicone Intubation in Adults with Lacrimal Drainage System Stenosis: A Comparative Case Series. J. Ophthalmol. 2021, 2021, 5592039. [Google Scholar] [CrossRef] [PubMed]
- Dutta, M.; Ghatak, S.; Bandyopadhyay, S. Should Silicone Lacrimal Stenting Be a Better Choice for Primary Endoscopic Powered Dacryocystorhinostomy? Indian J. Otolaryngol. Head Neck Surg. 2023, 75, 496–502. [Google Scholar] [CrossRef]
- Bertelmann, E.; Rieck, P. Polyurethane Stents for Lacrimal Duct Stenoses: 5-Year Results. Graefes Arch. Clin. Exp. Ophthalmol. 2006, 244, 677–682. [Google Scholar] [CrossRef]
- Baruah, B.; Sarawgi, M.; Sahu, P.; Dubey, K.P.; Gupta, A.; Kumar, A. Polypropylene in Endoscopic Dacryocystorhinostomy: A Novel Stent. Indian J. Otolaryngol. Head Neck Surg. 2018, 70, 240–243. [Google Scholar] [CrossRef]
- Ghallab, A.H.; Allam, A.; Abd Elbaky, H.; Abd El Raouf, A.B.; Tantawy, R.; Abd El Samiea, A. Comparative Study of Endonasal Dacryocystorhinostomy with Silicone or Polypropylene Stents Using Mitomycin C. Benha Med. J. 2022, 40, 129–141. [Google Scholar] [CrossRef]
- Zhan, X.; Guo, X.; Liu, R.; Hu, W.; Zhang, L.; Xiang, N. Intervention Using a Novel Biodegradable Hollow Stent Containing Polylactic Acid-Polyprolactone-Polyethylene Glycol Complexes against Lacrimal Duct Obstruction Disease. PLoS ONE 2017, 12, e0178679. [Google Scholar] [CrossRef] [PubMed]
- Long, L.; Liu, Z.; Wang, T.; Deng, X.; Yang, K.; Li, L.; Zhao, C. Polyethersulfone Dead-End Tube as a Scaffold for Artificial Lacrimal Glandsin Vitro. J. Biomed. Mater. Res. B Appl. Biomater. 2006, 78B, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Selvam, S.; Thomas, P.B.; Trousdale, M.D.; Stevenson, D.; Schechter, J.E.; Mircheff, A.K.; Jacob, J.T.; Smith, R.E.; Yiu, S.C. Tissue-Engineered Tear Secretory System: Functional Lacrimal Gland Acinar Cells Cultured on Matrix Protein-Coated Substrata. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 80B, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Selvam, S.; Chang, W.V.; Nakamura, T.; Samant, D.M.; Thomas, P.B.; Trousdale, M.D.; Mircheff, A.K.; Schechter, J.E.; Yiu, S.C. Microporous Poly(L-Lactic Acid) Membranes Fabricated by Polyethylene Glycol Solvent-Cast/Particulate Leaching Technique. Tissue Eng. Part C Methods 2009, 15, 463–474. [Google Scholar] [CrossRef] [PubMed]
- Wiebe-Ben Zakour, K.E.; Kaya, S.; Cheikh-Rouhou, A.; Hacker, M.; Geerling, G.; Witt, J. Novel Extracellular Matrix Based Hydrogel for Lacrimal Gland Tissue Engineering. Investig. Ophthalmol. Vis. Sci. 2023, 64, 177. [Google Scholar]
- Kaya, S.; Wiebe Ben-Zakour, K.; Grumm, L.; Hacker, M.; Geerling, G.; Witt, J. Genipin Crosslinking of Porcine Decellularized Lacrimal Gland Bioink. Investig. Ophthalmol. Vis. Sci. 2023, 64, 679. [Google Scholar]
- Lin, H.; Sun, G.; He, H.; Botsford, B.; Li, M.; Elisseeff, J.H.; Yiu, S.C. Three-Dimensional Culture of Functional Adult Rabbit Lacrimal Gland Epithelial Cells on Decellularized Scaffold. Tissue Eng. Part A 2016, 22, 65–74. [Google Scholar] [CrossRef]
