Polymer-Modified Fertilizers for Mitigating Strawberry Root Burn
Abstract
:1. Introduction
- They enhance fertilizer efficiency by reducing losses through controlled release rates that align with plant consumption. The polymer coating can protect nutrients from biological degradation and losses due to volatilization. This improves nutrient use efficiency while reducing environmental pollution from excess runoff or leaching of fertilizers. Possible savings on mineral fertilizers can reach 20–30%.
- They mitigate the risk of root burn by preventing spikes in fertilizer concentration, thereby promoting healthy plant growth and the realization of varietal potential. In addition to increasing yield, quality may also improve as plants experience no stress during development, receiving optimal nutrient amounts throughout the growing season.
- They enhance soil moisture retention, as some biodegradable polymers, such as polyacrylamide (PAM) and starch-based hydrogels, can absorb and retain large volumes of water. When used to coat fertilizers, these polymers can improve the soil water holding capacity, especially in arid conditions. This helps plants better withstand drought periods and increases water use efficiency.
- They improve soil quality through the decomposition of polymer coatings in the soil, which replenishes the pool of organic matter that serves as a buffering and structuring factor for soil fertility, supporting healthy plant growth.
- The longer shelf life of CRF reduces storage costs for mineral fertilizers.
2. Materials and Methods
2.1. Preparation of Polymer-Modified Fertilizer (PMF) with 5 and 10% of Polymer
2.2. Field Experimental Design
2.3. Measurements
2.3.1. Strawberry Yield
2.3.2. Collection of Time Series for Soil Moisture, Temperature and EC
2.3.3. Infrared Spectrometry of PMF
2.3.4. Nutrient Release Rate Analysis of PMF
2.3.5. Data Processing and Statistical Analysis
3. Results
3.1. Strawberry Yield
3.1.1. Comparison of Varieties by Productivity
3.1.2. Influence of Nutrition Systems on Strawberry Yields
3.1.3. Characteristics of Fertilizers
3.1.4. PMF Dissolution Rates
3.1.5. Soil EC
3.1.6. Analysis of Differences in Soil EC Series PCA
- -
- the amplitude of the overall maximum EC at measurement points ranges from 7 to 10 (ec7–ec10), reflecting the period of the highest rates of dissolution;
- -
- the stepwise decrease in EC during the later measurement points ranges from 17 to 21 (ec17–ec21), corresponding to the formation of the second harvest.
3.1.7. Assessment of Salt Quantity and Losses
4. Discussion
4.1. Non-Productive Losses of Nutrients and Plant Use Efficiency
4.2. Root Burn Stress
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shahbandeh, M. Global Production of Fruit by Variety Selected. Statista 2022. Available online: https://www.statista.com/statistics/264001/worldwide-production-of-fruit-by-variety/ (accessed on 22 May 2024).
- Strawberry Production by Country. World Population Review 2024. Available online: https://worldpopulationreview.com/country-rankings/strawberry-production-by-country (accessed on 22 May 2024).
- Statista Research Department. Consumption of Agricultural Fertilizer Worldwide in 2022, by Nutrient and Region. Statista 2023. Available online: https://www.statista.com/statistics/1265868/global-fertilizer-consumption-by-nutrient-and-region/ (accessed on 20 December 2023).
