Study on Structure–Function Integrated Polymer-Based Microwave-Absorption Composites
Abstract
:1. Introduction
2. Polymer Matrix for Structural Wave-Absorbing Functional Integrated Composites
2.1. Polyimide
2.2. Epoxy Resins
2.3. Other Resin Matrix
3. Wave-Absorbing Agents for Structure-Absorption Functional Integration Composites
3.1. Electric Loss-Type Wave Absorber
3.2. Magnetic Loss-Type Wave Absorbers
3.3. Composite Wave Absorber
4. Wave-Absorbing Mechanisms in Structure-Absorption Functionally Integrated Composites
4.1. Electromagnetic Shielding Mechanism
4.2. Wave-Absorption Conditions and Principles
5. Methods of Constructing Structural Wave-Absorbing Functionally Integrated Composites
5.1. Single-Layer Construction
5.2. Multi-Story Structures
5.3. Multi-Layer Sandwich Construction
5.3.1. Honeycomb Sandwich Construction
5.3.2. Foam Sandwich Construction
5.3.3. Other Sandwich Constructions
5.4. Frequency Selection Surface
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kaushik, N.; Singh, P.; Rana, S.; Sahoo, N.G.; Ahmad, F.; Jamil, M. Self-Healable Electromagnetic Wave Absorbing/Shielding Materials for Stealth Technology: Current Trends and New Frontiers. Mater. Today Sustain. 2024, 27, 100828. [Google Scholar] [CrossRef]
- Liu, T.; Liu, L.; Wang, X.-D.; Shen, J.; Zhang, Z.; Shuang, X.; Liu, Q. Preparation and application of polyimide aerogel materials. Chin. J. Eng. 2020, 42, 39–47. [Google Scholar] [CrossRef]
- Jin, L.; Zhao, Y.; Chen, C.; Zhang, J.; He, Y.; Yin, C.; Wu, N.; Tang, J.; Xing, S. Application, Development, and Challenges of Stealth Materials/Structures in next-Generation Aviation Equipment. Appl. Surf. Sci. Adv. 2024, 19, 100575. [Google Scholar] [CrossRef]
- Wang, S.; Jang, S.; Han, X.; Zhao, J.; Chai, C. Research Progress on High-Performance Polyimide Resins and Their Composites. J. Funct. Polym. 2021, 34, 570–585. [Google Scholar] [CrossRef]
- Ogbonna, V.E.; Popoola, A.P.I.; Popoola, O.M.; Adeosun, S.O. A Review on Polyimide Reinforced Nanocomposites for Mechanical, Thermal, and Electrical Insulation Application: Challenges and Recommendations for Future Improvement. Polym. Bull. 2022, 79, 663–695. [Google Scholar] [CrossRef]
- Wang, X.; Ke, H.; Yuan, H.; Lu, G.; Li, L.; Meng, X.; Song, S.; Wang, Z. High Temperature Resistant and Soluble Polyimide Resins and Their Composites. Chem. J. Chin. Univ. Chin. 2021, 42, 2041–2048. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Kuang, Y.; Liu, Z.; Zhang, Z.; Chen, X. Effect of Carbon Nanotubes Modification on Bending Fatigue Properties of Carbon Fiber Reinforced Polyimide Composites. Int. J. Fatigue 2023, 175, 107814. [Google Scholar] [CrossRef]
- Song, H.; Li, L.; Yang, J.; Jia, X. Fabrication of Polydopamine-Modified Carbon Fabric/Polyimide Composites with Enhanced Mechanical and Tribological Properties. Polym. Compos. 2019, 40, 1911–1918. [Google Scholar] [CrossRef]
- Peng, C. Improving the Interfacial Property of Carbon Fiber/PI Resin Composite by Grafting Modification of Carbon Fiber Surface. Surf. Interface Anal. 2018, 50, 628–633. [Google Scholar] [CrossRef]
