Study on the Effect of Electron/Hole Injection on the Energy-Storage Properties of Polymer Dielectrics
Abstract
:1. Introduction
2. Experimental
2.1. Raw Materials
2.2. Preparation of Composite Films
2.3. Structural Characterization and Electrical Performance Testing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ran, Z.Y.; Wang, R.; Fu, J.; Yang, M.C.; Li, M.X.; Hu, J.; He, J.L.; Li, Q. Spiral-Structured Dielectric Polymers Exhibiting Ultra-High Energy Density and Charge-Discharge Efficiency at High Temperatures. Adv. Mater. 2023, 35, 2303849. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.H.; Li, Q.; Cui, J.; Li, Z.Y.; Yang, G.; Liu, Y.; Dong, L.J.; Xiong, C.X.; Wang, H.; Wang, Q. High-Energy-Density Dielectric Polymer Nanocomposites with Trilayered Architecture. Adv. Funct. Mater. 2017, 27, 1606292. [Google Scholar] [CrossRef]
- Chu, B.J.; Zhou, X.; Ren, K.L.; Neese, B.; Lin, M.R.; Wang, Q.; Bauer, F.; Zhang, Q.M. A Dielectric Polymer with High Electric Energy Density and Fast Discharge Speed. Science 2006, 313, 334–336. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.N.; Feng, Y.; Zhang, C.H.; Zhang, T.D.; Lei, Q.Q.; Chi, Q.Q. Double Gradient Composite Dielectric with High Energy Density and Efficiency. J. Mater. Chem. A 2022, 10, 15183–15195. [Google Scholar] [CrossRef]
- Yu, S.Q.; Liu, Y.; Ding, C.L.; Liu, X.; Liu, Y.; Wu, D.; Luo, H.; Chen, S. All-Organic Sandwich Structured Polymer Dielectrics with Polyimide and PVDF for High Temperature Capacitor Application. J. Energy Storage 2023, 62, 106868. [Google Scholar] [CrossRef]
- Guo, R.; Luo, H.; Yan, M.Y.; Zhou, X.F.; Zhou, K.C.; Zhang, D. Significantly Enhanced Breakdown Strength and Energy Density in Sandwich-Structured Nanocomposites with Low-Level BaTiO3 Nanowires. Nano Energy 2021, 79, 105412. [Google Scholar] [CrossRef]
- Jia, J.H.; Ding, S.; Bao, Z.W.; Dai, Z.Z.; Shen, S.C.; Yin, Y.W.; Li, X.G. Biodegradable Poly(L-Lactic Acid) Films with Excellent Cycle Stability and High Dielectric Energy Storage Performance. ACS Appl. Energy Mater. 2022, 5, 15463–15470. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, T.D.; Feng, Y.; Zhang, Y.Q.; Zhang, C.H.; Zhang, Y.; Wang, X.B.; Chi, Q.G.; Chen, Q.G.; Lei, Q.Q. Sandwich-Structured Polymers with Electrospun Boron Nitrides Layers as High-Temperature Energy Storage Dielectrics. Chem. Eng. J. 2020, 389, 424443. [Google Scholar] [CrossRef]
- Liu, G.; Feng, Y.; Zhang, T.D.; Zhang, C.H.; Chi, Q.G.; Zhang, Y.Q.; Zhang, Y.; Lei, Q.Q. High-Temperature All-Organic Energy Storage Dielectric with the Performance of Self-Adjusting Electric Field Distribution. J. Mater. Chem. A 2021, 9, 16384–16394. [Google Scholar] [CrossRef]
- Pei, J.Y.; Yin, L.J.; Zhong, S.L.; Dang, Z.M. Suppressing the Loss of Polymer-Based Dielectrics for High Power Energy Storage. Adv. Mater. 2023, 35, 2203623. [Google Scholar] [CrossRef]
- Liang, X.W.; Yu, X.C.; Lv, L.L.; Zhao, T.; Luo, S.B.; Yu, S.H.; Sun, R.; Wong, C.P.; Zhu, P.L. BaTiO3 Internally Decorated Hollow Porous Carbon Hybrids as Fillers Enhancing Dielectric and Energy Storage Performance of Sandwich-Structured Polymer Composite. Nano Energy 2020, 68, 104351. [Google Scholar] [CrossRef]
- Khanchaitit, P.; Han, K.; Gadinski, M.R.; Li, Q.; Wang, Q. Ferroelectric Polymer Networks with High Energy Density and Improved Discharged Efficiency for Dielectric Energy Storage. Nat. Commun. 2013, 4, 2845. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Lei, Q.Q.; Feng, Y.; Zhang, C.H.; Zhang, T.D.; Chen, Q.G.; Chi, Q.G. High-Temperature Energy Storage Dielectric with Inhibition of Carrier Injection/Migration Based on Band Structure Regulation. InfoMat 2023, 5, e12368. [Google Scholar] [CrossRef]
