In Vitro Hydroxyapatite Nucleation in Cationically Cured Epoxy Composites with Pulverized Date Seed
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Methods
2.2.1. Filler Preparation
2.2.2. Filler Modification
2.2.3. Composite Preparation
2.3. SBF Immersion Test
2.4. Characterization of Prepared Samples
3. Results and Discussion
3.1. Filler Analysis
Physico-Chemical Analysis
3.2. Composite Analysis
3.2.1. Morphology
3.2.2. Thermal Analysis
- The addition of filler increased heat capacity or decreased thermal dissipation in the polymeric network, both of which contributed to improved thermal stability. Better thermal stability of polymeric networks was seen when fillers were in powdered form. This may be because the filler disperses well in the polymer matrix and effectively regulates thermal dissipation.
- In contrast to unmodified powder composites, high thermal degradation in modified powder composites was observed below 400 °C, which may be a result of the increased surface oxidizable species present in modified fillers. However, above 400 °C, the degradation rate reduced in modified powder composites, which may be due to HA crystal formation.
- It was found that the thermal stability of unsoaked composites is lower than that of SBF-soaked samples, which is consistent with the creation of a HA network in the latter.
3.2.3. Physico-Chemical Analysis
3.2.4. Structural Parameters
3.2.5. Antibacterial Activity
3.2.6. Antioxidant Activity by DPPH Assay
3.2.7. HA Formation: Effect of DS and Epoxy Polymer
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hollinger, J.O.; Winn, S.; Bonadio, J. Options for tissue engineering to address challenges of the aging skeleton. Tissue Eng. 2000, 6, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Dennis, M.G.; Simon, J.A.; Kummer, F.J.; Koval, K.J.; DiCesare, P.E. Fixation of periprosthetic femoral shaft fractures occurring at the tip of the stem: A biomechanical study of 5 techniques. J. Arthroplast. 2000, 15, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Scott, R.D.; Turner, R.; Leitzes, S.; Aufranc, O. Femoral fractures in conjunction with total hip replacement. J. Bone Jt. Surg. Am. Vol. 1975, 57, 494–501. [Google Scholar] [CrossRef]
- Brydone, A.; Meek, D.; Maclaine, S. Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2010, 224, 1329–1343. [Google Scholar] [CrossRef] [PubMed]
- Bonfield, W.; Wang, M.; Tanner, K. Interfaces in analogue biomaterials. Acta Mater. 1998, 46, 2509–2518. [Google Scholar] [CrossRef]
- Faleiro, C.; Godinho, I.; Reus, U.; de Sousa, M. Cobalt-chromium-molybdenum but not titanium-6aluminium-4vanadium alloy discs inhibit human T cell activation in vitro. Biometals 1996, 9, 321–326. [Google Scholar] [CrossRef]
- Shanbhag, A.S.; Jacobs, J.J.; Black, J.; Galante, J.O.; Glant, T.T. Macrophage/particle interactions: Effect of size, composition and surface area. J. Biomed. Mater. Res. 1994, 28, 81–90. [Google Scholar] [CrossRef]
- Shanbhag, A.S.; Jacobs, J.J.; Black, J.; Galante, J.O.; Glant, T.T. Human monocyte response to particulate biomaterials generated in vivo and in vitro. J. Orthop. Res. 1995, 13, 792–801. [Google Scholar] [CrossRef]