- Gnädinger, F.; Middendorf, P.; Fox, B. Interfacial Shear Strength Studies of Experimental Carbon Fibres, Novel Thermosetting Polyurethane and Epoxy Matrices and Bespoke Sizing Agents. Compos. Sci. Technol. 2016, 133, 104–110. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Z.; Kuang, N.; Wu, C.; Lu, Y.; Zhang, C. Effect of High-Temperature Thermo-Oxidation on the Mechanical and Electrical Properties of Phenylethynyl-Terminated Polyimide/Carbon Fiber Composite. Polym. Degrad. Stab. 2023, 218, 110544. [Google Scholar] [CrossRef]
- Rao, X.; Zhou, H.; Dang, G.; Chen, C.; Wu, Z. New Kinds of Phenylethynyl-Terminated Polyimide Oligomers with Low Viscosity and Good Hydrolytic Stability. Polymer 2006, 47, 6091–6098. [Google Scholar] [CrossRef]
- Jin, F.-L.; Li, X.; Park, S.-J. Synthesis and Application of Epoxy Resins: A Review. J. Ind. Eng. Chem. 2015, 29, 1–11. [Google Scholar] [CrossRef]
- Shin, J.; Jang, H.; Choi, W.; Song, T.; Kim, C.; Lee, W. Design and Verification of a Single Slab RAS through Mass Production of Glass/MWNT Added Epoxy Composite Prepreg. J. Appl. Polym. Sci. 2015, 132, app.42019. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, C.; Li, J.; Wang, J.; Li, H.; Xiong, S. Preparation and Properties of Al2O3 Modified Epoxy-Glass Fiber Composites. Mater. Lett. 2024, 370, 136832. [Google Scholar] [CrossRef]
- Mahtar, M.A.; Kinloch, I.A.; Bissett, M.A. High-Performance Hybrid Glass Fibre Epoxy Composites Reinforced with Amine Functionalised Graphene Oxide for Structural Applications. Compos. Part A Appl. Sci. Manuf. 2024, 185, 108265. [Google Scholar] [CrossRef]
- Perumal, K.P.S.; Boopathi, R.; Selvarajan, L.; Venkataramanan, K. The Effects of Zircon Particles on the Mechanical and Morphological Properties of Glass Fibre Reinforced Epoxy Composite. Mater. Today Commun. 2023, 37, 107067. [Google Scholar] [CrossRef]
- Chen, W.; Zheng, X.; He, X.; Su, Y.; Wang, J.; Yang, J.; Chen, S.; Zheng, Z. Achieving Full Effective Microwave Absorption in X Band by Double-Layered Design of Glass Fiber Epoxy Composites Containing MWCNTs and Fe3O4 NPs. Polym. Test 2020, 86, 106448. [Google Scholar] [CrossRef]
- Dong, Y.; Yu, T.; Wang, X.; Zhang, G.; Lu, J.; Zhang, M.; Long, S.; Yang, J. Improved Interfacial Shear Strength in Polyphenylene Sulfide/Carbon Fiber Composites via the Carboxylic Polyphenylene Sulfide Sizing Agent. Compos. Sci. Technol. 2020, 190, 108056. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, Z.; Chen, P.; Wang, Q.; Wang, Y.; Ma, M. Microwave Absorbing and Mechanical Properties of Carbon Fiber/Bismaleimide Composites Imbedded with Fe@C/PEK-C Nano-Membranes. J. Mater. Sci.-Mater. Electron. 2019, 30, 308–315. [Google Scholar] [CrossRef]
- Kiskan, B.; Ghosh, N.N.; Yagci, Y. Polybenzoxazine-based Composites as High-performance Materials. Polym. Int. 2011, 60, 167–177. [Google Scholar] [CrossRef]
- Yagci, Y.; Kiskan, B.; Ghosh, N.N. Recent Advancement on Polybenzoxazine—A Newly Developed High Performance Thermoset. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 5565–5576. [Google Scholar] [CrossRef]
- González, M.; Pozuelo, J.; Baselga, J. Electromagnetic Shielding Materials in GHz Range. Chem. Rec. 2018, 18, 1000–1009. [Google Scholar] [CrossRef]
- Liu, X.; Pan, S.; Cheng, L.; Li, C.; Mo, H.; Zhou, H. Microwave Absorbing Properties of Ni/Ferrite Mixture. Rare Met. Mater. Eng. 2015, 44, 2091–2094. [Google Scholar] [CrossRef]
