Preparation and Modification of Collagen/Sodium Alginate-Based Biomedical Materials and Their Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Methods
2.2.1. Fabrication of C/SA Sponge
2.2.2. EDC/NHS Cross-Linking of C/SA Sponge
2.2.3. Fabrication of OSA and C/OSA Sponge
2.2.4. Microstructure
2.2.5. Fourier Transforms Infrared Spectroscopy (FTIR)
2.2.6. Mechanical Properties
2.2.7. Hygroscopicity
2.2.8. Porosity Measurement
2.2.9. Hemostatic Activity In Vitro
Blood Clotting Assay In Vitro
Dynamic Blood Clotting Assay In Vitro
2.2.10. Hemolysis Assay
2.2.11. Statistical Analysis
3. Results and Discussion
3.1. Morphology of C/SA-Based Sponges
3.2. FTIR Analysis
3.3. Influence of Different Cross-Linking Methods on Mechanical Properties and Hygroscopicity of C/SA-Based Sponges
3.4. Porosity
3.5. Hemostatic Activity In Vitro
3.5.1. Clotting Capability
3.5.2. Whole Blood Clotting in Vitro
3.6. Blood Compatibility Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, B.; Dong, R.; Liang, Y.; Li, M. Haemostatic materials for wound healing applications. Nat. Rev. Chem. 2021, 5, 773–791. [Google Scholar] [CrossRef] [PubMed]
- Burnett, L.R.; Richter, J.G.; Rahmany, M.B.; Soler, R.; Steen, J.A.; Orlando, G.; Abouswareb, T.; Van Dyke, M.E. Novel keratin (KeraStat™) and polyurethane (Nanosan®-Sorb) biomaterials are hemostatic in a porcine lethal extremity hemorrhage model. J. Biomater. Appl. 2013, 28, 869–879. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, D.N.; Reis, R.L.; Silva, T.H. Marine origin materials on biomaterials and advanced therapies to cartilage tissue engineering and regenerative medicine. Biomater. Sci. 2021, 9, 6718–6736. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Wang, X.; Chen, Y.; Yue, O.; Bai, Z.; Cui, B.; Jiang, H.; Liu, X. A Review of Recent Progress on Collagen-Based Biomaterials. Adv. Healthc. Mater. 2023, 12, e2202042. [Google Scholar] [CrossRef] [PubMed]
- Cheung, R.C.F.; Ng, T.B.; Wong, J.H.; Chan, W.Y. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications. Mar. Drugs 2015, 13, 5156–5186. [Google Scholar] [CrossRef] [PubMed]
- Sahana, T.G.; Rekha, P.D. Biopolymers: Applications in wound healing and skin tissue engineering. Mol. Biol. Rep. 2018, 45, 2857–2867. [Google Scholar] [CrossRef] [PubMed]
- Guler, S.; Ozseker, E.E.; Akkaya, A. Developing an antibacterial biomaterial. Eur. Polym. J. 2016, 84, 326–337. [Google Scholar] [CrossRef]
- Hernández-González, A.C.; Téllez-Jurado, L.; Rodríguez-Lorenzo, L.M. Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: A review. Carbohyd. Polym. 2020, 229, 115514. [Google Scholar] [CrossRef]
- Ding, W.; Zhou, J.; Zeng, Y.; Wang, Y.-n.; Shi, B. Preparation of oxidized sodium alginate with different molecular weights and its application for crosslinking collagen fiber. Carbohyd. Polym. 2017, 157, 1650–1656. [Google Scholar] [CrossRef]
- Nair, M.; Johal, R.K.; Hamaia, S.W.; Best, S.M.; Cameron, R.E. Tunable bioactivity and mechanics of collagen-based tissue engineering constructs: A comparison of EDC-NHS, genipin and TG2 crosslinkers. Biomaterials 2020, 254, 120109. [Google Scholar] [CrossRef]
- Felician, F.F.; Xia, C.; Qi, W.; Xu, H. Collagen from Marine Biological Sources and Medical Applications. Chem Biodivers. 2018, 15, e1700557. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Lau, C.S.; Liang, K.; Wen, F.; Teoh, S.H. Marine collagen scaffolds in tissue engineering. Curr. Opin. Biotechnol. 2022, 74, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Gallo, N.; Natali, M.L.; Quarta, A.; Gaballo, A.; Terzi, A.; Sibillano, T.; Giannini, C.; De Benedetto, G.E.; Lunetti, P.; Capobianco, L.; et al. Aquaponics-Derived Tilapia Skin Collagen for Biomaterials Development. Polymers 2022, 14, 1865. [Google Scholar] [CrossRef] [PubMed]
