Enhanced Photovoltaic Performance of Poly(3,4-Ethylenedioxythiophene)Poly(N-Alkylcarbazole) Copolymer-Based Counter Electrode in Dye-Sensitized Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Synthesis of N-Alkylcarbazole Monomers
3.2. Characterization of Copolymer-Based Counter Electrodes
3.2.1. Raman Characterization
3.2.2. Morphology of Polymer-Based Counter Electrodes
3.3. Photovoltaic Performance and Stability
3.4. Electrochemical Analysis of Polymer-Based Counter Electrodes
3.4.1. Electrochemical Impedance Spectroscopy and Tafel Polarization Analysis
3.4.2. Cyclic Voltammetry Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Munoz-Garcia, A.B.; Benesperi, I.; Boschloo, G.; Concepcion, J.J.; Delcamp, J.H.; Gibson, E.A.; Meyer, G.J.; Pavone, M.; Pettersson, H.; Hagfeldt, A.; et al. Dye-sensitized solar cells strike back. Chem. Soc. Rev. 2021, 50, 12450–12550. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Sumathy, K.; Qiao, Q.; Zhou, Z. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renew. Sustain. Energy Rev. 2017, 68, 234–246. [Google Scholar] [CrossRef]
- Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G.; Lin, Y.; Xie, Y.; Wei, Y. Counter electrodes in dye-sensitized solar cells. Chem. Soc. Rev. 2017, 46, 5975–6023. [Google Scholar] [CrossRef] [PubMed]
- Gnanasekar, S.; Kollu, P.; Jeong, S.K.; Grace, A.N. Pt-free, low-cost and efficient counter electrode with carbon wrapped VO2(M) nanofiber for dye-sensitized solar cells. Sci. Rep. 2019, 9, 5177. [Google Scholar] [CrossRef] [PubMed]
- Theerthagiri, J.; Senthil, A.R.; Madhavan, J.; Maiyalagan, T. Recent progress in non-platinum counter electrode materials for dye-sensitized solar cells. ChemElectroChem 2015, 2, 928–945. [Google Scholar] [CrossRef]
- Jeon, S.S.; Kim, C.; Ko, J.; Im, S.S. Spherical polypyrrole nanoparticles as a highly efficient counter electrode for dye-sensitized solar cells. J. Mater. Chem. 2011, 21, 8146–8151. [Google Scholar] [CrossRef]
- Groenendaal, L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J.R. Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future. Adv. Mater. 2000, 12, 481–494. [Google Scholar] [CrossRef]
- Priya Nagalingam, S.; Grace, A.N. Poly(3,4-ethylenedioxythiophene) decorated MXene as an alternative counter electrode for dye-sensitized solar cells. Mater. Today Chem. 2022, 26, 101113. [Google Scholar] [CrossRef]
- Kouhnavard, M.; Yifan, D.; D’ Arcy, J.M.; Mishra, R.; Biswas, P. Highly conductive PEDOT films with enhanced catalytic activity for dye-sensitized solar cells. Sol. Energy 2020, 211, 258–264. [Google Scholar] [CrossRef]
- Saito, Y.; Kitamura, T.; Wada, Y.; Yanagida, S. Application of poly(3,4-ethylenedioxythiophene) to counter electrode in dye-sensitized solar cells. Chem. Lett. 2002, 31, 1060–1061. [Google Scholar] [CrossRef]
- Li, J.; Ma, Y. In-situ synthesis of transparent conductive PEDOT coating on PET foil by liquid phase depositional polymerization of EDOT. Synth. Met. 2016, 217, 185–188. [Google Scholar] [CrossRef]