- Spaniol, K.; Metzger, M.; Roth, M.; Greve, B.; Mertsch, S.; Geerling, G.; Schrader, S. Engineering of a Secretory Active Three-Dimensional Lacrimal Gland Construct on the Basis of Decellularized Lacrimal Gland Tissue. Tissue Eng. Part A 2015, 21, 2605–2617. [Google Scholar] [CrossRef]
- Dai, M.; Xu, K.; Xiao, D.; Zheng, Y.; Zheng, Q.; Shen, J.; Qian, Y.; Chen, W. In Situ Forming Hydrogel as a Tracer and Degradable Lacrimal Plug for Dry Eye Treatment. Adv. Healthc. Mater. 2022, 11, 2200678. [Google Scholar] [CrossRef]
- Hsiao, Y.-C.; Yang, T.-L. Regulating Temporospatial Dynamics of Morphogen for Structure Formation of the Lacrimal Gland by Chitosan Biomaterials. Biomaterials 2017, 113, 42–55. [Google Scholar] [CrossRef]
- Hsiao, Y.-C.; Yang, T.-L. Data Supporting Regulating Temporospatial Dynamics of Morphogen for Structure Formation of the Lacrimal Gland by Chitosan Biomaterials. Data Brief 2017, 10, 108–115. [Google Scholar] [CrossRef]
- Rodboon, T.; Yodmuang, S.; Chaisuparat, R.; Ferreira, J.N. Development of High-Throughput Lacrimal Gland Organoid Platforms for Drug Discovery in Dry Eye Disease. SLAS Discov. 2022, 27, 151–158. [Google Scholar] [CrossRef]
- Yazici, Z.; Yazici, B.; Parlak, M.; Tuncel, E.; Ertürk, H. Treatment of Nasolacrimal Duct Obstruction with Polyurethane Stent Placement: Long-Term Results. Am. J. Roentgenol. 2002, 179, 491–494. [Google Scholar] [CrossRef]
- Carol Davila University of Medicine and Pharmacy, B-dul Eroilor Sanitari 8, 050474 Bucharest, Romania; Popa Cherecheanu, A.; Ghita, M.; Gheorghe, I.; Budu, V. Lacrimal Stents and Intubation Systems—Our Expertise. Romanian Biotechnol. Lett. 2020, 25, 1651–1657. [Google Scholar] [CrossRef]
- Hama, R.; Ulziibayar, A.; Reinhardt, J.W.; Watanabe, T.; Kelly, J.; Shinoka, T. Recent Developments in Biopolymer-Based Hydrogels for Tissue Engineering Applications. Biomolecules 2023, 13, 280. [Google Scholar] [CrossRef]
- Hirayama, M.; Tsubota, K.; Tsuji, T. Bioengineered Lacrimal Gland Organ Regeneration In Vivo. J. Funct. Biomater. 2015, 6, 634–649. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, K.Y.; Fujioka, J.K.; Goodyear, E.; Tran, S.D. Polymers and Biomaterials for Posterior Lamella of the Eyelid and the Lacrimal System. Polymers 2024, 16, 352. https://doi.org/10.3390/polym16030352
Wu KY, Fujioka JK, Goodyear E, Tran SD. Polymers and Biomaterials for Posterior Lamella of the Eyelid and the Lacrimal System. Polymers. 2024; 16(3):352. https://doi.org/10.3390/polym16030352
Chicago/Turabian StyleWu, Kevin Y., Jamie K. Fujioka, Emilie Goodyear, and Simon D. Tran. 2024. "Polymers and Biomaterials for Posterior Lamella of the Eyelid and the Lacrimal System" Polymers 16, no. 3: 352. https://doi.org/10.3390/polym16030352
APA StyleWu, K. Y., Fujioka, J. K., Goodyear, E., & Tran, S. D. (2024). Polymers and Biomaterials for Posterior Lamella of the Eyelid and the Lacrimal System. Polymers, 16(3), 352. https://doi.org/10.3390/polym16030352