- Song, W.K.; Liu, D.; Sun, L.L.; Li, B.F.; Hou, H. Physicochemical and Biocompatibility Properties of Type I Collagen from the Skin of Nile Tilapia (Oreochromis niloticus) for Biomedical Applications. Mar. Drugs 2019, 17, 137. [Google Scholar] [CrossRef]
- Sun, L.L.; Hou, H.; Li, B.F.; Zhang, Y. Characterization of acid- and pepsin-soluble collagen extracted from the skin of Nile tilapia (Oreochromis niloticus). Int. J. Biol. Macromol. 2017, 99, 8–14. [Google Scholar] [CrossRef]
- Elango, J.; Bu, Y.S.; Bin, B.; Geevaretnam, J.; Robinson, J.S.; Wu, W.H. Effect of chemical and biological cross-linkers on mechanical and functional properties of shark catfish skin collagen films. Food Biosci. 2017, 17, 42–51. [Google Scholar] [CrossRef]
- Gu, L.S.; Shan, T.T.; Ma, Y.X.; Tay, F.R.; Niu, L.N. Novel Biomedical Applications of Crosslinked Collagen. Trends Biotechnol. 2019, 37, 464–491. [Google Scholar] [CrossRef]
- Adamiak, K.; Sionkowska, A. Current methods of collagen cross-linking: Review. Int. J. Biol. Macromol. 2020, 161, 550–560. [Google Scholar] [CrossRef]
- Dhand, C.; Barathi, V.A.; Ong, S.T.; Venkatesh, M.; Harini, S.; Dwivedi, N.; Goh, E.T.L.; Nandhakumar, M.; Venugopal, J.R.; Diaz, S.M.; et al. Latent Oxidative Polymerization of Catecholamines as Potential Cross-linkers for Biocompatible and Multifunctional Biopolymer Scaffolds. ACS Appl. Mater. Interfaces 2016, 8, 32266–32281. [Google Scholar] [CrossRef]
- Singh, B.; Kumar, A. Network formation of Moringa oleifera gum by radiation induced crosslinking: Evaluation of drug delivery, network parameters and biomedical properties. Int. J. Biol. Macromol. 2018, 108, 477–488. [Google Scholar] [CrossRef]
- Sun, L.L.; Li, B.F.; Song, W.K.; Zhang, K.; Fan, Y.; Hou, H. Comprehensive assessment of Nile tilapia skin collagen sponges as hemostatic dressings. Mat. Sci. Eng. C Mater. 2020, 109, 110532. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.L.; Li, B.F.; Jiang, D.D.; Hou, H. Nile tilapia skin collagen sponge modified with chemical cross-linkers as a biomedical hemostatic material. Colloid Surf. B 2017, 159, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, B.; Jayakrishnan, A. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials 2005, 26, 3941–3951. [Google Scholar] [CrossRef]
- GB/T 1040.3-2006; Plastic-Determination of Tensile Properties—Part 3: Test Conditions for Films and Sheets. China Standards Publishing House: Beijing, China, 2006.
- YY/T 0471.1-2004; Test Methods for Primary Wound Dressing—Part 1: Aspects of Absorbency. China Standards Publishing House: Beijing, China, 2004.
- EN 13726-1-2002; Test Methods for Primary Wound Dressings—Part 1: Aspects of Absorbency. British Standards Institution: London, UK, 2002.
- Sun, L.L.; Li, B.F.; Yao, D.; Song, W.K.; Hou, H. Effects of cross-linking on mechanical, biological properties and biodegradation behavior of Nile tilapia skin collagen sponge as a biomedical material. J. Mech. Behav. Biomed. 2018, 80, 51–58. [Google Scholar] [CrossRef] [PubMed]
- ASTM F 756-00, 2000; Standard Practice for Assessment of Hemolytic Properties of Materials. American Society for Testing and Materials: West Conshohocken, PA, USA, 2000.
