The Changes in the Inner-Structure and Mechanical Strength of the Composite Cement Materials and Silica-Carbon Nanotube-Nylon 66 Electrospun Nanofibers
Abstract
:1. Introduction
2. Experiments
2.1. Polymer Solution
2.2. Electrospinning Process, Nanofiber Blended Cement Composite
2.3. Testing Methods
3. Results and Discussion
3.1. Mechanical Strength
3.2. Morphology and Microstructure of Nanofibers
3.3. Inner-Structure of Hardened Cement Pastes
3.4. EDS Analysis
3.5. XRD Analysis
3.6. Thermal Analysis
4. Conclusions
- -
- There are increases of 38% and 69% in compressive strength and toughness, respectively, and an increase of 62% in tensile strength when incorporating the proposed nanofibers into the cementitious materials.
- -
- The bead-on-string morphology of the hybrid nanofiber with the attached silica particles and the existence of CNTs inside the nanofiber are observed.
- -
- The bridging and filling effect has been found by electron microscope analysis. The increase of CSH, thanks to the extra pozzolanic reaction, and the compacted structure of the modified cement matrix have been estimated through the EDS, XRD, and TGA analyses, explaining the mechanism of improvement in the strength of the composite cement-nanofiber materials.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Neville, A.M. Properties of Concrete, 5th ed.; Pearson, Prentice Hall: London, UK, 2005. [Google Scholar]
- Costa, B.L.d.S.; Souza, G.G.d.; Freitas, J.C.d.O.; Araujo, R.G.d.S.; Santos, P.H.S. Silica content influence on cement compressive strength in wells subjected to steam injection. J. Pet. Sci. Eng. 2017, 158, 626–633. [Google Scholar] [CrossRef]
- Lavergne, F.; Belhadi, R.; Carriat, J.; Ben Fraj, A. Effect of nano-silica particles on the hydration, the rheology and the strength development of a blended cement paste. Cem. Concr. Compos. 2019, 95, 42–55. [Google Scholar] [CrossRef]
- Albattat, R.A.I.; Jamshidzadeh, Z.; Alasadi, A.K.R. Assessment of compressive strength and durability of silica fume-based concrete in acidic environment. Innov. Infrastruct. Solut. 2020, 5, 20. [Google Scholar] [CrossRef]
- Garg, R.; Garg, R.; Chaudhary, B.; Mohd. Arif, S. Strength and microstructural analysis of nano-silica based cement composites in presence of silica fume. Mater. Today Proc. 2021, 46, 6753–6756. [Google Scholar] [CrossRef]
- Ma, X.; He, T.; Xu, Y.; Yang, R.; Sun, Y. Hydration reaction and compressive strength of small amount of silica fume on cement-fly ash matrix. Case Stud. Constr. Mater. 2022, 16, e00989. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Xu, S.; Liu, J.; Li, Q. Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste. Constr. Build. Mater. 2015, 76, 16–23. [Google Scholar] [CrossRef]
- Zhang, J.; Ke, Y.; Zhang, J.; Han, Q.; Dong, B. Cement paste with well-dispersed multi-walled carbon nanotubes: Mechanism and performance. Constr. Build. Mater. 2020, 262, 120746. [Google Scholar] [CrossRef]
- Şimşek, B. Multi-walled carbon nanotubes with different features reinforced cement pastes: A compressive and systematic approach using principal component analysis. J. Build. Eng. 2020, 32, 101792. [Google Scholar] [CrossRef]
- Du, M.; Jing, H.; Gao, Y.; Su, H.; Fang, H. Carbon nanomaterials enhanced cement-based composites: Advances and challenges. Nanotechnol. Rev. 2020, 9, 115–135. [Google Scholar] [CrossRef]
- Liew, K.M.; Kai, M.F.; Zhang, L.W. Carbon nanotube reinforced cementitious composites: An overview. Compos. Part A Appl. Sci. Manuf. 2016, 91, 301–323. [Google Scholar] [CrossRef]
- Kong, D.; Su, Y.; Du, X.; Yang, Y.; Wei, S.; Shah, S.P. Influence of nano-silica agglomeration on fresh properties of cement pastes. Constr. Build. Mater. 2013, 43, 557–562. [Google Scholar] [CrossRef]
- Kong, D.; Du, X.; Wei, S.; Zhang, H.; Yang, Y.; Shah, S.P. Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials. Constr. Build. Mater. 2012, 37, 707–715. [Google Scholar] [CrossRef]
- Reales, O.A.M.; Ocampo, C.; Jaramillo, Y.P.A.; Botero, J.C.O.; Quintero, J.H.; Silva, E.C.C.M.; Filho, R.D.T. Reinforcing Effect of Carbon Nanotubes/Surfactant Dispersions in Portland Cement Pastes. Adv. Civ. Eng. 2018, 2018, 2057940. [Google Scholar] [CrossRef]
