Influence of Twin Screw Extrusion Conditions on MWCNT Length and Dispersion and Resulting Electrical and Mechanical Properties of Polycarbonate Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Processing
2.2. Characterization Techniques
3. Results
3.1. Influence of Throughput and Rotation Speed
3.1.1. CNT Dispersion and Length
3.1.2. Electrical Resistivity
3.1.3. Mechanical Properties
3.2. Variation in Feeding Position
3.3. Influence of Screw Configuration
3.4. Relation between SME, Dispersion and Nanotube Length
3.5. CNT Shortening at Different Loadings
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krause, B.; Mende, M.; Petzold, G.; Boldt, R.; Pötschke, P. Characterization of dispersability of industrial nanotube materials and their length distribution before and after melt processing. In Carbon Nanotube-Polymer Composites; Tasis, D., Ed.; Royal Society of Chemistry: Cambridge, UK, 2013; pp. 212–233. [Google Scholar] [CrossRef]
- Pötschke, P.; Dudkin, S.M.; Alig, I. Dielectric spectroscopy on melt processed polycarbonate-multiwalled carbon nanotube composites. Polymer 2003, 44, 5023–5030. [Google Scholar] [CrossRef]
- Lin, B.; Sundararaj, U.; Pötschke, P. Melt mixing of polycarbonate with multi-walled carbon nanotubes in miniature mixers. Macromol. Mater. Eng. 2006, 291, 227–238. [Google Scholar] [CrossRef]
- Krause, B.; Pötschke, P.; Häußler, L. Influence of small scale melt mixing conditions on electrical resistivity of carbon nanotube-polyamide composites. Compos. Sci. Technol. 2009, 69, 1505–1515. [Google Scholar] [CrossRef]
- McClory, C.; Pötschke, P.; McNally, T. Influence of Screw Speed on Electrical and Rheological Percolation of Melt-Mixed High-Impact Polystyrene/MWCNT Nanocomposites. Macromol. Mater. Eng. 2011, 296, 59–69. [Google Scholar] [CrossRef]
- Kasaliwal, G.; Göldel, A.; Pötschke, P. Influence of processing conditions in small-scale melt mixing and compression molding on the resistivity and morphology of polycarbonate-MWNT composites. J. Appl. Polym. Sci. 2009, 112, 3494–3509. [Google Scholar] [CrossRef]
- Kasaliwal, G.R.; Pegel, S.; Göldel, A.; Pötschke, P.; Heinrich, G. Analysis of agglomerate dispersion mechanisms of multiwalled carbon nanotubes during melt mixing in polycarbonate. Polymer 2010, 51, 2708–2720. [Google Scholar] [CrossRef]
- Kasaliwal, G.R.; Villmow, T.; Pegel, S.; Pötschke, P. Influence of Material and Processing Parameters on Carbon Nanotube Dispersion in Polymer Melts. In Polymer-Carbon Nanotube Composites: Preparation, Properties and Applications; McNally, T., Pötschke, P., Eds.; Woodhead Publishing: Philadelphia, PA, USA, 2011; pp. 92–132. [Google Scholar]
- Kasaliwal, G.R.; Göldel, A.; Pötschke, P.; Heinrich, G. Influences of polymer matrix melt viscosity and molecular weight on MWCNT agglomerate dispersion. Polymer 2011, 52, 1027–1036. [Google Scholar] [CrossRef]
- Socher, R.; Krause, B.; Müller, M.T.; Boldt, R.; Pötschke, P. The influence of matrix viscosity on MWCNT dispersion and electrical properties in different thermoplastic nanocomposites. Polymer 2012, 53, 495–504. [Google Scholar] [CrossRef]
- Krause, B.; Boldt, R.; Pötschke, P. A method for determination of length distributions of multiwalled carbon nanotubes before and after melt processing. Carbon 2011, 49, 1243–1247. [Google Scholar] [CrossRef]
- Pötschke, P.; Villmow, T.; Krause, B. Melt mixed PCL/MWCNT composites prepared at different rotation speeds: Characterization of rheological, thermal, and electrical properties, molecular weight, MWCNT macrodispersion, and MWCNT length distribution. Polymer 2013, 54, 3071–3078. [Google Scholar] [CrossRef]
- Mayoral, B.; Lopes, J.; McNally, T. Influence of Processing Parameters During Small-Scale Batch Melt Mixing on the Dispersion of MWCNTs in a Poly(propylene) Matrix. Macromol. Mater. Eng. 2014, 299, 609–621. [Google Scholar] [CrossRef]
