Chitosan-Zinc-Ligated Hydroxychloroquine: Molecular Docking, Synthesis, Characterization, and Trypanocidal Activity against Trypanosoma evansi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Molecular Docking Studies
2.3. Synthesis of Chitosan Hydroxychloroquine Zinc Oxide Nanoparticles (CsHCZnONPs)
2.4. Characterization of CsHCZnONPs
2.5. In Vitro Propagation of T. evansi
2.6. Efficacy of CsHCZnONPs against T. evansi
3. Results and Discussion
3.1. Molecular Docking
3.2. Synthesis and Characterization of CsHCZnO NFs
3.3. Efficacy of CsHC-ZnONPs against T. evansi
3.4. Intracellular Detection of Zn
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. African Animal Trypanosomiasis African Animal Trypanosomiasis, In Vitro; FAO: Rome, Italy, 2018. [Google Scholar]
- Rathore, N.S.; Manuja, A.; Kumar Manuja, B.; Choudhary, S. Chemotherapeutic approaches against Trypanosoma evansi: Retrospective analysis, current status and future outlook. Curr. Top. Med. Chem. 2016, 16, 2316–2327. [Google Scholar] [CrossRef] [PubMed]
- Auty, H.; Mundy, A.; Fyumagwa, R.D.; Picozzi, K.; Welburn, S.; Hoare, R. Health management of horses under high challenge from trypanosomes: A case study from Serengeti, Tanzania. Vet. Parasitol. 2008, 154, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Fineile, P.; Murray, M.; Barry, J.D.; Morrison, W.I.; Williams, R.O.; Hirum, H.; Rovis, L. African animal trypanosomiasis. In World Animal Review; FAO: Rome, Italy, 1983; pp. 1–120. [Google Scholar]
- Joshi, P.P.; Shegokar, V.R.; Powar, R.M.; Herder, S.; Katti, R.; Salkar, H.R.; Dani, V.S.; Bhargava, A.; Jannin, J.E.A.N.; Truc, P. Human trypanosomiasis caused by Trypanosoma evansi in India: The first case report. Am. J. Trop. Med. Hyg. 2005, 73, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Desquesnes, M.; Holzmuller, P.; Lai, D.H.; Dargantes, A.; Lun, Z.R.; Jittaplapong, S. Trypanosoma evansi and surra: A review and perspectives on origin, history, distribution, taxonomy, morphology, hosts, and pathogenic effects. BioMed Res. Int. 2013, 2013, 194176. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.C.; Kumar, R.; Manuja, A.; Goyal, L.; Gupta, A.K. Early detection of Trypanosoma evansi infection and monitoring of antibody levels by ELISA following treatment. J. Parasit. Dis. 2014, 38, 124–127. [Google Scholar] [CrossRef] [PubMed]
- Loiseau, P.M.; Craciunescu, D.G.; Doadrio-Villarejo, J.C.; Certad-Fombona, G.; Gayral, P. Pharmacomodulations on new organometallic complexes of Ir, Pt, Rh, Pd, Os: In vitro and in vivo trypanocidal study against Trypanosoma brucei brucei. Trop. Med. Parasitol. Off. Organ Dtsch. Tropenmedizinische Ges. Dtsch. Ges. Fur Tech. Zusammenarbeit (GTZ) 1992, 43, 110–114. [Google Scholar]
- Rivas, F.; Del Mármol, C.; Scalese, G.; Pérez-Díaz, L.; Machado, I.; Blacque, O.; Medeiros, A.; Comini, M.; Gambino, D. New multifunctional Ru (II) organometallic compounds show activity against Trypanosoma brucei and Leishmania infantum. J. Inorg. Biochem. 2022, 237, 112016. [Google Scholar] [CrossRef] [PubMed]
- Manuja, A.; Chhabra, D.; Kumar, B. Chloroquine Chaos and COVID-19: Smart delivery perspectives through pH sensitive polymers/micelles and ZnO nanoparticles. Arab. J. Chem. 2023, 16, 104468. [Google Scholar] [CrossRef]
- Manuja, A.; Kumar, B.; Chhabra, D.; Brar, B.; Thachamvally, R.; Pal, Y.; Prasad, M. Synergistic Effect of Zinc-Chitosan Nanoparticles and Hydroxychloroquine to Inhibit Buffalo Coronavirus. Polymers 2023, 15, 2949. [Google Scholar] [CrossRef] [PubMed]
- Otigbuo, I.N.; Woo, P.T. The in vitro and in vivo effects of metronidazole and chloroquine on Trypanosoma brucei brucei. J. Parasitol. 1988, 74, 201–206. [Google Scholar] [CrossRef]