- Lei, D.-Y.; Guo, L.-P.; Sun, W.; Liu, J.; Shu, X.; Guo, X.-L. A new dispersing method on silica fume and its influence on the performance of cement-based materials. Constr. Build. Mater. 2016, 115, 716–726. [Google Scholar] [CrossRef]
- Li, G.Y.; Wang, P.M.; Zhao, X. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 2005, 43, 1239–1245. [Google Scholar] [CrossRef]
- Cwirzen, A.; Habermehl-Cwirzen, K.; Penttala, V. Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Adv. Cem. Res. 2008, 20, 65–73. [Google Scholar] [CrossRef]
- Cai, Y.; Hou, P.; Cheng, X.; Du, P.; Ye, Z. The effects of nanoSiO2 on the properties of fresh and hardened cement-based materials through its dispersion with silica fume. Constr. Build. Mater. 2017, 148, 770–780. [Google Scholar] [CrossRef]
- Zou, B.; Chen, S.J.; Korayem, A.H.; Collins, F.; Wang, C.M.; Duan, W.H. Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes. Carbon 2015, 85, 212–220. [Google Scholar] [CrossRef]
- Konsta-Gdoutos, M.S.; Metaxa, Z.S.; Shah, S.P. Highly dispersed carbon nanotube reinforced cement based materials. Cem. Concr. Res. 2010, 40, 1052–1059. [Google Scholar] [CrossRef]
- Nguyen, T.N.M.; Yoo, D.; Kim, J.J. Cementitious Material Reinforced by Carbon Nanotube-Nylon 66 Hybrid Nanofibers: Mechanical strength and microstructure analysis. Mater. Today Commun. 2020, 23, 100845. [Google Scholar] [CrossRef]
- Nguyen, T.N.M.; Moon, J.; Kim, J.J. Microstructure and mechanical properties of hardened cement paste including Nylon 66 nanofibers. Constr. Build. Mater. 2020, 232, 117–132. [Google Scholar] [CrossRef]
- Nguyen, T.N.M.; Lee, D.H.; Kim, J.J. Effect of Electrospun Nanofiber Additive on Selected Mechanical Properties of Hardened Cement Paste. Appl. Sci. 2020, 10, 7504. [Google Scholar] [CrossRef]
- Kim, J.J.; Nguyen, T.N.M.; Nguyen, X.T.; Ta, D.H. Reinforcing Cementitious Material Using Singlewalled Carbon Nanotube—Nylon 66 Nanofibers. Transp. Commun. Sci. J. 2020, 71, 46–55. [Google Scholar] [CrossRef]
- ASTM C150/C150M-20; Standard Specification for Portland Cement. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM C307-18; Standard Test Method for Tensile Strength of Chemical-Resistant Mortar, Grouts, and Monolithic Surfacings. ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM C109/C109M-20b; Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens). ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM C305-20; Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. ASTM International: West Conshohocken, PA, USA, 2020.
- Timoshenko, S.P.; Gere, J.M. Mechanics of Materials; PWS-Kent Publishing: Boston, MA, USA, 1984. [Google Scholar]
- Mehta, P.K.; Monteiro, P.J.M. Concrete: Microstructure, Properties, and Materials, 4th ed.; McGraw-Hill Education: New York, NY, USA, 2006. [Google Scholar]
- Taylor, H.F.W. Cement Chemistry, 2nd ed.; Thomas Telford Publishing: London, UK, 1997. [Google Scholar]
- Andrade, D.D.S.; Rêgo, J.H.D.S.; Morais, P.C.; Lopes, A.N.D.M.; Rojas, M.F. Investigation of C-S-H in ternary cement pastes containing nanosilica and highly-reactive supplementary cementitious materials (SCMs): Microstructure and strength. Constr. Build. Mater. 2019, 198, 445–455. [Google Scholar] [CrossRef]
- Singh, L.P.; Zhu, W.; Howind, T.; Sharma, U. Quantification and characterization of C-S-H in silica nanoparticles incorporated cementitious system. Cem. Concr. Compos. 2017, 79, 106–116. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Jiang, W.; Li, X.; Lv, Y.; Jiang, D.; Liu, Z.; He, C. Mechanical and hydration properties of low clinker cement containing high volume superfine blast furnace slag and nano silica. Constr. Build. Mater. 2020, 238, 117683. [Google Scholar] [CrossRef]
- Maagi, M.T.; Jun, G. Effect of the particle size of nanosilica on early age compressive strength in oil-well cement paste. Constr. Build. Mater. 2020, 259, 120393. [Google Scholar] [CrossRef]