- Cheng, S.; Zhou, Y.; Li, Y.S.; Yuan, C.; Yang, M.C.; Fu, J.; Hu, J.; He, J.L.; Li, Q. Polymer Dielectrics Sandwiched by Medium-Dielectric-Cnstant Nanoscale Deposition Layers for High-Temperature Capacitive Energy Storage. Energy Storage Mater. 2021, 42, 445–453. [Google Scholar] [CrossRef]
- Li, H.; Yang, T.N.; Zhou, Y.; Ai, D.; Yao, B.; Liu, Y.; Li, L.; Chen, L.Q.; Wang, Q. Enabling High-Energy-Density High-Efficiency Ferroelectric Polymer Nanocomposites with Rationally Designed Nanofillers. Adv. Funct. Mater. 2020, 31, 2006739. [Google Scholar] [CrossRef]
- Wang, Y.F.; Li, Z.Z.; Wu, C.; Cao, Y. High-Temperature Dielectric Polymer Nanocomposites with Interposed Montmorillonite Nanosheets. Chem. Eng. J. 2020, 401, 126093. [Google Scholar] [CrossRef]
- Fan, M.Z.; Hu, P.H.; Dan, Z.K.; Jiang, J.Y.; Sun, B.Z.; Shen, Y. Significantly Increased Energy Density and Discharge Efficiency at High Temperature in Polyetherimide Nanocomposite by A Small Amount of Al2O3 Nanoparticles. J. Mater. Chem. A 2020, 8, 24536–24542. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.Y.; Xie, J.Y.; Guo, C.J.; Hu, W.B. Control Over the Complex Phase Evolutions for Ultrahigh Dielectric Energy Storage in Pure Poly(vinylidene fluoride) Films. J. Energy Storage 2022, 55, 105618. [Google Scholar] [CrossRef]
- Motaung, T.E.; Saladino, M.L.; Luyt, A.S.; Martino, D.C. Influence of the Modification, Induced by Zirconia Nanoparticles, on the Structure and Properties of Polycarbonate. Eur. Polym. J. 2013, 49, 2022–2030. [Google Scholar] [CrossRef]
- Li, W.Y.; Song, Z.Q.; Zhong, J.M.; Qian, J.; Tan, Z.Y.; Wu, X.Y.; Chu, H.Y.; Nie, W.; Ran, X.H. Multilayer-Structured Transparent MXene/PVDF Film with Excellent Dielectric and Energy Storage Performance. J. Mater. Chem. C 2019, 7, 10371–10378. [Google Scholar] [CrossRef]
- Qin, H.M.; Liu, M.; Li, Z.W.; Fu, Y.H.; Song, J.H.; Xie, J.; Xiong, C.X.; Wang, S. Cycloolefin Copolymer Dielectrics for High Temperature Energy Storage. J. Energy Storage 2022, 55, 105756. [Google Scholar] [CrossRef]
- Shi, Z.C.; Wang, J.; Mao, F.; Yang, C.Q.; Zhang, C.; Fan, R.H. Significantly Improved Dielectric Performances of Sandwich Structured Polymer Composites Induced by Alternating Positive-k and Negative-k Layers. J. Mater. Chem. A 2017, 5, 14575–14582. [Google Scholar] [CrossRef]
- Jiang, J.Y.; Shen, Z.H.; Qian, J.F.; Dan, Z.K.; Guo, M.F.; He, Y.; Lin, Y.H.; Nan, C.W.; Chen, L.Q.; Shen, Y. Synergy of Micro-/Mesoscopic Interfaces in Multilayered Polymer Nanocomposites Induces Ultrahigh Energy Density for Capacitive Energy Storage. Nano Energy 2019, 62, 220–229. [Google Scholar] [CrossRef]
- Yang, M.H.; Li, Q.M.; Zhang, X.M.; Bilotti, E.; Zhang, C.; Xu, C.; Gan, S.H.; Dang, Z.M. Surface Engineering of 2D Dielectric Polymer Films for Scalable Production of High-Energy-Density Films. Prog. Mater. Sci. 2022, 128, 100968. [Google Scholar] [CrossRef]
- Feng, M.J.; Feng, Y.; Zhang, C.H.; Zhang, T.D.; Tong, X.; Gao, Q.; Chen, Q.G.; Chi, Q.G. Enhanced High-Temperature Energy Storage Performance of All-Organic Composite Dielectric via Constructing Fiber-Reinforced Structure. Energy Environ. Mater. 2023, 7, e12571. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, C.H.; Zhang, T.D.; Feng, Y.; Zhang, Y.Q.; Chi, Q.G.; Wang, X.; Lei, Q.Q. Improved Energy Storage Performances of Solution-Processable Ferroelectric Polymer by Modulating of Microscopic and Mesoscopic Structure. Compos. Part B-Eng. 2020, 199, 108312. [Google Scholar] [CrossRef]