- Sathyanarayana, S.; Hübner, C. Thermoplastic Nanocomposites with Carbon Nanotubes. In Structural Nanocomposites; Njuguna, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 19–60. [Google Scholar] [CrossRef]
- Villmow, T.; Pötschke, P.; Pegel, S.; Häussler, L.; Kretzschmar, B. Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix. Polymer 2008, 49, 3500–3509. [Google Scholar] [CrossRef]
- Villmow, T.; Kretzschmar, B.; Pötschke, P. Influence of screw configuration, residence time, and specific mechanical energy in twin-screw extrusion of polycaprolactone/multi-walled carbon nanotube composites. Compos. Sci. Technol. 2010, 70, 2045–2055. [Google Scholar] [CrossRef]
- Müller, M.T.; Krause, B.; Kretzschmar, B.; Pötschke, P. Influence of feeding conditions in twin-screw extrusion of PP/MWCNT composites on electrical and mechanical properties. Compos. Sci. Technol. 2011, 71, 1535–1542. [Google Scholar] [CrossRef]
- Krause, B.; Mende, M.; Pötschke, P.; Petzold, G. Dispersability and particle size distribution of CNTs in an aqueous surfactant dispersion as a function of ultrasonic treatment time. Carbon 2010, 48, 2746–2754. [Google Scholar] [CrossRef]
- Benedito, A.; Buezas, I.; Giménez, E.; Galindo, B. Dispersion and characterization of Thermoplastic Polyurethane/Multiwalled Carbon Nanotubes in co-rotative twin screw extruder. AIP Conf. Proc. 2010, 1255, 227–230. [Google Scholar] [CrossRef]
- Benedito, A.; Buezas, I.; Giménez, E.; Galindo, B.; Ortega, A. Dispersion and characterization of thermoplastic polyurethane/multiwalled carbon nanotubes by melt mixing. J. Appl. Polym. Sci. 2011, 122, 3744–3750. [Google Scholar] [CrossRef]
- Mack, C.; Sathyanarayana, S.; Weiss, P.; Mikonsaari, I.; Hübner, C.; Henning, F.; Elsner, P. Twin-screw extrusion of multi walled carbon nanotubes reinforced polycarbonate composites: Investigation of electrical and mechanical properties. IOP Conf. Ser. Mater. Sci. Eng. 2012, 40, 012020. [Google Scholar] [CrossRef]
- Sathyanarayana, S.; Olowojoba, G.; Weiss, P.; Caglar, B.; Pataki, B.; Mikonsaari, I.; Hübner, C.; Henning, F. Compounding of MWCNTs with PS in a Twin-Screw Extruder with Varying Process Parameters: Morphology, Interfacial Behavior, Thermal Stability, Rheology, and Volume Resistivity. Macromol. Mater. Eng. 2012, 298, 89–105. [Google Scholar] [CrossRef]
- Sathyanarayana, S.; Hübner, C.; Diemert, J.; Pötschke, P.; Henning, F. Influence of peroxide addition on the morphology and properties of polypropylene-multiwalled carbon nanotube nanocomposites. Compos. Sci. Technol. 2013, 84, 78–85. [Google Scholar] [CrossRef]
- Ezat, G.S.; Kelly, A.L.; Youseffi, M.; Coates, P.D. Effect of extrusion cycles on the dispersion and properties of polypropylene/multi-walled carbon nanotube composite. AIP Conf. Proc. 2023, 2607, 070004. [Google Scholar] [CrossRef]
- Krause, B.; Villmow, T.; Boldt, R.; Mende, M.; Petzold, G.; Pötschke, P. Influence of dry grinding in a ball mill on the length of multiwalled carbon nanotubes and their dispersion and percolation behaviour in melt mixed polycarbonate composites. Compos. Sci. Technol. 2011, 71, 1145–1153. [Google Scholar] [CrossRef]
- Liebscher, M.; Domurath, J.; Krause, B.; Saphiannikova, M.; Heinrich, G.; Pötschke, P. Electrical and melt rheological characterization of PC and co-continuous PC/SAN blends filled with CNTs: Relationship between melt-mixing parameters, filler dispersion, and filler aspect ratio. J. Polym. Sci. Part B Polym. Phys. 2018, 56, 79–88. [Google Scholar] [CrossRef]
- Guo, J.; Briggs, N.; Crossley, S.; Grady, B.P. A new finding for carbon nanotubes in polymer blends. J. Thermoplast. Compos. Mater. 2018, 31, 110–118. [Google Scholar] [CrossRef]
- Datasheet Bayer MaterialScience AG, Polycarbonate Makrolon 2600, Edition 28 September 2011.