- Lawrencia, D.; Wong, S.K.; Low, D.Y.S.; Goh, B.H.; Goh, J.K.; Ruktanonchai, U.R.; Soottitantawat, A.; Lee, L.H.; Tang, S.Y. Controlled Release Fertilizers: A Review on Coating Materials and Mechanism of Release. Plants 2021, 10, 238. [Google Scholar] [CrossRef] [PubMed]
- Paul, E.A. Soil Microbiology, Ecology, and Biochemistry, 3rd ed.; Academic Press: Burlington, MA, USA, 2007; p. 552. ISBN 978-0-12-546807-7. [Google Scholar] [CrossRef]
- Bouwman, A.F.; Boumans, L.J.M.; Batjes, N.H. Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands. Glob. Biogeochem. Cycles 2002, 16, 1024. [Google Scholar] [CrossRef]
- Shaviv, A. Advances in controlled-release fertilizers. Adv. Agron. 2001, 71, 1–49. [Google Scholar] [CrossRef]
- Bamatov, I.M.; Vasilyeva, N.A.; Vasiliev, T.A.; Perevertin, K.A. Influence of polymer modification of complex fertilizer on the efficiency of phosphorus and potassium use by winter wheat on the southern chernozem. Dokuchaev Soil Bull. 2022, 113, 90–109. [Google Scholar] [CrossRef]
- Aarnio, T.; Räty, M.; Martikainen, P.J. Long-Term Availability of Nutrients in Forest Soil Derived from Fast- and Slow-Release Fertilizers. Plant Soil 2003, 252, 227–239. [Google Scholar] [CrossRef]
- Boyandin, A.N.; Kazantseva, E.A.; Varygina, D.E.; Volova, T.G. Constructing Slow-Release Formulations of Ammonium Nitrate Fertilizer Based on Degradable Poly (3-hydroxybutyrate). J. Agric. Food Chem. 2017, 65, 6745–6752. [Google Scholar] [CrossRef]
- Kontárová, S.; Přikryl, R.; Škarpa, P.; Kriška, T.; Antošovský, J.; Gregušková, Z.; Figalla, S.; Jašek, V.; Sedlmajer, M.; Menčík, P.; et al. Slow-Release Nitrogen Fertilizers with Biodegradable Poly (3-hydroxybutyrate) Coating: Their Effect on the Growth of Maize and the Dynamics of N Release in Soil. Polymers 2022, 14, 4323. [Google Scholar] [CrossRef]
- Sofyane, A.; Ablouh, E.; Lahcini, M.; Elmeziane, A.; Khouloud, M.; Kaddami, H.; Raihane, M. Slow-Release Fertilizers Based on Starch Acetate/Glycerol/Polyvinyl Alcohol Biocomposites for Sustained Nutrient Release. Mater. Today Proc. 2021, 36, 74–81. [Google Scholar] [CrossRef]
- Talboys, P.J.; Heppell, J.; Roose, T. Struvite: A Slow-Release Fertiliser for Sustainable Phosphorus Management. Plant Soil 2016, 401, 109–123. [Google Scholar] [CrossRef]
- Shaviv, A.; Ahaviv, A.; Mikkelsen, R.L. Controlled-Release Fertilizers to Increase Efficiency of Nutrient Use and Minimize Environmental Degradation. Fertil. Res. 1993, 35, 1–12. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Naylor, R.; Crews, T.; David, M.B.; Drinkwater, L.E.; Holland, E.; Johnes, P.J.; Katzenberger, J.; Martinelli, L.A.; Matson, P.A.; et al. Nutrient Imbalances in Agricultural Development. Science 2009, 324, 1519–1520. [Google Scholar] [CrossRef] [PubMed]
- Galloway, J.N.; Aber, J.D.; Erisman, J.W.; Seitzinger, S.P.; Howarth, R.W.; Cowling, E.B.; Cosby, B.J. The Nitrogen Cascade. AIBS Bull. 2003, 53, 341–356. [Google Scholar] [CrossRef]
- Snyder, C.S.; Bruulsema, T.W.; Jensen, T.L.; Fixen, P.E. Review of Greenhouse Gas Emissions from Crop Production Systems and Fertilizer Management Effects. Agric. Ecosyst. Environ. 2009, 133, 247–266. [Google Scholar] [CrossRef]
- Linquist, B.; van Groenigen, K.J.; Adviento-Borbe, M.A.; Pittelkow, C.; van Kessel, C. An Agronomic Assessment of Greenhouse Gas Emissions from Major Cereal Crops. Glob. Chang. Biol. 2012, 18, 194–209. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Zhang, F.S. Significant Acidification in Major Chinese Croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [PubMed]
- Geisseler, D.; Scow, K.M. Long-Term Effects of Mineral Fertilizers on Soil Microorganisms: A Review. Soil Biol. Biochem. 2014, 75, 54–63. [Google Scholar] [CrossRef]
- Knoop, W. Why a Fertilizer Burns. Weeds Trees and Turf 1976. Available online: https://archive.lib.msu.edu/tic/wetrt/article/1976nov14.pdf (accessed on 19 August 2024).
- Bagale, K.V. The Effect of Electrical Conductivity on Growth and Development of Strawberries Grown in Deep Tank Hydroponic Systems: A Physiological Study. J. Pharmacogn. Phytochem. 2018, 7, 1939–1944. [Google Scholar]
- D’Anna, F.; Incalcaterra, G.; Moncada, A.; Miceli, A. Effects of Different Electrical Conductivity Levels on Strawberry Grown in Soilless Culture. ISHS Acta Hortic. 2003, 609, 53. [Google Scholar] [CrossRef]
- Shannon, M.C. Adaptation of Plants to Salinity. Adv. Agron. 1998, 60, 75–120. [Google Scholar] [CrossRef]
- HORIBA. Quick Nutrient Analysis in Strawberry Production. Available online: https://www.horiba.com/int/water-quality/applications/agriculture-crop-science/quick-nutrient-analysis-in-strawberry-production/ (accessed on 19 August 2024).