- Wilson, W.K.; Morris, R.P.; Ward, A.J.; Carayannopoulos, N.L.; Panchbhavi, V.K. Torsional failure of carbon fiber composite plates versus stainless steel plates for comminuted distal fibula fractures. Foot Ankle Int. 2016, 37, 548–553. [Google Scholar] [CrossRef]
- Bagheri, Z.S.; El Sawi, I.; Bougherara, H.; Zdero, R. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography. J. Mech. Behav. Biomed. Mater. 2014, 35, 27–38. [Google Scholar] [CrossRef]
- Arun, S.; Kanagaraj, S. Performance enhancement of epoxy based sandwich composites using multiwalled carbon nanotubes for the application of sockets in trans-femoral amputees. J. Mech. Behav. Biomed. Mater. 2016, 59, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Atif, M.; Bongiovanni, R.; Yang, J. Cationically UV-cured epoxy composites. Polym. Rev. 2015, 55, 90–106. [Google Scholar] [CrossRef]
- Abdelhussien, A.; Yang, G.; Hussein, E.K.; Li, L.; Al-Abboodi, H.; Mohamad, B. Analysis of the Mechanical Characteristics of Date Seed Powder-Based Composite Carbon Fiber Reinforced Polymers; Facta Universitatis, Series: Mechanical Engineering; University of Niš: Niš, Serbia, 2023. [Google Scholar]
- Sathish Gandhi, V.C.; Manikandan, D.; Kumaravelan, R.; Nagaprasad, N. Effects of date seed and graphite fillers on the mechanical and thermal properties of vinyl ester matrix composites. Iran. Polym. J. 2024, 1–15. [Google Scholar] [CrossRef]
- Alarifi, I.M. Investigation into the morphological and mechanical properties of date palm fiber-reinforced epoxy structural composites. J. Vinyl Addit. Technol. 2021, 27, 77–88. [Google Scholar] [CrossRef]
- Blessing, O.I.; Emmanuel, O.N. Effect of Date Seed Granules on the Mechanical Properties of Glass Fibre Reinforced Epoxy Composite. J. Sci. Innov. Technol. Res. 2024, 5, 255–274. [Google Scholar]
- Aslam, A.A.; Akram, J.; Mehmood, R.A.; Mubarak, A.; Khatoon, A.; Akbar, U.; Ahmad, S.A.; Atif, M. Boron-based bioactive glasses: Properties, processing, characterization and applications. Ceram. Int. 2023, 49, 19595–19605. [Google Scholar] [CrossRef]
- Besbes, S.; Blecker, C.; Deroanne, C.; Drira, N.E.; Attia, H. Date seeds: Chemical composition and characteristic profiles of the lipid fraction. Food Chem. 2004, 84, 577–584. [Google Scholar] [CrossRef]
- Afiq, M.A.; Abdul Rahman, R.; Che Man, Y.B.; AL-Kahtani, H.A.; Mansor, T.S.T. Date seed and date seed oil. Int. Food Res. J. 2013, 20, 2035. [Google Scholar]
- Atif, M.; Naeem, M.; Karim, R.A.; Ameen, F.; Mumtaaz, M.W. Surface modification and characterization of waste derived carbon particles to reinforce photo-cured shape memory composites. RSC Adv. 2022, 12, 5085–5093. [Google Scholar] [CrossRef]
- Bagheri, Z.S.; Tavakkoli Avval, P.; Bougherara, H.; Aziz, M.S.; Schemitsch, E.H.; Zdero, R. Biomechanical analysis of a new carbon fiber/flax/epoxy bone fracture plate shows less stress shielding compared to a standard clinical metal plate. J. Biomech. Eng. 2014, 136, 091002. [Google Scholar] [CrossRef]