- Luo, H.; Yan, C.F.; Liu, X.; Luo, H.; Chen, S. Constructing Novel High-Performance Dipolar Glass Polymer Dielectrics by Polar Rigid/Flexible Side Chains. ACS Appl. Mater. Interfaces 2023, 15, 24470–24482. [Google Scholar] [CrossRef]
- Zhang, M.R.; Zhu, B.F.; Zhang, X.; Liu, Z.X.; Wei, X.Y.; Zhang, Z.C. Depressing Relaxation and Conduction Loss of Polar Polymer Materials by Inserting Bulky Charge Traps for Superior Energy Storage Performance in High-Pulse Energy Storage Capacitor Applications. Mater. Horiz. 2023, 10, 2455–2463. [Google Scholar] [CrossRef]
- Duan, Y.N.; Wongwirat, T.; Ju, T.X.; Zhang, S.H.; Wei, J.J.; Zhu, L. High-Temperature Resistant Polyetherimides Containing a Twisted Spirane Structure for Capacitive Energy Storage. J. Mater. Chem. A 2023, 11, 20021. [Google Scholar] [CrossRef]
- Bera, S.; Singh, M.; Thantirige, R.; Tiwary, S.K.; Shook, B.T.; Nieves, E.; Raghavan, D.; Karim, A.; Pradhan, N.R. 2D-Nanofiller-Based Polymer Nanocomposites for Capacitive Energy Storage Applications. Small Sci. 2023, 3, 2300016. [Google Scholar] [CrossRef]
- Yu, S.Q.; Zhou, J.L.; Xu, A.; Lao, J.J.; Luo, H.; Chen, S. The Scalable and High Performance Polyimide Dielectrics Containing Alicyclic Structures for High-Temperature Capacitive energy Storage. Chem. Eng. J. 2023, 469, 143803. [Google Scholar] [CrossRef]
- Li, J.L.; Liu, X.X.; Huang, B.S.; Chen, D.Y.; Chen, Z.R.; Li, Y.P.; Feng, Y.; Yin, J.H.; Yi, H.Z.; Li, T.Q. Thermally Activated Dynamic Bonding Network for Enhancing High-Temperature Energy Storage Performance of PEI-Based Dielectrics. Mater. Horiz. 2023, 10, 3651–3659. [Google Scholar] [CrossRef]
- Feng, Q.K.; Zhang, Y.X.; Liu, D.F.; Song, Y.H.; Huang, L.; Dang, Z.M. Dielectric and Energy Storage Properties of All-Organic Sandwich Structured Films Used for High-Temperature Film Capacitors. Mater. Today Energy 2022, 29, 101132. [Google Scholar] [CrossRef]
- Wen, F.; Zhang, L.; Wang, P.; Li, L.L.; Chen, J.G.; Chen, C.; Wu, W.; Wang, G.F.; Zhang, S.J. High-Temperature Dielectric Polymer Poly(acrylonitrile butadiene styrene) with Enhanced Energy Density and Efficiency by the Cyano Group. J. Mater. Chem. A 2020, 8, 15122–15129. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Chen, Y.; Cui, Y.; Shen, L.; Wu, T.; Chen, C.; Luo, Y.; Yan, S. Study on the Effect of Electron/Hole Injection on the Energy-Storage Properties of Polymer Dielectrics. Polymers 2024, 16, 2750. https://doi.org/10.3390/polym16192750
Liu G, Chen Y, Cui Y, Shen L, Wu T, Chen C, Luo Y, Yan S. Study on the Effect of Electron/Hole Injection on the Energy-Storage Properties of Polymer Dielectrics. Polymers. 2024; 16(19):2750. https://doi.org/10.3390/polym16192750
Chicago/Turabian StyleLiu, Guang, Yuhao Chen, Yang Cui, Lifang Shen, Taiquan Wu, Chen Chen, Yunxia Luo, and Shubin Yan. 2024. "Study on the Effect of Electron/Hole Injection on the Energy-Storage Properties of Polymer Dielectrics" Polymers 16, no. 19: 2750. https://doi.org/10.3390/polym16192750
APA StyleLiu, G., Chen, Y., Cui, Y., Shen, L., Wu, T., Chen, C., Luo, Y., & Yan, S. (2024). Study on the Effect of Electron/Hole Injection on the Energy-Storage Properties of Polymer Dielectrics. Polymers, 16(19), 2750. https://doi.org/10.3390/polym16192750