- Voevodina, T. Use of Electrical Conductivity for Evaluating Agricultural Crops Productivity. Sci. J. Russ. Res. Inst. Land Reclam. 2012, 1, 5. [Google Scholar]
- Gupta, S.; Kumar, M.; Priyadarshini, R. Electrical Conductivity Sensing for Precision Agriculture: A Review. Harmony Search and Nature Inspired Optimization Algorithms 2018. Available online: https://api.semanticscholar.org/CorpusID:139749363 (accessed on 19 August 2024).
- Trenkel, M.E. Slow- and Controlled-Release Fertilizer: An Option for Enhancing Nutrient Use Efficiency in Agriculture; International Fertilizer Industry Association: Paris, France, 2010; p. 163. [Google Scholar]
- Sempeho, S.I.; Kim, H.T.; Mubofu, E.; Hilonga, A. Meticulous Overview on the Controlled Release Fertilizers. Adv. Chem. 2014, 2014, 363071. [Google Scholar] [CrossRef]
- Sim, H.S.; Kim, D.S.; Ahn, M.G.; Ahn, S.R.; Kim, S.K. Prediction of Strawberry Growth and Fruit Yield Based on Environmental and Growth Data in a Greenhouse for Soil Cultivation with Applied Autonomous Facilities. Hortic. Sci. Technol. 2020, 38, 840–849. [Google Scholar] [CrossRef]
- Rajan, M.; Shahena, S.; Chandran, V.; Mathew, L. Controlled Release of Fertilizers—Concept, Reality, and Mechanism. In Controlled Release Fertilizers for Sustainable Agriculture; Elsevier: Amsterdam, The Netherlands, 2021; pp. 41–56. [Google Scholar] [CrossRef]
- Ghumman, A.S.M.; Shamsuddin, R.; Sabir, R.; Waheed, A.; Sami, A.; Almohamadi, H. Synthesis and Performance Evaluation of Slow-Release Fertilizers Produced from Inverse Vulcanized Copolymers Obtained from Industrial Waste. RSC Adv. 2023, 13, 7867–7876. [Google Scholar] [CrossRef] [PubMed]
- Neethu, C.B.; Vardhanan, Y.S. Development of Slow-Release Fertilizer from Animal Origin Wastes: Sustainable Organic Agricultural Perspective. Curr. Agric. Res. 2023, 11, 1. [Google Scholar] [CrossRef]
- Mirbolook, A. Novel Slow-Release Nanocomposite Fertilizers. In Nanotechnology and Nanomaterials; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Kruťko, E.T.; Prokopchuk, N.R.; Globa, A.I. Technology of Biodegradable Polymer Materials. Educational and Methodological Manual for Students of the Specialty 1-48 01 02 “Chemical Technology of Organic Substances, Materials, and Products”; Belarusian State Technological University: Minsk, Belarus, 2014. [Google Scholar]
- Farus, O.A. Biodegradable Film Materials Based on Hydrogels, Polymers, and Silver Nanoparticles. Nanoindustry 2022, 15, 196–203. [Google Scholar] [CrossRef]
- Witt, T.; Robinson, N.; Palma, A.C.; Cernusak, L.A.; Pratt, S.; Redding, M.; Batstone, D.J.; Schmidt, S.; Laycock, B. Evaluating novel biodegradable polymer matrix fertilizers for nitrogen-efficient agriculture. J. Environ. Qual. 2024, 53, 287–299. [Google Scholar] [CrossRef]
- Sun, T.; Zhan, D.; Wang, X.; Guo, Q.; Wu, M.; Shen, P.; Wu, M. Release and degradation mechanism of modified polyvinyl alcohol-based double-layer coated controlled-release phosphate fertilizer. Polymers 2024, 16, 1041. [Google Scholar] [CrossRef]
- Meng, W.; Zhang, X.; Zhang, Y.; Zhang, X.; Zhu, W.; Huang, H.; Han, X.; Liu, Y.; Xu, C. Poly(vinyl alcohol)/sodium alginate polymer membranes as eco-friendly and biodegradable coatings for slow release fertilizers. J. Sci. Food Agric. 2023, 103, 3592–3601. [Google Scholar] [CrossRef]
- Kassem, I.; Ablouh, E.; El Bouchtaoui, F.-Z.; Kassab, Z.; Khouloud, M.; Sehaqui, H.; Ghalfi, H.; Alami, J.; El Achaby, M. Cellulose nanocrystals-filled poly(vinyl alcohol) nanocomposites as waterborne coating materials of NPK fertilizer with slow release and water retention properties. Int. J. Biol. Macromol. 2021, 189, 1029–1042. [Google Scholar] [CrossRef]