- Atif, M.; Yang, J.; Yang, H.; Jun, N.; Bongiovanni, R. Effect of novel UV-curing approach on thermo-mechanical properties of colored epoxy composites in outsized dimensions. J. Compos. Mater. 2016, 50, 3147–3156. [Google Scholar] [CrossRef]
- Bongiovanni, R.; Atif, M.; Sangermano, M. Polymer Nanocomposites with UV-Cured Epoxies. In Thermoset Nanocomposites, 1st ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; pp. 17–37. [Google Scholar]
- Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef] [PubMed]
- Daud, H.; Ghani, A.; Iqbal, D.N.; Ahmad, N.; Nazir, S.; Muhammad, M.J.; Hussain, E.A.; Nazir, A.; Iqbal, M. Preparation and characterization of guar gum based biopolymeric hydrogels for controlled release of antihypertensive drug. Arab. J. Chem. 2021, 14, 103111. [Google Scholar] [CrossRef]
- Al-Bakhsh, B.A.J.; Shafiei, F.; Hashemian, A.; Shekofteh, K.; Bolhari, B.; Behroozibakhsh, M. In-vitro bioactivity evaluation and physical properties of an epoxy-based dental sealer reinforced with synthesized fluorine-substituted hydroxyapatite, hydroxyapatite and bioactive glass nanofillers. Bioact. Mater. 2019, 4, 322–333. [Google Scholar] [CrossRef] [PubMed]
- Atif, M.; Hussain, M.A.; Ghani, A.; Rani, A.; Muzaffar, S.; Bongiovanni, R. Controlled cationic curing of epoxy composites with photochemically modified silanol encapsulated carbon black. J. Appl. Polym. Sci. 2022, 139, e52241. [Google Scholar] [CrossRef]
- Wiegand, I.; Hilpert, K.; Hancock, R.E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef]
- Sohail, I.; Peerzada, S.; Shehzadi, N.; Hussain, K.; Salman, M.; Sher, R.; Sarwar, N.; Islam, M. Physicochemical and Spectroscopic Profiles for Identification of Seed (Pits) of Phoenix Sylvestris Roxb. Pak. J. Pharm. 2018, 29, 20–26. [Google Scholar]
- Salih, S.I.; Oleiwi, J.K.; Mohamed, A.S. Investigation of mechanical properties of PMMA composite reinforced with different types of natural powders. ARPN J. Eng. Appl. Sci. 2018, 13, 8889–8900. [Google Scholar]
- Cheng, Y.; Liu, P.; Xiao, P.; Li, Z.; Jiang, T.; Huang, Y.; Li, Y. Effect of surface chemical modifications on the bioactivity of carbon fibers reinforced epoxy composites. Surf. Coat. Technol. 2019, 377, 124889. [Google Scholar] [CrossRef]
- Nazir, F.; Iqbal, M. Comparative Study of Crystallization, Mechanical Properties, and In Vitro Cytotoxicity of Nanocomposites at Low Filler Loadings of Hydroxyapatite for Bone-Tissue Engineering Based on Poly (l-lactic acid)/Cyclo Olefin Copolymer. Polymers 2021, 13, 3865. [Google Scholar] [CrossRef]
- Hmidani, A.; Bourkhis, B.; Khouya, T.; Harnafi, H.; Filali-Zegzouti, Y.; Alem, C. Effect of Phoenix dactylifera seeds (dates) extract in triton WR-1339 and high fat diet induced hyperlipidaemia in rats: A comparison with simvastatin. J. Ethnopharmacol. 2020, 259, 112961. [Google Scholar]
- Wen, P.; Chu, J.; Zhu, J.; Xu, Y.; Zhang, J. Highly selective delignification of poplar by hydrogen peroxide-ethyl acetate pretreatment at room temperature. Renew. Energy 2022, 188, 1022–1028. [Google Scholar] [CrossRef]
Epoxy | Filler | Composite Structure | Application | Ref. | ||
---|---|---|---|---|---|---|
Form | Modification | Method | Curing | |||