- Castillo, F.Y.; Socher, R.; Krause, B.; Headrick, R.; Grady, B.P.; Prada-Silvy, R.; Pötschke, P. Electrical, mechanical, and glass transition behavior of polycarbonate-based nanocomposites with different multi-walled carbon nanotubes. Polymer 2011, 52, 3835–3845. [Google Scholar] [CrossRef]
- Bayer MaterialScience AG, Data Sheet Baytubes®C150P, Edition 24 February 2009.
- Pegel, S. Komposite aus Polycarbonat und Kohlenstoff-Nanoröhren: Morphologie und elektrische Leitfähigkeit bei thermoplastischer Verarbeitung; Dr. Hut: München, Germany, 2011. [Google Scholar]
- Nanocyl, S.A. Technical Data Sheet: NC7000™, V08, 12 July 2016. Available online: https://www.nanocyl.com/wp-content/uploads/2016/07/DM-TI-02-TDS-NC7000-V08.pdf (accessed on 28 January 2021).
- Krause, B.; Boldt, R.; Häußler, L.; Pötschke, P. Ultralow percolation threshold in polyamide 6.6/MWCNT composites. Compos. Sci. Technol. 2015, 114, 119–125. [Google Scholar] [CrossRef]
- Socher, R.; Krause, B.; Boldt, R.; Hermasch, S.; Wursche, R.; Pötschke, P. Melt mixed nanocomposites of PA12 with MWNT: Influence of MWNT and matrix properties on macrodispersion and electrical properties. Compos. Sci. Technol. 2011, 71, 306–314. [Google Scholar] [CrossRef]
- Tessonnier, J.-P.; Rosenthal, D.; Hansen, T.W.; Hess, C.; Schuster, M.E.; Blume, R.; Girgsdies, F.; Pfänder, N.; Timpe, O.; Su, D.S.; et al. Analysis of the structure and chemical properties of some commercial carbon nanostructures. Carbon 2009, 47, 1779–1798. [Google Scholar] [CrossRef]
- Sabic, Europe Technical Data Sheet, Polycarbonate LexanTM Resin 141R, Revision 11 March 2024. Available online: https://www.sabic.com/en/products/documents/lexan-resin_141r_europe_technical_data_sheet/en (accessed on 10 September 2024).
- Krause, B.; Heber, M. Transmission electron microscopy (TEM) images of multiwalled carbon nanotubes (MWCNT) detached from polycarbonate (PC) composites [Data set]. Zenodo. 2024. Available online: https://doi.org/10.5281/zenodo.11400466 (accessed on 31 May 2024).
- ASTM D4496; Standard Test Method for D-C Resistance or Conductance of Moderately Conductive Materials. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM D257; Standard Test Methods for DC Resistance or Conductance of Insulating Materials. ASTM International: West Conshohocken, PA, USA, 2021.
- EN ISO 527-2; Plastics—Determination of Tensile Properties—Part 2: Test Conditions for Molding and Extrusion Plastics. ISO: Geneva, Switzerland, 2012.
- ISO 179; Plastics—Determination of Charpy Impact Properties—Part 1: Non-Instrumented Impact Test. International Organization for Standardization—ISO Central Secretariat: Vernier, Switzerland, 2010.
- Talò, M.; Krause, B.; Pionteck, J.; Lanzara, G.; Lacarbonara, W. An updated micromechanical model based on morphological characterization of carbon nanotube nanocomposites. Compos. Part B Eng. 2017, 115, 70–78. [Google Scholar] [CrossRef]
- Pegel, S.; Villmow, T.; Kasaliwal, G.R.; Pötschke, P. Polymer-Carbon Nanotubes Composites: Melt Processing, Properties and Applications. In Synthetic Polymer-Polymer Composites; Bhattacharyya, D., Fakirov, S., Eds.; Carl Hanser Verlag: München, Germany, 2012; pp. 145–192. [Google Scholar]
- Rhue, M.A.; Zaqout, M.; Bavlnka, C.; Crossley, S.; Grady, B.P. Length reduction kinetics of multiwalled carbon nanotubes correlated to planetary ball mill impact energy. Fuller. Nanotub. Carbon Nanostructures 2024, 32, 8–21. [Google Scholar] [CrossRef]
- Krause, B.; Pötschke, P. Raw data collection for the publication P. Pötschke, T. Villmow, B. Krause and B. Kretzschmar, Influence of Twin-screw Extrusion Conditions on MWCNT Length and Dispersion and Resulting Electrical and Mechanical Properties of Polycarbonate Composites. Zenodo. 2024. Available online: https://doi.org/10.5281/zenodo.13309199 (accessed on 10 September 2024).