- Zafar, N.; Niazi, M.B.K.; Sher, F.; Khalid, U.; Jahangir, Z.; Shaheen, G.A.; Zia, M. Starch and polyvinyl alcohol encapsulated biodegradable nanocomposites for environment-friendly slow release of urea fertilizer. Chem. Eng. J. Adv. 2021, 7, 100123. [Google Scholar] [CrossRef]
- Jíménez-Arias, D.; Morales-Sierra, S.; Silva, P.; Carrêlo, H.; Gonçalves, A.; Ganança, J.F.T.; Nunes, N.; Gouveia, C.S.S.; Alves, S.; Borges, J.P.; et al. Encapsulation with natural polymers to improve the properties of biostimulants in agriculture. Plants 2023, 12, 55. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Lv, J.; Xie, J.; Yu, J.; Li, J.; Zhang, J.; Tang, C.; Niu, T.; Patience, B.E. Effect of slow-release fertilizer on soil fertility and growth and quality of wintering Chinese chives (Allium tuberm Rottler ex Spreng.) in greenhouses. Sci. Rep. 2021, 11, 8070. [Google Scholar] [CrossRef] [PubMed]
- Ghafoor, I.; Rahman, M.H.U.; Hasnain, M.U.; Ikram, R.M.; Khan, M.A.; Iqbal, R.; Hussain, M.I.; Sabagh, A.E. Effect of slow-release nitrogenous fertilizers on dry matter accumulation, grain nutritional quality, water productivity and wheat yield under an arid environment. Sci. Rep. 2022, 12, 14783. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Fu, P.; Cheng, G.; Lu, W.; Lu, D. Delaying application time of slow-release fertilizer increases soil rhizosphere nitrogen content, root activity, and grain yield of spring maize. Crop J. 2022, 10, 1798–1806. [Google Scholar] [CrossRef]
- Vasilyeva, N.A.; Abasov, S.M.; Vladimirov, A.A.; Dukhanin, Y.A.; Perevertin, K.A.; Gaplaev, M.S.; Bamatov, I.M. Effect of slow-release mineral fertilizer on the intensity of phosphorus and potassium mobilization in soil. Dokuchaev Soil Bull. 2024, 120. submitted for publication. [Google Scholar] [CrossRef]
- Haifa Group. Slow Release Fertilizer vs. Controlled Release Fertilizer. Available online: https://www.haifa-group.com/articles/slow-release-fertilizer-vs-controlled-release-fertilizer (accessed on 19 August 2024).
- SK Specialties Sdn Bhd. Controlled Release Fertilizers vs. Slow Release Fertilizer. Available online: https://www.skspecialties.com.my/controlled-vs-slow-release-fertilizer/ (accessed on 19 August 2024).
- Mordor Intelligence. Controlled Release Fertilizer Market. Available online: https://www.mordorintelligence.com/industry-reports/controlled-release-fertilizer-market (accessed on 19 August 2024).
- Bamatov, I.M.; Perevertin, K.A.; Kozlov, D.N.; Arsanov, M.M. Method for Producing Prolonged Release Fertilizers Based on Polymer Modification. Russian Federation Patent No. 2820892 C1, IPC C05D 1/00, C05G 5/00, C08F 16/06, 11 April 2023. [Google Scholar]
- Daudov, I.L.; Arsanov, M.M. Protsess polucheniya i sravnitelnый analiz ispol′zovaniya biopolimer modifitsirovannogo udobreniya po sravneniyu s monoammoniyfosfatom v plodovom sadu. In Aktual′nye Voprosy v Razvitii APK Yuga Rossii; Magomadov, A.S., Ed.; Izdatel′stvo FGBOU VO “Chechenskiy gosudarstvennyy universitet im. A.A. Kadyrova”: Grozny, Russia, 2022; pp. 92–97. [Google Scholar]
- Arsanov, M.M.; Sirieva, Y.N. Protsess polucheniya udobreniya NPK s biopolimernym pokrytiem i ego sravnenie s analogom na yagodnykh rasteniyakh. In Ezhgodnaya Itogovaya Nauchno-Prakticheskaya Konferentsiya Nauchno-Pedagogicheskikh Rabotnikov; Izdatel′stvo FGBOU VO “Chechenskiy Gosudarstvennyy Universitet im. A.A. Kadyrova”: Grozny, Russia, 2023; pp. 70–76. [Google Scholar] [CrossRef]
