A Photothermal-Responsive Soft Actuator Based on Biomass Carbon Nanosheets of Synergistic Bilateral Polymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PEI-CCS
2.3. Preparation of NA/PET/NI-n Soft Actuator
2.4. Characterization
3. Results and Discussion
3.1. The Synthesis of PEI-CCS
3.2. The Design of NA/PET/NI Actuators
3.3. The Photothermal Response Properties of NA/PET/NI Actuators
3.4. The Application of the NA/PET/NI-3 Actuator
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, Z.; Zhang, X.; Li, Y. Synthesis and application of modulated polymer gels. Science 1995, 269, 525–527. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Song, P.A. Strong and fast hydrogel actuators. Science 2022, 376, 245. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ma, Q.Y.; Xu, Y.; Yang, M.M.; Wu, Q.; Wang, F.F.; Sun, P.C. Highly bidirectional bendable actuator engineered by LCST−UCST bilayer hydrogel with enhanced interface. ACS Appl. Mater. Interfaces 2020, 12, 55290–55298. [Google Scholar] [CrossRef]
- Lo, C.Y.; Zhao, Y.S.; Kim, C.; Alsaid, Y.; Khodambashi, R.; Peet, M.; Fisher, R.; Marvi, H.; Berman, S.; Aukes, D.; et al. Highly stretchable self-sensing actuator based on conductive photothermally responsive hydrogel. Mater. Today 2021, 50, 35–43. [Google Scholar] [CrossRef]
- Wang, L.; Li, B.Q.; Xu, F.; Xu, Z.H.; Wei, D.Q.; Feng, Y.J.; Wang, Y.M.; Jia, D.C.; Zhou, Y. UV-crosslinkable and thermo-responsive chitosan hybrid hydrogel for NIR-triggered localized on-demand drug delivery. Carbohyd. Polym. 2017, 174, 904–914. [Google Scholar] [CrossRef]
- Zhao, J.H.; Xu, W.X.; Zhao, Z.N.; Ling, G.X.; Zhang, P. Intelligent nanocomposite hydrogels with simultaneous photothermal antitumor and antibacterial efficacy for cutaneous melanoma treatment. Compos. Part B Eng. 2022, 243, 110130. [Google Scholar] [CrossRef]
- Qian, X.S.; Zhao, Y.S.; Alsaid, Y.; Wang, X.; Hua, M.T.; Galy, T.; Gopalakrishna, H.; Yang, Y.Y.; Cui, J.S.; Liu, N.; et al. Artificial phototropism for omnidirectional tracking and harvesting of light. Nat. Nanotechnol. 2019, 14, 1048–1055. [Google Scholar] [CrossRef]
- Li, L.; Scheiger, J.M.; Levkin, P.A. Design and Applications of Photoresponsive Hydrogels. Adv. Mater. 2019, 31, 1807333. [Google Scholar] [CrossRef]
- Gan, J.; Chen, L.Z.; Chen, Z.J.; Zhang, J.L.; Yu, W.J.; Huang, C.X.; Wu, Y.; Zhang, K. Lignocellulosic biomass-based carbon dots: Synthesis processes, properties, and applications. Small 2023, 19, 2304066. [Google Scholar] [CrossRef]
- Wang, B.; Yu, P.; Yang, Q.; Jing, Z.; Wang, W.; Li, P.; Tong, X.; Lin, F.; Wang, D.; Lio, G.E.; et al. Upcycling of biomass waste into photothermal superhydrophobic coating for efficient anti-icing and deicing. Mater. Today Phys. 2022, 24, 100683. [Google Scholar] [CrossRef]
- Moreira-Neto, J.J.S.; Gondim, J.O.; Raddi, M.S.G.; Pansani, C.A. Viability of human fibroblasts in coconut water as a storage medium. Int. Endod. J. 2009, 42, 827–830. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.C.; Cheng, L.H.; Bhat, R.; Rusul, G.; Easa, A.M. Composition, physicochemical properties and thermal inactivation kinetics of polyphenol oxidase and peroxidase from coconut (Cocos nucifera) water obtained from immature, mature and overly-mature coconut. Food Chem. 2013, 142, 121–128. [Google Scholar] [CrossRef]
- Liu, C.J.; Zhang, P.; Zhai, X.Y.; Tian, F.; Li, W.C.; Yang, J.H.; Liu, Y.; Wang, H.B.; Wang, W.; Liu, W.G. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 2012, 33, 3604–3613. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Zhang, Y.L.; Chen, Q.D.; Sun, H.B. Carbon-based photothermal actuators. Adv. Funct. Mater. 2018, 28, 1802235. [Google Scholar] [CrossRef]
- Wang, M.; Lin, B.P.; Yang, H. A plant tendril mimic soft actuator with phototunable bending and chiral twisting motion modes. Nat. Commun. 2016, 7, 13981. [Google Scholar] [CrossRef] [PubMed]