- Xu, T.; Kong, D.; Tang, H.; Qin, X.; Li, X.; Gurung, A.; Kou, K.; Chen, L.; Qiao, Q.; Huang, W. Transparent MoS2/PEDOT composite counter electrodes for bifacial dye-sensitized solar cells. ACS Omega 2020, 5, 8687–8696. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.N.; Lin, J.T.; Li, C.T. Electroactive and sustainable Cu-MOF/PEDOT composite electrocatalysts for multiple redox mediators and for high-performance dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2021, 13, 8435–8444. [Google Scholar] [CrossRef] [PubMed]
- Bekkar, F.; Bettahar, F.; Moreno, I.; Meghabar, R.; Hamadouche, M.; Hernáez, E.; Vilas-Vilela, J.L.; Ruiz-Rubio, L. Polycarbazole and Its Derivatives: Synthesis and Applications. A Review of the Last 10 Years. Polymers 2020, 12, 2227. [Google Scholar] [CrossRef]
- Sun, D.; Ren, Z.; Bryce, M.R.; Yan, S. Arylsilanes and siloxanes as optoelectronic materials for organic light-emitting diodes (OLEDs). J. Mater. Chem. C 2015, 3, 9496–9508. [Google Scholar] [CrossRef]
- Rice, N.A.; Bodnaryk, W.J.; Mirka, B.; Melville, O.A.; Adronov, A.; Lessard, B.H. Polycarbazole-sorted semiconducting single-walled carbon nanotubes for incorporation into organic thin film transistors. Adv. Electron. Mater. 2019, 5, 1800539. [Google Scholar] [CrossRef]
- Pernites, R.; Ponnapati, R.; Felipe, M.J.; Advincula, R. Electropolymerization molecularly imprinted polymer (E-MIP) SPR sensing of drug molecules: Pre-polymerization complexed terthiophene and carbazole electroactive monomers. Biosens. Bioelectron. 2011, 26, 2766–2771. [Google Scholar] [CrossRef]
- Li, J.; Grimsdale, A.C. Carbazole-based polymers for organic photovoltaic devices. Chem. Soc. Rev. 2010, 39, 2399–2410. [Google Scholar] [CrossRef]
- Bifari, E.N.; El-Shishtawy, R.M. Efficient synthesis of formyl boronate esters derived from carbazole and phenoxazine as key electron donors. Polycyclic Aromat. Compd. 2021, 42, 7178–7186. [Google Scholar] [CrossRef]
- Akbayrak, M.; Cansu-Ergun, E.G.; Önal, A.M. Synthesis and electro-optical properties of a new copolymer based on EDOT and carbazole. Des. Monomers Polym. 2016, 19, 679–687. [Google Scholar] [CrossRef]
- Jucius, D.; Lazauskas, A.; Grigaliūnas, V.; Gudaitis, R.; Guobienė, A.; Prosyčevas, I.; Abakevičienė, B.; Andrulevičius, M. Structure and properties of dual-doped PEDOT:PSS multilayer films. Mater. Res. 2019, 22, e20190134. [Google Scholar] [CrossRef]
- Chen, L.; Guo, C.X.; Zhang, Q.; Lei, Y.; Xie, J.; Ee, S.; Guai, G.; Song, Q.; Li, C.M. Graphene quantum-dot-doped polypyrrole counter electrode for high-performance dye-sensitized solar cells. ACS Appl Mater Interfaces 2013, 5, 2047–2052. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.P.; Lin, T.Y.; Hsu, C.W.; Tsai, M.L.; Huang, C.H.; Wei, W.R.; Huang, M.Y.; Chien, Y.J.; Yang, P.C.; Liu, C.W.; et al. Realizing high-efficiency omnidirectional n-type Si solar cells via the hierarchical architecture concept with radial junctions. ACS Nano 2013, 7, 9325–9335. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-Y.; Li, C.-T.; Lee, C.-P.; Vittal, R.; Ho, K.-C. PEDOT-decorated nitrogen-doped graphene as the transparent composite film for the counter electrode of a dye-sensitized solar cell. Nano Energy 2015, 12, 374–385. [Google Scholar] [CrossRef]