Screw No. | L/D Ratio | Screw Design |
---|---|---|
SC-1 | 36 | Dispersive: 4 kneading blocks and 2 back-conveying elements |
SC-2 | 36 | Dispersive: 4 kneading blocks and 6 back-conveying elements |
SC-3 | 36 | Distributive: 3 mixing elements and 2 back-conveying elements |
SC-4 | 36 | Distributive: 3 mixing elements and 8 back-conveying elements |
SC-5 | 48 | Distributive: 5 mixing elements and 8 back-conveying elements |
Feeding | AA [%] | ρ [Ohm·cm] | CNT Length x50 [nm] | Et [GPa] | σmax [MPa] | εBreak [%] | acu [kJ/m2] | Notched acu [kJ/m2] |
---|---|---|---|---|---|---|---|---|
Baytubes® C150 P | ||||||||
hopper | 0.8 ± 0.3 | 42.4 ± 1.6 | 405 | 2.7 | 64.5 ± 0.2 | 26.1 ± 6.9 | 170.7 ± 90.7 | 6.9 ± 1.4 |
side feeder | 1.3 ± 0.8 | 11.6 ± 1.1 | 440 | 2.7 | 64.9 ± 0.2 | 73.6 ± 14.3 | 329.2 ± 12.1 | 8.7 ± 1.9 |
NanocylTM NC7000 | ||||||||
hopper | 1.1 ± 0.3 | 17.6 ± 1.2 | 337 | 2.7 | 65.7 ± 1.4 | 11.2 ± 6.1 | 123.0 ± 84.9 | 7.3 ± 1.9 |
side feeder | 0.2 ± 0.2 | 24.2 ± 1.4 | 494 | 2.7 | 66.7 ± 0.1 | 30.6 ± 11.6 | 240.2 ± 112.1 | 10.1 ± 2.9 |
Screw | AA [%] | ρ [Ohm·cm] # | CNT Length x50 [nm] | Et [GPa] | σmax [MPa] | εBreak [%] | acu [kJ/m2] | Notched acu [kJ/m2] |
---|---|---|---|---|---|---|---|---|
SC-1 | 3.4 ± 0.6 | 62.3 ± 1.2 | 2.6 | 51.4 ± 1.1 | 20.1 ± 12.6 | 312.3 | 9.1 ± 2.1 | |
SC-2 | 3.1 ± 0.7 | 105.5 ± 1.6 | 604 | 2.6 | 50.9 ± 0.7 | 25.4 ± 9.6 | 293.9 ± 53.3 | 10.6 ± 3.3 |
SC-3 | 3.9 ± 0.5 | 259.8 ± 1.6 | 2.6 | 50.8 ± 2.2 | 38.8 ± 16.8 | 293.7 ± 48.1 | 8.1 ± 2.5 | |
SC-4 | 3.8 ± 0.9 | 82.5 ± 1.5 | 450 | 2.6 | 50.9 ± 0.7 | 23.5 ± 7.6 | 289.2 ± 104.9 | 9.5 ± 3.1 |
SC-5 | 4.2 ± 0.5 | 297.2 ± 3.4 | 525 | 2.6 | 50.8 ± 0.8 | 31.6 ± 13.1 | 318.2 ± 2.4 | 10.1 ± 2.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pötschke, P.; Villmow, T.; Krause, B.; Kretzschmar, B. Influence of Twin Screw Extrusion Conditions on MWCNT Length and Dispersion and Resulting Electrical and Mechanical Properties of Polycarbonate Composites. Polymers 2024, 16, 2694. https://doi.org/10.3390/polym16192694
Pötschke P, Villmow T, Krause B, Kretzschmar B. Influence of Twin Screw Extrusion Conditions on MWCNT Length and Dispersion and Resulting Electrical and Mechanical Properties of Polycarbonate Composites. Polymers. 2024; 16(19):2694. https://doi.org/10.3390/polym16192694
Chicago/Turabian StylePötschke, Petra, Tobias Villmow, Beate Krause, and Bernd Kretzschmar. 2024. "Influence of Twin Screw Extrusion Conditions on MWCNT Length and Dispersion and Resulting Electrical and Mechanical Properties of Polycarbonate Composites" Polymers 16, no. 19: 2694. https://doi.org/10.3390/polym16192694
APA StylePötschke, P., Villmow, T., Krause, B., & Kretzschmar, B. (2024). Influence of Twin Screw Extrusion Conditions on MWCNT Length and Dispersion and Resulting Electrical and Mechanical Properties of Polycarbonate Composites. Polymers, 16(19), 2694. https://doi.org/10.3390/polym16192694