- He, J.Q.; Zhou, Q.; Ge, Z.Q.; Jiang, S.F.; Li, J.H.; Feng, W.; Yang, H.Y. pH-gated switch of LCST-UCST phase transition of hydrogels. Adv. Funct. Mater. 2024, 34, 2404341. [Google Scholar] [CrossRef]
- Xiao, S.W.; Zhang, M.Z.; He, X.M.; Huang, L.; Zhang, Y.X.; Ren, B.P.; Zhong, M.Q.; Chang, Y.; Yang, J.T.; Zheng, J. Dual salt- and thermoresponsive programmable bilayer hydrogel actuators with pseudo-interpenetrating double-network structures. ACS Appl. Mater. Interfaces 2018, 10, 21642–21653. [Google Scholar] [CrossRef] [PubMed]
- Majstorovic, N.; Agarwal, S. Strong, Stretchable, Dual-Responsive PNIPAM Nanogel Cross-Linked UCST-Type Macrogels for Biomedical Applications. ACS Appl. Polym. Mater. 2022, 4, 5996–6005. [Google Scholar] [CrossRef]
- Sun, W.; An, Z.; Wu, P. Hydrogen bonding reinforcement as a strategy to improve upper critical solution temperature of poly (N-acryloylglycinamide-co-methacrylic acid). Polym. Chem. 2018, 9, 3667–3673. [Google Scholar] [CrossRef]
- Seuring, J.; Bayer, F.M.; Huber, K.; Agarwal, S. Upper critical solution temperature of poly (N-acryloyl glycinamide) in water: A concealed property. Macromol. 2012, 45, 374–384. [Google Scholar] [CrossRef]
- Li, S.; Cai, Z.; Han, J.; Ma, Y.; Tong, Z.; Wang, M.; Xiao, L.; Jia, S.; Chen, X. Fast-response photothermal bilayer actuator based on poly (N-isopropylacrylamide)–graphene oxide–hydroxyethyl methacrylate/polydimethylsiloxane. RSC Adv. 2023, 13, 18090–18098. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Zhang, H.; Li, Z.; Zhao, T.; Gu, Z.; Yuan, Q.; Chen, B. Multifunctional photothermal hydrogels: Design principles, various functions, and promising biological applications. Chin. Chem. Lett. 2024, 35, 109527. [Google Scholar] [CrossRef]
- Putz, B.; Milassin, G.; Butenko, Y.; Völker, B.; Gammer, C.; Semprimoschnig, C.; Cordill, M.J. Combined TEM and XPS studies of metal—polymer interfaces for space applications. Surf. Coat. Technol. 2017, 332, 368–375. [Google Scholar] [CrossRef]
- Kondo, T.; Neitzel, I.; Mochalin, V.N.; Urai, J.; Yuasa, M.; Gogotsi, Y. Electrical conductivity of thermally hydrogenated nanodiamond powders. J. Appl. Phys. 2013, 113, 214307. [Google Scholar] [CrossRef]
- Sestrem, R.H.; Ferreira, D.C.; Landers, R.; Temperini, M.L.A.; do Nascimento, G.M. Synthesis and spectroscopic characterization of polymer and oligomers of ortho-phenylenediamine. Eur. Polym. J. 2010, 46, 484–493. [Google Scholar] [CrossRef]
- Zhou, Z.B.; Han, X.H.; Qi, Q.Y.; Gan, S.X.; Ma, D.L.; Zhao, X. A facile, efficient, and general synthetic method to amide-linked covalent organic frameworks. J. Am. Chem. Soc. 2022, 144, 1138–1143. [Google Scholar] [CrossRef] [PubMed]
- Lazar, P.; Mach, R.; Otyepka, M. Spectroscopic fingerprints of graphitic, pyrrolic, pyridinic, and chemisorbed nitrogen in N-doped graphene. J. Phys. Chem. C 2019, 123, 10695–10702. [Google Scholar] [CrossRef]
- Zhang, M.N.; Shen, H.K.; Hakobyan, K.; Jiang, Z.; Liang, K.; Xu, J.T. Robust hydrogel actuators functioning in multi-environments enabled by thermo-responsive polymer nanoparticle coatings on hydrogel surfaces. Small 2024, 20, 2400534. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wei, X.S.; Sun, Y.; Xue, Y.T.; Wang, J.W.; Wu, Q.J.; Ma, C.X.; Yang, X.X.; Duan, G.G.; Wang, F.; et al. A bamboo/PNIPAM composite hydrogel assembly for both programmable and remotely-controlled light-responsive biomimetic actuations. Chem. Eng. J. 2022, 446, 137072. [Google Scholar] [CrossRef]
- Visentin, F.; Babu, S.P.M.; Meder, F.; Mazzolai, B. Selective stiffening in soft actuators by triggered phase transition of hydrogel-filled elastomers. Adv. Funct. Mater. 2021, 31, 2101121. [Google Scholar] [CrossRef]