- Thavasi, V.; Renugopalakrishnan, V.; Jose, R.; Ramakrishna, S. Controlled electron injection and transport at materials interfaces in dye sensitized solar cells. Mater. Sci. Eng. R Rep. 2009, 63, 81–99. [Google Scholar] [CrossRef]
- Baptayev, B.; Tashenov, Y.; Adilov, S.; Balanay, M.P. Facile fabrication of ZnCo2S4@MWCNT as Pt-free counter electrode for high performance dye-sensitized solar cells. Surf. Interfaces 2023, 37, 102699. [Google Scholar] [CrossRef]
- Basri, N.A.F.; Mustafa, M.N.; Sulaiman, Y. Facile fabrication of PVA nanofiber coated with PEDOT as a counter electrode for dye-sensitized solar cell. J. Mater. Sci. Mater. Electron. 2019, 30, 8705–8711. [Google Scholar] [CrossRef]
- Ahmed, U.; Shahid, M.M.; Shahabuddin, S.; Rahim, N.A.; Alizadeh, M.; Pandey, A.K.; Sagadevan, S. An efficient platform based on strontium titanate nanocubes interleaved polypyrrole nanohybrid as counter electrode for dye-sensitized solar cell. J. Alloys Compd. 2021, 860, 158228. [Google Scholar] [CrossRef]
- Kanjana, N.; Pimsopa, S.; Maiaugree, W.; Laokul, P.; Chaiya, I.; Chingsungnoen, A.; Poolcharuansin, P.; Ratchapolthavisin, N.; Jarernboon, W.; Wongjom, P.; et al. Novel micro-ceramic bottom ash mixed PEDOT:PSS/PVP for a low-cost pt-free counter electrode in a dye sensitized solar cell. J. Electrochem. Soc. 2022, 169, 083503. [Google Scholar] [CrossRef]
- Yuan, C.; Guo, S.; Wang, S.; Liu, L.; Chen, W.; Wang, E. Electropolymerization polyoxometalate (POM)-doped PEDOT film electrodes with mastoid microstructure and its application in dye-sensitized solar cells (DSSCs). Ind. Eng. Chem. Res. 2013, 52, 6694–6703. [Google Scholar] [CrossRef]
- Mehmood, U.; Asghar, H.; Babar, F.; Younas, M. Effect of graphene contents in polyaniline/graphene composites counter electrode material on the photovoltaic performance of dye-sensitized solar cells (DSSCSs). Sol. Energy 2020, 196, 132–136. [Google Scholar] [CrossRef]
- Sekkarapatti Ramasamy, M.; Nikolakapoulou, A.; Raptis, D.; Dracopoulos, V.; Paterakis, G.; Lianos, P. Reduced graphene oxide/Polypyrrole/PEDOT composite films as efficient Pt-free counter electrode for dye-sensitized solar cells. Electrochim. Acta 2015, 173, 276–281. [Google Scholar] [CrossRef]
- Rafique, S.; Rashid, I.; Sharif, R. Cost effective dye sensitized solar cell based on novel Cu polypyrrole multiwall carbon nanotubes nanocomposites counter electrode. Sci. Rep. 2021, 11, 14830. [Google Scholar] [CrossRef] [PubMed]
- Sil, M.C.; Chang, H.-D.; Jhan, J.-J.; Chen, C.-M. Electropolymerization of poly(spiroBiProDOT) on counter electrodes for platinum-free dye-sensitized solar cells. J. Mater. Chem. C 2021, 9, 12094–12101. [Google Scholar] [CrossRef]
- Maiaugree, W.; Pimparue, P.; Jarernboon, W.; Pimanpang, S.; Amornkitbamrung, V.; Swatsitang, E. NiS(NPs)-PEDOT-PSS composite counter electrode for a high efficiency dye sensitized solar cell. Mater. Sci. Eng. B 2017, 220, 66–72. [Google Scholar] [CrossRef]