- Ogunbanwo, J.A.; Agbonlahor, D.E.; Adamu, A.; Dalyop, P.; Elesha, S.O.; Fagbenro-Beyioku, A.F. Effects of anti-protozoal drugs and histopathological studies on trypanosome species. FEMS Immunol. Med. Microbiol. 2001, 30, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Moyer, A.; Peng, B.; Wu, J.; Hannafon, B.N.; Ding, W.Q. Chloroquine is a zinc ionophore. PLoS ONE 2014, 9, e109180. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Tian, Z.; Yang, X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends 2020, 14, 72–73. [Google Scholar] [CrossRef]
- Diani, E.; Lagni, A.; Lotti, V.; Tonon, E.; Cecchetto, R.; Gibellini, D. Vector-Transmitted Flaviviruses: An Antiviral Molecules Overview. Microorganisms 2023, 11, 2427. [Google Scholar] [CrossRef] [PubMed]
- Collins, K.P.; Jackson, K.M.; Gustafson, D.L. Hydroxychloroquine: A physiologically-based pharmacokinetic model in the context of cancer-related autophagy modulation. J. Pharmacol. Exp. Ther. 2018, 365, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Manuja, A.; Kumar, B.; Riyesh, T.; Talluri, T.R.; Tripathi, B.N. Microwave assisted fast fabrication of zinc/iron oxides based polymeric nanocomposites and evaluation on equine fibroblasts. Int. J. Biol. Macromol. 2020, 165, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Lanham, S.M.; Godfrey, D.G. Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Exp. Parasitol. 1970, 28, 521–534. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Singh, J.; Singh, R.; Kumar, S.; Yadav, S.C. Comparative efficacy of different in vitro cultivation media for Trypanosoma evansi isolated from different mammalian hosts inhabiting different geographical areas of India. J. Parasit. Dis. 2015, 39, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Jamabo, M.; Bentley, S.J.; Macucule-Tinga, P.; Tembo, P.; Edkins, A.L.; Boshoff, A. In silico analysis of the HSP90 chaperone system from the African trypanosome, Trypanosoma brucei. Front. Mol. Biosci. 2022, 9, 947078. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wegele, H.; Müller, L.; Buchner, J. Hsp70 and Hsp90—A relay team for protein folding. In Reviews of Physiology, Biochemistry and Pharmacology. In Reviews of Physiology, Biochemistry and Pharmacology; Springer: Berlin/Heidelberg, Germany, 2004; Volume 151, pp. 1–44. [Google Scholar] [CrossRef]
- Pallavi, R.; Roy, N.; Nageshan, R.K.; Talukdar, P.; Pavithra, S.R.; Reddy, R.; Venketesh, S.; Kumar, R.; Gupta, A.K.; Singh, R.K.; et al. Heat shock protein 90 as a drug target against protozoan infections: Biochemical characterization of HSP90 from Plasmodium falciparum and Trypanosoma evansi and evaluation of its inhibitor as a candidate drug. J. Biol. Chem. 2010, 285, 37964–37975. [Google Scholar] [CrossRef]
- Wernimont, A.K.; Hutchinson, A.; Sullivan, H.; Weadge, J.; Li, Y.; Kozieradzki, I.; Cossar, D.; Bochkarev, A.; Arrowsmith, C.H.; Edwards, A.M.; et al. Crystal Structure of the N-Terminal Domain of an HSP90 from Trypanosoma brucei, Tb10.26.1080 in the Presence of an the Inhibitor BIIB021; PDB: Piscataway, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Krauth Siegel, R.L.; Bauer, H.; Schirmer, R.H. Dithiol proteins as guardians of the intracellular redox milieu in parasites: Old and new drug targets in trypanosomes and malaria-causing plasmodia. Angew. Chem. Int. Ed. 2005, 44, 690–715. [Google Scholar] [CrossRef]