Epolam-2040 | DSP | N/R | Hand layup | Thermal | Carbon Fiber Composites | [13] |
Bisphenol-A–epoxy vinyl ester | DS Fiber | N/R | Hand layup | Thermal | Bio-degradable Composites | [14] |
Araldite-506 | DSP | N/R | Injection molding | Thermal | Structural Composites | [15] |
Araldite(LY556) | DSP | NR | Hand layup | Thermal | Reinforced Composite | [16] |
Bisphenol-A diglycidylether (BPADGE) | DSP/DSG | H2O2 | Bulk mixing | Light | Biomedical | * |
Particles | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Preparation | Modification | Characterization | |||||||||||
Sample | Drying Time (days) | Particle size (µ) | H2O2 (Wt.%) | Temp (°C) | Reaction Time (h) | pH | Conductivity (µS) | Acid contents (µmol g−1) | |||||
Carboxyl (±0.0001) | Lactone (±0.0001) | Hydroxyl (±0.0001) | Total (±0.0001) | ||||||||||
DSG | 2 | 300–400 | 20 | 35 | 24 | 5.5 ± 0.1 | 0.74 ± 0.01 | 0.3513 | 0.0051 | 0.6825 | 1.0389 | ||
DSMG | N/A | N/A | N/A | N/A | 5.8 ± 0.1 | 0.58 ± 0.01 | 0.3475 | 0.0072 | 0.6901 | 1.0448 | |||
DSP | 2 | >125 | 20 | 35 | 24 | 6.5 ± 0.1 | 0.46 ± 0.01 | 0.3471 | 0.0086 | 0.6914 | 1.0471 | ||
DSMP | N/A | N/A | N/A | N/A | 7.0 ± 0.1 | 0.33 ± 0.01 | 0.3375 | 0.0125 | 0.7351 | 1.0851 | |||
Composites | |||||||||||||
Preparation | Characterization | ||||||||||||
BPADGE:PI (Mole ratio) | BPADGE:Filler (1:0.05) Wt. ratio | Irradiation Time (s) | Flow (mm) | Tack Free Time (min) | SBF-Treated Samples | TGA % wt Loss at Temperature (°C) | GCs (%) (±0.01) | WAC (%) (±0.01) | |||||
10 | 20 | 30 | 50 | Max | |||||||||
PC | 1:0.001 | Nil | 30 | 23.44 | 6 | PC | 158.4 | 252.0 | 284.3 | 330.0 | 473.5 | 99.85 | 1.18 |
PC-1 | 260.8 | 301.6 | 323.7 | 384.5 | 489.7 | 98.55 | 2.66 | ||||||
PC-2 | 282.0 | 362.2 | 380.7 | 393.0 | 471.4 | 97.82 | 3.56 | ||||||
PC-3 | 321.2 | 368.1 | 380.4 | 395.0 | 475.3 | 98.04 | 4.11 | ||||||
PC-4 | 328.9 | 373.2 | 385.0 | 402.0 | 473.1 | 96.83 | 4.51 | ||||||
PGC | 1:0.001 | DSG | 30 | 4.21 | 4 | PGC | 182.0 | 290.1 | 347.2 | 399.3 | 495.0 | 91.61 | 0.23 |
PGC-1 | 297.8 | 374.5 | 411.5 | 436.0 | 487.4 | 93.93 | 2.29 | ||||||
PGC-2 | 339.5 | 382.1 | 405.4 | 421.2 | 493.1 | 94.57 | 3.35 | ||||||
PGC-3 | 348.6 | 394.5 | 410.4 | 429.5 | 491.8 | 95.30 | 3.92 | ||||||
PGC-4 | 338.8 | 394.2 | 410.4 | 429.5 | 481.4 | 96.10 | 4.42 | ||||||
PMGC | 1:0.001 | DSMG | 30 | 5.02 | 0.5 | PMGC | 116.2 | 205.0 | 373.5 | 380.4 | 466.1 | 93.11 | 2.58 |
PMGC-1 | 199.0 | 322.4 | 389.2 | 412.0 | 498.0 | 97.72 | 2.51 | ||||||
PMGC-2 | 266.4 | 357.9 | 389.5 | 411.9 | 466.0 | 97.81 | 1.87 | ||||||
PMGC-3 | 350.2 | 382.6 | 404.5 | 462.7 | 462.7 | 97.99 | 0.73 | ||||||
PMGC-4 | 306.7 | 376.9 | 395.5 | 412.6 | 468.8 | 98.01 | 0.45 | ||||||
PPC | 1:0.001 | DSP | 30 | 6.85 | 2 | PPC | 311.7 | 358.1 | 381.7 | 406.5 | 455.5 | 94.53 | 2.17 |
PPC-1 | 311.7 | 350.8 | 381.6 | 408.4 | 470.0 | 95.35 | 2.20 | ||||||
PPC-2 | 333.3 | 372.4 | 387.6 | 405.4 | 463.8 | 96.55 | 1.95 | ||||||
PPC-3 | 352.0 | 389.3 | 403.0 | 420.8 | 497.0 | 99.51 | 1.88 | ||||||
PPC-4 | 367.5 | 383.0 | 394.5 | 49% * | 475.0 | 99.92 | 1.68 | ||||||