- Das, S.K.; Khan, M.M.R.; Guha, A.K.; Naskar, N. Bio-inspired Fabrication of Silver Nanoparticles on Nanostructure Silica, Characterization and Application as Highly Efficient Hydrogenation Catalyst. Green Chem. 2013, 15, 2548–2557. [Google Scholar] [CrossRef]
- Kim, J.J.; Foley, E.M.; Taha, M.M.R. Nano-mechanical characterization of synthetic calcium–silicate–hydrate (C–S–H) with varying CaO/SiO2 mixture ratios. Cem. Concr. Compos. 2013, 36, 65–70. [Google Scholar] [CrossRef]
- Foley, E.M.; Kim, J.J.; Taha, M.M.R. Synthesis and nano-mechanical characterization of calcium-silicate-hydrate (C-S-H) made with 1.5 CaO/SiO2 mixture. Cem. Concr. Res. 2012, 42, 1225–1232. [Google Scholar] [CrossRef]
- Wongkeo, W.; Thongsanitgarn, P.; Chindaprasirt, P.; Chaipanich, A. Thermogravimetry of ternary cement blends—Effect of different curing methods. J. Therm. Anal. Calorim. 2013, 113, 1079–1090. [Google Scholar] [CrossRef]
Linear Formula | Molecular Weight (g/mol) | Abrasion Resistance (mg) | Autoignition Temp (°C) | Hardness | mp (°C (lit.)) | Tm (°C) | Density at 25 °C (g/mL) |
---|---|---|---|---|---|---|---|
[-CO(CH2)4CONH(CH2)6NH-]n | 262.35 | 7 | 400 | 121 | 250–260 | 270 | 1.14 |
Properties | SiO2 (%) | H2O (%) | LOI (%) | Coarse Particles > 45 μm (%) | Bulk Density (kg/m3) |
---|---|---|---|---|---|
Value | <90 | <1.0 | <3.0 | <1.5 | 200–350 |
Properties | Purity (%) | Outer Diameter (nm) | Length (μm) |
---|---|---|---|
Value | 93–97 | 9–10 | 10–30 |
Properties | Voltage (kV) | Syringe (mL) | Needle’s Inner Diameter (mm) | Needle’s Outer Diameter (mm) | Needle Collector Distance (mm) | Pump Speed (μL/min) |
---|---|---|---|---|---|---|
Value | 12 | 12 | 0.6 | 0.9 | 30 | 30 |
CaO | 61.33 |
Al2O3 | 6.40 |
SiO2 | 21.01 |
SO3 | 2.30 |
MgO | 3.02 |
Fe2O3 | 3.12 |
Ig. loss | 1.40 |
Specific surface area (cm2/g) | 2800 |
Compressive strength, 28-day (MPa) | 36 |
Control Paste | NS-CNT-N66 NFs MCP | |
---|---|---|
Compressive strength (MPa) | 36.92 (1.1995) | 50.91 (2.477) |
Toughness (J/m3) | 68,608.5 | 116,006 |
Tensile strength (MPa) | 1.18 (0.0753) | 1.92 (0.1602) |
Control Paste | NS-CNT-N66 NFs MCP | |
---|---|---|
Ca | 12.65 | 12.31 |
Si | 3.17 | 5.69 |
Temperature Range (°C) | Phase Detection | Explanation |
---|---|---|
250 °C to 270 °C | Silica | The evaporation of the adsorbed water from the nanosilica surface [38] |
310 °C to 480 °C | Nylon 66 | [22,23] |
435 °C to 525 °C | CNT | [22] |
Temperature Range (°C) | Phase Detection | Explanation |
---|---|---|
<145 °C | Arbitrary water | The evaporation of arbitrary water inside the matrix when conducting the thermal analysis under nitrogen and free carbon dioxide conditions [32] |
145 °C to 200 °C | CSH | The dehydration of CSH [32,39,40,41] |
400 °C to 500 °C | CH | The dehydration of CH [32,39,40,41] |
550 °C to 900 °C | CaCO3 | The decarbonation of calcite [32,39,40,41] |
Temp (°C) | Control Paste | NS-CNT-N66 NFs MCP |
---|---|---|
145~200 | 3.36 | 4.19 |
400~500 | 4.07 | 3.72 |
550~900 | 6.14 | 5.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.N.M.; Nguyen, H.Q.; Kim, J.J. The Changes in the Inner-Structure and Mechanical Strength of the Composite Cement Materials and Silica-Carbon Nanotube-Nylon 66 Electrospun Nanofibers. Polymers 2024, 16, 2475. https://doi.org/10.3390/polym16172475
Nguyen TNM, Nguyen HQ, Kim JJ. The Changes in the Inner-Structure and Mechanical Strength of the Composite Cement Materials and Silica-Carbon Nanotube-Nylon 66 Electrospun Nanofibers. Polymers. 2024; 16(17):2475. https://doi.org/10.3390/polym16172475
Chicago/Turabian StyleNguyen, Tri N. M., Huy Q. Nguyen, and Jung J. Kim. 2024. "The Changes in the Inner-Structure and Mechanical Strength of the Composite Cement Materials and Silica-Carbon Nanotube-Nylon 66 Electrospun Nanofibers" Polymers 16, no. 17: 2475. https://doi.org/10.3390/polym16172475
APA StyleNguyen, T. N. M., Nguyen, H. Q., & Kim, J. J. (2024). The Changes in the Inner-Structure and Mechanical Strength of the Composite Cement Materials and Silica-Carbon Nanotube-Nylon 66 Electrospun Nanofibers. Polymers, 16(17), 2475. https://doi.org/10.3390/polym16172475