- Bamatov, I.M.; Vasilyeva, N.A.; Sorokopudov, V.N.; Adaev, N.L.; Amaeva, A.G.; Chamurzaev, S.M.; Gaplaevva, M.S.; Sulipova, D.A.; Perevertin, K.A.; Udalova, Z.V.; et al. Innovatsionnye Tekhnologii Ozdorovleniya i Klonal’nogo Mikrorazmnozheniya Posadochnogo Materiala Zemlaki Sadovoy v Kulture In Vitro s Posleduyushchim Kultivirovaniem na Agrofone Polimer-Modifitsirovannykh Mineral’nykh Udobreniy Prolongoirovannogo Deystviya: Metodicheskie Rekomendatsii; AO “IPK Groznyy rabochiy”: Grozny, Russia, 2023; p. 96. [Google Scholar]
- METER Group. Soil Electrical Conductivity: The Complete Guide to Measurements. Available online: https://metergroup.com/education-guides/soil-electrical-conductivity-the-complete-guide-to-measurements/ (accessed on 19 August 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Blout, E.R.; Karplus, R. The infrared spectrum of polyvinyl alcohol. J. Am. Chem. Soc. 1948, 70, 862–864. [Google Scholar] [CrossRef]
- Acik, G.; Kamaci, M.; Özata, B.; Cansoy, C. Effect of polyvinyl alcohol/chitosan blend ratios on morphological, optical, and thermal properties of electrospun nanofibers. Turk. J. Chem. 2019, 43, 137–149. [Google Scholar] [CrossRef]
- Fastelli, M.; Comodi, P.; Maturilli, A.; Zucchini, A. Reflectance spectroscopy of ammonium salts: Implications for planetary surface composition. Minerals 2020, 10, 902. [Google Scholar] [CrossRef]
- Wu, H.B.; Chan, M.N.; Chan, C.K. FTIR characterization of polymorphic transformation of ammonium nitrate. Aerosol Sci. Technol. 2007, 41, 581–588. [Google Scholar] [CrossRef]
- Trivedi, M.K.; Branton, A.; Trivedi, D.; Nayak, G.; Bairwa, K.; Jana, S. Spectroscopic characterization of disodium hydrogen orthophosphate and sodium nitrate after biofield treatment. J. Chromatogr. Sep. Technol. 2015, 6, 282. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Apparent soil electrical conductivity measurements in agriculture. Comput. Electron. Agric. 2005, 46, 11–43. [Google Scholar] [CrossRef]
- Ma, R.; McBratney, A.; Whelan, B.; Minasny, B.; Short, M. Comparing temperature correction models for soil electrical conductivity measurement. Precis. Agric. 2010, 12, 55–66. [Google Scholar] [CrossRef]
- Amente, G.; Baker, J.M.; Reece, C.F. Estimation of soil solution electrical conductivity from bulk soil electrical conductivity in sandy soils. Soil Sci. Soc. Am. J. 2000, 64, 1931–1939. [Google Scholar] [CrossRef]
- Corwin, D.L.; Yemoto, K. Salinity: Electrical conductivity and total dissolved solids. Soil Sci. Soc. Am. J. 2020, 84, 1442–1461. [Google Scholar] [CrossRef]
- Gabriel, J.L.; Muñoz-Carpena, R.; Quemada, M. The role of cover crops in irrigated systems: Water balance, nitrate leaching and soil mineral nitrogen accumulation. Agric. Ecosyst. Environ. 2012, 155, 50–61. [Google Scholar] [CrossRef]
- Lu, Y.; Lu, W.; Ruan, J.; Li, Y.; Luo, R.; Liu, Y.; Jiang, X. Strawberry ‘Quantitative’ Fertilization Based on Soil Electrical Conductivity Index. Chin. Agric. Sci. Bull. 2017, 33, 51–55. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bamatov, I.; Perevertin, K.; Vasilyeva, N. Polymer-Modified Fertilizers for Mitigating Strawberry Root Burn. Polymers 2024, 16, 2950. https://doi.org/10.3390/polym16202950
Bamatov I, Perevertin K, Vasilyeva N. Polymer-Modified Fertilizers for Mitigating Strawberry Root Burn. Polymers. 2024; 16(20):2950. https://doi.org/10.3390/polym16202950
Chicago/Turabian StyleBamatov, Ibragim, Kirill Perevertin, and Nadezda Vasilyeva. 2024. "Polymer-Modified Fertilizers for Mitigating Strawberry Root Burn" Polymers 16, no. 20: 2950. https://doi.org/10.3390/polym16202950
APA StyleBamatov, I., Perevertin, K., & Vasilyeva, N. (2024). Polymer-Modified Fertilizers for Mitigating Strawberry Root Burn. Polymers, 16(20), 2950. https://doi.org/10.3390/polym16202950