- González-Montero, M.C.; Andrés-Rodríguez, J.; García-Fernández, N.; Pérez-Pertejo, Y.; Reguera, R.M.; Balaña-Fouce, R.; García-Estrada, C. Targeting Trypanothione Metabolism in Trypanosomatids. Molecules 2024, 29, 2214. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, T.; Flohé, L. The thiol-based redox networks of pathogens: Unexploited targets in the search for new drugs. Biofactors 2006, 27, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Patterson, S.; Alphey, M.S.; Jones, D.C.; Shanks, E.J.; Street, I.P.; Frearson, J.A.; Wyatt, P.G.; Gilbert, I.H.; Fairlamb, A.H. Dihydroquinazolines as a novel class of Trypanosoma brucei trypanothione reductase inhibitors: Discovery, synthesis, and characterization of their binding mode by protein crystallography. J. Med. Chem. 2011, 54, 6514–6530. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Morga, D.; Vanhollebeke, B.; Paturiaux-Hanocq, F.; Nolan, D.P.; Lins, L.; Homblé, F.; Vanhamme, L.; Tebabi, P.; Pays, A.; Poelvoorde, P.; et al. Apolipoprotein LI promotes trypanosome lysis by forming pores in lysosomal membranes. Science 2005, 309, 469–472. [Google Scholar] [CrossRef] [PubMed]
Sr. No. | Compound | Binding Energy (Kcal/mol) | Interacting Residues |
---|---|---|---|
1 | Hydroxychloroquine | −7.73 | PHE A:7, ASN A:36, MET A:83, ASP A:87, LEU A:88, VAL A:89, ASN A:90, ASN A:91, LEU A:92, GLY A:93, ALA A:96, VAL D:121, PHE A:123, TYR A:124, VAL A:135, TRP A:147, THR A:169, ILE A:171 |
2 | Zn-Ligated Hydroxychloroquine | −9.88 | LEU A:33, ASN A:36, SER A:37, ALA A:40, VAL A:76, ASP A:78, MET A:83, LEU A:88, LEU A:92, GLY A:93, PHE A:123, TYR A:124, VAL A:135, TRP A:147, THR A:169, ILE A:171 |
3 | Chitosan-Zn-Ligated Hydroxychloroquine | −11.01 | ASN A:36, SER A:37, ASP A:39, ALA A:40, LYS A:43, ASP A:78, ILE A:81, GLY A:82, MET A:83, ASP A:87, ASN A:91, LEU A:92, ILE A:95, GLY A:120, PHE A:123, TYR A:124, VAL A:135, SER A:137, ASN A:139, THR A:169, ILE A:171 |
Sr. No. | Compound | Binding Energy (Kcal/mol) | Interacting Residues |
---|---|---|---|
1 | Hydroxychloroquine | −5.96 | SER:14, LEU: 17, CYS:52, VAL:58, TRY:110, LEU:120, ILE:339 |
2 | Zn-Ligated Hydroxychloroquine | −9.00 | GLY:13, SER:14, LEU: 17, GLU:18, TRP:21, ASN:22, GLY:49, CYS:52, VAL:53, VAL:58, ILE:106, SER:109, TRY:110, MET:113, LEU:120, THR:335, ILE:339 |
3 | Chitosan-Zn-Ligated Hydroxychloroquine | −9.17 | GLY:13, SER:14, LEU: 17, GLU:18, TRP:21, GLY:49, GLY:50, CYS:52, VAL:53, TRY:110, MET:113, PHE:114, THR:335, ILE:339 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manuja, A.; Rani, R.; Devi, N.; Sihag, M.; Rani, S.; Prasad, M.; Kumar, R.; Bhattacharya, T.K.; Kumar, B. Chitosan-Zinc-Ligated Hydroxychloroquine: Molecular Docking, Synthesis, Characterization, and Trypanocidal Activity against Trypanosoma evansi. Polymers 2024, 16, 2777. https://doi.org/10.3390/polym16192777
Manuja A, Rani R, Devi N, Sihag M, Rani S, Prasad M, Kumar R, Bhattacharya TK, Kumar B. Chitosan-Zinc-Ligated Hydroxychloroquine: Molecular Docking, Synthesis, Characterization, and Trypanocidal Activity against Trypanosoma evansi. Polymers. 2024; 16(19):2777. https://doi.org/10.3390/polym16192777
Chicago/Turabian StyleManuja, Anju, Ruma Rani, Nisha Devi, Monika Sihag, Swati Rani, Minakshi Prasad, Rajender Kumar, Tarun Kumar Bhattacharya, and Balvinder Kumar. 2024. "Chitosan-Zinc-Ligated Hydroxychloroquine: Molecular Docking, Synthesis, Characterization, and Trypanocidal Activity against Trypanosoma evansi" Polymers 16, no. 19: 2777. https://doi.org/10.3390/polym16192777
APA StyleManuja, A., Rani, R., Devi, N., Sihag, M., Rani, S., Prasad, M., Kumar, R., Bhattacharya, T. K., & Kumar, B. (2024). Chitosan-Zinc-Ligated Hydroxychloroquine: Molecular Docking, Synthesis, Characterization, and Trypanocidal Activity against Trypanosoma evansi. Polymers, 16(19), 2777. https://doi.org/10.3390/polym16192777