PMPC | 1:0.001 | DSMP | 30 | 5.03 | 1 | PMPC | 115.7 | 214.9 | 295.0 | 378.2 | 496.6 | 97.87 | 2.08 |
PMPC-1 | 208.6 | 321.5 | 380.9 | 421.4 | 472.5 | 97.70 | 2.01 | ||||||
PMPC-2 | 270.8 | 350.0 | 396.7 | 421.2 | 490.0 | 98.03 | 2.03 | ||||||
PMPC-3 | 312.7 | 372.5 | 402.3 | 421.7 | 489.6 | 98.88 | 2.00 | ||||||
PMPC-4 | 389.0 | 407.8 | 418.0 | 440.0 | 490.1 | 99.63 | 1.95 |
h | k | l | Sample ID | 2θ | Peak Intensity | Sample ID | 2θ | Peak Intensity |
---|---|---|---|---|---|---|---|---|
1 | 1 | 0 | PC | 34.14 | 95 | PC-4 | 34.93 | 105 |
1 | 1 | 1 | 40.46 | 22 | 40.56 | 25 | ||
2 | 1 | 1 | 59.65 | 23 | 59.93 | 34 | ||
1 | 0 | 4 | 72.51 | 14 | 72.63 | 18 | ||
1 | 1 | 0 | PGC | 34.78 | 105 | PGC-4 | 35.14 | 114 |
1 | 1 | 1 | 40.50 | 18 | 40.91 | 41 | ||
2 | 1 | 1 | 59.78 | 30 | 60.48 | 43 | ||
1 | 0 | 4 | 72.93 | 19 | 73.24 | 26 | ||
1 | 1 | 0 | PMGC | 34.84 | 114 | PMGC-4 | 35.14 | 122 |
1 | 1 | 1 | 40.71 | 25 | 40.83 | 43 | ||
2 | 1 | 1 | 60.17 | 39 | 60.08 | 45 | ||
1 | 0 | 4 | 72.81 | 24 | 73.15 | 27 | ||
1 | 1 | 0 | PPC | 35.24 | 133 | PPC-4 | 35.42 | 145 |
1 | 1 | 1 | 40.98 | 43 | 41.29 | 48 | ||
2 | 1 | 1 | 60.39 | 63 | 60.63 | 69 | ||
1 | 0 | 4 | 73.33 | 33 | 73.34 | 35 | ||
1 | 1 | 0 | PMPC | 34.78 | 159 | PMPC-4 | 35.03 | 197 |
1 | 1 | 1 | 40.65 | 29 | 41.20 | 61 | ||
2 | 1 | 1 | 59.81 | 43 | 60.63 | 69 | ||
1 | 0 | 4 | 72.69 | 28 | 73.42 | 40 |
Samples | Antimicrobial Activity (%) | Antioxidant Activity (DPPH Radical Scavenging Assay) (%) |
---|---|---|
PC | 14.0256 ± 0.235 * | 23.6036 ± 0.312 * |
PPC | 23.9744 ± 0.235 * | 03.2432 ± 1.081 * |
PGC | 13.0769 ± 0.154 * | 21.6216 ± 0.541 * |
PMPC | 31.2821 ± 0.235 * | 46.6667 ± 0.826 * |
PMGC | 56.6410 ± 1.512 * | 26.4865 ± 0.541 * |
PC4 | 24.3333 ± 0.755 * | 17.8400 ± 0.540 * |
PPC4 | 20.2564 ± 2.912 * | 4.5045 ± 0.826 * |
PGC4 | 13.7436 ± 0.355 * | 19.8198 ± 0.312 * |
PMPC4 | 28.6167 ± 0.225 * | 55.3153 ± 0.826 * |
PMGC4 | 50.8433 ± 0.385 * | 9.5495 ± 1.125 * |
Ascorbic acid | 73.8462 ± 0.335 * | 73.0286 ± 0.096 * |
p-value | 0.00 ** | 0.00 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atif, M.; Dilawaiz; Akhtar, H.; Imran, M.; Ullah, M.Z.; Andaleeb, H.; Hussain, M.A. In Vitro Hydroxyapatite Nucleation in Cationically Cured Epoxy Composites with Pulverized Date Seed. Polymers 2024, 16, 3463. https://doi.org/10.3390/polym16243463
Atif M, Dilawaiz, Akhtar H, Imran M, Ullah MZ, Andaleeb H, Hussain MA. In Vitro Hydroxyapatite Nucleation in Cationically Cured Epoxy Composites with Pulverized Date Seed. Polymers. 2024; 16(24):3463. https://doi.org/10.3390/polym16243463
Chicago/Turabian StyleAtif, Muhammad, Dilawaiz, Hafsah Akhtar, Muhammad Imran, Muhammad Zafar Ullah, Hina Andaleeb, and Muhammad Asif Hussain. 2024. "In Vitro Hydroxyapatite Nucleation in Cationically Cured Epoxy Composites with Pulverized Date Seed" Polymers 16, no. 24: 3463. https://doi.org/10.3390/polym16243463
APA StyleAtif, M., Dilawaiz, Akhtar, H., Imran, M., Ullah, M. Z., Andaleeb, H., & Hussain, M. A. (2024). In Vitro Hydroxyapatite Nucleation in Cationically Cured Epoxy Composites with Pulverized Date Seed. Polymers, 16(24), 3463. https://doi.org/10.3390/polym16243463