- Bai, L.; Jin, Y.; Shang, X.; Jin, H.Y.; Shi, L.J.; Li, Y.P.; Zhou, Y.T. Temperature-triggered smart milk-derived hydrogel with programmable adhesion for versatile skin-attached iontronics. Nano Energy 2022, 104, 107962. [Google Scholar] [CrossRef]
- Shuai, L.Y.Z.; Guo, Z.H.; Zhang, P.P.; Wan, J.M.; Pu, X.; Wang, Z.L. Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles. Nano Energy 2020, 78, 105389. [Google Scholar] [CrossRef]
- Cheng, Y.; Ren, K.; Huang, C.; Wei, J. Self-healing graphene oxide-based nanocomposite hydrogels serve as near-infrared light-driven valves. Sens. Actuator. B Chem. 2019, 298, 126908. [Google Scholar] [CrossRef]
- Chen, J.C.; Cao, Y.T.; Pei, J.Y.; Zhao, H.Y. Multifunctional actuator based on graphene/PDMS composite materials with shape programmable configuration and high photothermal conversion capability. ACS Appl. Mater. Interfaces 2023, 15, 31917–31926. [Google Scholar] [CrossRef]
- Huang, Y.L.; Su, C.; Yu, Q.H.; Jiang, J.H.; Chen, N.L.; Shao, H.Q. Carbon-based photo-thermal responsive film actuators with a sandwich structure for soft robots. J. Sci. Adv. Mater. Dev. 2022, 7, 100412. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, L.S.; Zhang, C.; Liao, L.Q. Robust near-infrared-responsive composite hydrogel actuator using Fe3+/Tannic acid as the photothermal transducer. ACS Appl. Mater. Interfaces 2021, 13, 18175–18183. [Google Scholar] [CrossRef]
- Sun, Z.C.; Wei, C.; Liu, W.T.; Liu, H.; Liu, J.H.; Hao, R.; Huang, M.M.; He, S.Q. Two-dimensional MoO2 nanosheet composite hydrogels with high transmittance and excellent photothermal property for near infrared responsive actuators and microvalves. ACS Appl. Mater. Interfaces 2021, 13, 33404–33416. [Google Scholar] [CrossRef]
- Liu, M.X.; Zhu, S.; Huang, Y.J.; Lin, Z.H.; Liu, W.P.; Yang, L.L.; Ge, D.T. A self-healing composite actuator for multifunctional soft robot via photo-welding. Compos. Part B Eng. 2021, 214, 108748. [Google Scholar] [CrossRef]
- Qian, C.H.; Li, Y.Q.; Chen, C.; Han, L.; Han, Q.S.; Liu, L.K.; Lu, Z.C. A stretchable and conductive design based on multi-responsive hydrogel for self-sensing actuators. Chem. Eng. J. 2023, 454, 140263. [Google Scholar] [CrossRef]
- Qian, C.H.; Li, Y.Q.; Liu, L.K.; Chen, C.; Han, L. NIR responsive and conductive PNIPAM/PANI nanocomposite hydrogels with high stretchability for self-sensing actuators. J. Mater. Chem. C 2023, 11, 6741–6749. [Google Scholar] [CrossRef]
- Jiang, Y.Z.; Wang, C.; Zhang, S.; Tan, L.; Hu, J.L. One stone, two birds: Spidroin-inspired nanogels for high-performance fibers and photothermal actuators. Adv. Funct. Mater. 2023, 33, 2303387. [Google Scholar] [CrossRef]
- Liu, L.K.; Li, Y.Q.; Lu, Z.C.; Miao, R.T.; Zhang, N. Thermal and light-driven soft actuators based on a conductive polypyrrole nanofibers integrated poly(N-isopropylacrylamide) hydrogel with intelligent response. J. Colloid Interface Sci. 2024, 675, 336–346. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Wei, Q.; Wang, H.; Cui, W.; Zhang, X.; Wang, Y. A Photothermal-Responsive Soft Actuator Based on Biomass Carbon Nanosheets of Synergistic Bilateral Polymers. Polymers 2024, 16, 3476. https://doi.org/10.3390/polym16243476
Chen J, Wei Q, Wang H, Cui W, Zhang X, Wang Y. A Photothermal-Responsive Soft Actuator Based on Biomass Carbon Nanosheets of Synergistic Bilateral Polymers. Polymers. 2024; 16(24):3476. https://doi.org/10.3390/polym16243476
Chicago/Turabian StyleChen, Jianze, Quanzhong Wei, Honglin Wang, Wenjia Cui, Xuewei Zhang, and Yuanyuan Wang. 2024. "A Photothermal-Responsive Soft Actuator Based on Biomass Carbon Nanosheets of Synergistic Bilateral Polymers" Polymers 16, no. 24: 3476. https://doi.org/10.3390/polym16243476
APA StyleChen, J., Wei, Q., Wang, H., Cui, W., Zhang, X., & Wang, Y. (2024). A Photothermal-Responsive Soft Actuator Based on Biomass Carbon Nanosheets of Synergistic Bilateral Polymers. Polymers, 16(24), 3476. https://doi.org/10.3390/polym16243476