- Ouyang, Q.; Hou, T.; Li, C.; Hu, Z.; Liang, L.; Li, S.; Zhong, Q.; Li, P. Construction of a composite sponge containing tilapia peptides and chitosan with improved hemostatic performance. Int. J. Biol. Macromol. 2019, 139, 719–729. [Google Scholar] [CrossRef]
- Henao-Holguin, L.V.; Cornejo-Santiago, E.; Rojas-Montoya, I.D.; Gracia-Mora, J.; Bernad-Bernad, M.J. MWCNT-riboflavin nanocomposite for collagen crosslinking: A green approach. Mater. Chem. Phys. 2020, 241, 122361. [Google Scholar] [CrossRef]
- Song, Y.; Li, S.; Chen, H.; Han, X.; Duns, G.J.; Dessie, W.; Tang, W.; Tan, Y.; Qin, Z.; Luo, X. Kaolin-loaded carboxymethyl chitosan/sodium alginate composite sponges for rapid hemostasis. Int. J. Biol. Macromol. 2023, 233, 123532. [Google Scholar] [CrossRef]
- Liu, X.; Peng, W.; Wang, Y.; Zhu, M.; Sun, T.; Peng, Q.; Zeng, Y.; Feng, B.; Lu, X.; Weng, J.; et al. Synthesis of an RGD-grafted oxidized sodium alginate-N-succinyl chitosan hydrogel and an in vitro study of endothelial and osteogenic differentiation. J. Mater. Chem. B 2013, 1, 4484–4492. [Google Scholar] [CrossRef]
- Flynn, L.E. The use of decellularized adipose tissue to provide an inductive microenvironment for the adipogenic differentiation of human adipose-derived stem cells. Biomaterials 2010, 31, 4715–4724. [Google Scholar] [CrossRef]
- Xu, H.; Wu, J.; Qi, L.; Chen, Y.; Wen, Q.; Duan, T.; Wang, Y. Preparation and microbial fuel cell application of sponge-structured hierarchical polyaniline-texture bioanode with an integration of electricity generation and energy storage. J. Appl. Electrochem. 2018, 48, 1285–1295. [Google Scholar] [CrossRef]
- Shu, H.; Wu, C.; Kang, Y.; Ting-Wu, L.; Chen, L.I.; Chuan-Liang, C. Preparation of rapid expansion alginate/silica fiber composite scaffold and application of rapid hemostatic function. J. Mater. Eng. 2019, 47, 124–129. [Google Scholar] [CrossRef]
- Hu, S.H.; Wu, C.X.; Yang, K.; Liu, T.W.; Li, C.; Cao, C. L Preparation of composite hydroxybutyl chitosan sponge and its role in promoting wound healing. Carbohyd. Polym. 2018, 184, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Behrens, A.M.; Sikorski, M.J.; Li, T.L.; Wu, Z.J.J.; Griffith, B.P.; Kofinas, P. Blood-aggregating hydrogel particles for use as a hemostatic agent. Acta Biomater. 2014, 10, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Nechipurenko, D.Y.; Receveur, N.; Yakimenko, A.O.; Shepelyuk, T.O.; Yakusheva, A.A.; Kerimov, R.R.; Obydennyy, S.I.; Eckly, A.; Léon, C.; Gachet, C.; et al. Clot Contraction Drives the Translocation of Procoagulant Platelets to Thrombus Surface. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 37–47. [Google Scholar] [CrossRef]
- Xi, G.H.; Liu, W.; Chen, M.; Li, Q.; Hao, X.; Wang, M.S.; Yang, X.; Feng, Y.K.; He, H.C.; Shi, C.C.; et al. Polysaccharide-Based Lotus Seedpod Surface-Like Porous Microsphere with Precise and Controllable Micromorphology for Ultrarapid Hemostasis. ACS Appl. Mater. Interfaces 2019, 11, 46558–46571. [Google Scholar] [CrossRef]
Tensile Strength (KPa) A | Elongation at Break (%) A | Hygroscopicity B | |
---|---|---|---|
C/SA | 50.92 ± 1.84 a | 22.16 ± 0.99 a | 20.94 ± 1.66 a |
EDC/NHS cross-linked | 310.22 ± 61.96 b | 20.97 ± 0.65 b | 25.93 ± 0.56 b |
C/OSA | 54.44 ± 2.95 a | 22.14 ± 1.06 a | 25.12 ± 0.43 b |
C/SA | EDC/NHC Cross-Linked | C/OSA | |
---|---|---|---|
Porosity (%) | 96.87 ± 0.11 | 96.78 ± 0.78 | 96.97 ± 0.27 |
Blood Coagulation Time (s) | |
---|---|
Control | 161 ± 8 a |
C/SA | 101 ± 9 b |
EDC/NHS cross-linked | 112 ± 6 b |
C/OSA | 112 ± 7 b |
Beiling | 114 ± 6 b |
Hemolysis Ratio (%) | |
---|---|
C/SA | 1.88 ± 1.67 a |
EDC/NHS cross-linked | 1.53 ± 2.65 b |
C/OSA | 1.79 ± 2.35 a |
Beiling | 4.92 ± 1.63 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Shen, Y.; Li, M.; Wang, Q.; Li, R.; Gong, S. Preparation and Modification of Collagen/Sodium Alginate-Based Biomedical Materials and Their Characteristics. Polymers 2024, 16, 171. https://doi.org/10.3390/polym16020171
Sun L, Shen Y, Li M, Wang Q, Li R, Gong S. Preparation and Modification of Collagen/Sodium Alginate-Based Biomedical Materials and Their Characteristics. Polymers. 2024; 16(2):171. https://doi.org/10.3390/polym16020171
Chicago/Turabian StyleSun, Leilei, Yanyan Shen, Mingbo Li, Qiuting Wang, Ruimin Li, and Shunmin Gong. 2024. "Preparation and Modification of Collagen/Sodium Alginate-Based Biomedical Materials and Their Characteristics" Polymers 16, no. 2: 171. https://doi.org/10.3390/polym16020171
APA StyleSun, L., Shen, Y., Li, M., Wang, Q., Li, R., & Gong, S. (2024). Preparation and Modification of Collagen/Sodium Alginate-Based Biomedical Materials and Their Characteristics. Polymers, 16(2), 171. https://doi.org/10.3390/polym16020171