- Maiaugree, W.; Pimanpang, S.; Towannang, M.; Saekow, S.; Jarernboon, W.; Amornkitbamrung, V. Optimization of TiO2 nanoparticle mixed PEDOT–PSS counter electrodes for high efficiency dye sensitized solar cell. J. Non-Cryst. Solids 2012, 358, 2489–2495. [Google Scholar] [CrossRef]
CE | η (%) | VOC (V) | JSC (mA/cm−2) | FF | (Ω·cm2) | (Ω) | (Ω) | (Ω) |
---|---|---|---|---|---|---|---|---|
Pt | 7.57 ± 0.20 | 0.74 ± 0.02 | 15.95 ± 0.4 | 0.64 ±0.03 | 4.12 | 31.00 | 18.21 | 74.99 |
PEDOT | 7.90 ± 0.04 | 0.74 ± 0.01 | 16.02 ± 0.16 | 0.68 ± 0.01 | 3.31 | 29.41 | 17.89 | 59.93 |
PEDOT-CbzC4 | 8.00 ± 0.06 | 0.72 ± 0.01 | 16.24 ± 0.15 | 0.69 ± 0.01 | 3.06 | 26.38 | 17.55 | 40.54 |
PEDOT-CbzC6 | 8.52 ± 0.04 | 0.74 ± 0.01 | 16.31 ± 0.03 | 0.70 ± 0.003 | 2.50 | 24.00 | 16.71 | 43.23 |
PEDOT-CbzC8 | 8.88 ± 0.09 | 0.76 ± 0.01 | 16.65 ± 0.27 | 0.71 ± 0.07 | 2.26 | 21.00 | 14.00 | 46.79 |
Counter Electrodes | Method of Application | RCT | PCE (%) | Reference |
---|---|---|---|---|
Polyvinyl alcohol nanofibers coated with PEDOT | Electropolymerization | – | 2.11 | [27] |
PolyPyrrole-SrTiO3 | Oxidative polymerization | 46.4 | 2.52 | [28] |
Bottom ash/PEDOT:PSS/polyvinylpyrrolidone | Doctor blade | 276.70 | 2.70 | [29] |
Polyoxometalate-doped PEDOT | Electropolymerization | 7.67 | 5.81 | [30] |
Polyaniline-graphene oxide | In situ polymerization | – | 6.12 | [31] |
Reduced graphene oxide/Polypyrrole/PEDOT composite | Polymerization and electrodeposition | – | 7.10 | [32] |
Cu-polypyrrole-MWCNT | Electrochemical synthesis | 4.31 | 7.10 | [33] |
Polyaniline-graphene | In situ polymerization | 20.1 | 7.45 | [31] |
Poly(spiroBiProDOT) | Electrochemical polymerization | 17.6 | 7.90 | [34] |
PEDOT-poly(N-butylcarbazole) | Electropolymerization | 3.06 | 8.00 | This work |
NiS-PEDOT-PSS | Simple mixing | 0.46 | 8.18 | [35] |
TiO2-PEDOT-PSS | Simple mixing | 1.3 | 8.49 | [36] |
PEDOT-poly(N-hexylcarbazole) | Electropolymerization | 2.50 | 8.52 | This work |
PEDOT-poly(N-octylcarbazole) | Electropolymerization | 2.26 | 8.88 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bukari, S.D.; Yelshibay, A.; Baptayev, B.; Balanay, M.P. Enhanced Photovoltaic Performance of Poly(3,4-Ethylenedioxythiophene)Poly(N-Alkylcarbazole) Copolymer-Based Counter Electrode in Dye-Sensitized Solar Cells. Polymers 2024, 16, 2941. https://doi.org/10.3390/polym16202941
Bukari SD, Yelshibay A, Baptayev B, Balanay MP. Enhanced Photovoltaic Performance of Poly(3,4-Ethylenedioxythiophene)Poly(N-Alkylcarbazole) Copolymer-Based Counter Electrode in Dye-Sensitized Solar Cells. Polymers. 2024; 16(20):2941. https://doi.org/10.3390/polym16202941
Chicago/Turabian StyleBukari, Sherif Dei, Aliya Yelshibay, Bakhytzhan Baptayev, and Mannix P. Balanay. 2024. "Enhanced Photovoltaic Performance of Poly(3,4-Ethylenedioxythiophene)Poly(N-Alkylcarbazole) Copolymer-Based Counter Electrode in Dye-Sensitized Solar Cells" Polymers 16, no. 20: 2941. https://doi.org/10.3390/polym16202941
APA StyleBukari, S. D., Yelshibay, A., Baptayev, B., & Balanay, M. P. (2024). Enhanced Photovoltaic Performance of Poly(3,4-Ethylenedioxythiophene)Poly(N-Alkylcarbazole) Copolymer-Based Counter Electrode in Dye-Sensitized Solar Cells. Polymers, 16(20), 2941. https://doi.org/10.3390/polym16202941