- Liu, Y.F.; Li, L.X.; Wang, Y.Y.; Li, C. Corrosion Resistance and Wave Absorbing Property of Carbonyl Iron Powder Coating with Alumina by Atomic Layer Deposition. J. Inorg. Mater. 2017, 32, 751. [Google Scholar] [CrossRef]
- Lu, S.; Xia, L.; Xu, J.; Ding, C.; Li, T.; Yang, H.; Zhong, B.; Zhang, T.; Huang, L.; Xiong, L.; et al. Permittivity-Regulating Strategy Enabling Superior Electromagnetic Wave Absorption of Lithium Aluminum Silicate/rGO Nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 18626–18636. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-H.; Nam, Y.-W.; Jang, M.-S.; Kim, C.-G. Characteristics of Silicon Carbide Fiber-Reinforced Composite for Microwave Absorbing Structures. Compos. Struct. 2018, 202, 290–295. [Google Scholar] [CrossRef]
- Ran, J.; Guo, M.; Zhong, L.; Fu, H. In Situ Growth of BaTiO3 Nanotube on the Surface of Reduced Graphene Oxide: A Lightweight Electromagnetic Absorber. J. Alloys Compd. 2019, 773, 423–431. [Google Scholar] [CrossRef]
- Jia, Q.; Wang, W.; Zhao, J.; Xiao, J.; Lu, L.; Fan, H. Synthesis and Characterization of TiO2/Polyaniline/Graphene Oxide Bouquet-like Composites for Enhanced Microwave Absorption Performance. J. Alloys Compd. 2017, 710, 717–724. [Google Scholar] [CrossRef]
- Gupta, K.; Abbas, S.; Abhyankar, A. Carbon Black/Polyurethane Nanocomposite-Coated Fabric for Microwave Attenuation in X & Ku-Band (8–18 GHz) Frequency Range. J. Ind. Text. 2016, 46, 510–529. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, P.; Zhou, W.; Hong, W.; Luo, H. Preparation and Microwave Absorbing Properties of Carbon Fibers/Epoxy Composites with Grid Structure. J. Mater. Sci. Mater. Electron. 2015, 26, 651–658. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Xiao, S.; Qiang, C.; Tian, L.; Xu, J. Preparation and Properties of Cobalt Oxides Coated Carbon Fibers as Microwave-Absorbing Materials. Appl. Surf. Sci. 2011, 257, 7678–7683. [Google Scholar] [CrossRef]
- Mušič, B.; Drofenik, M.; Venturini, P.; Žnidaršič, A. Electromagnetic Wave Absorption by an Organic Resin Solution Based on Ferrite Particles with a Spinel Crystal Structure. Ceram. Int. 2012, 38, 2693–2699. [Google Scholar] [CrossRef]
- Qing, Y.; Zhou, W.; Luo, F.; Zhu, D. Microwave-Absorbing and Mechanical Properties of Carbonyl-Iron/Epoxy-Silicone Resin Coatings. J. Magn. Magn. Mater. 2009, 321, 25–28. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, D.; Zhou, W.; Luo, F. Electromagnetic and Microwave Absorbing Properties of Polyimide Nanocomposites at Elevated Temperature. J. Alloys Compd. 2015, 648, 313–319. [Google Scholar] [CrossRef]
- Qin, H.; Liao, Q.; Zhang, G.; Huang, Y.; Zhang, Y. Microwave Absorption Properties of Carbon Black and Tetrapod-like ZnO Whiskers Composites. Appl. Surf. Sci. 2013, 286, 7–11. [Google Scholar] [CrossRef]
- Li, J.; Xie, Y.; Lu, W.; Chou, T.-W. Flexible Electromagnetic Wave Absorbing Composite Based on 3D rGO-CNT-Fe3O4 Ternary Films. Carbon 2018, 129, 76–84. [Google Scholar] [CrossRef]
- De Rosa, I.M.; Dinescu, A.; Sarasini, F.; Sarto, M.S.; Tamburrano, A. Effect of Short Carbon Fibers and MWCNTs on Microwave Absorbing Properties of Polyester Composites Containing Nickel-Coated Carbon Fibers. Compos. Sci. Technol. 2010, 70, 102–109. [Google Scholar] [CrossRef]
- Qing, Y.; Min, D.; Zhou, Y.; Luo, F.; Zhou, W. Graphene Nanosheet- and Flake Carbonyl Iron Particle-Filled Epoxy-Silicone Composites as Thin–Thickness and Wide-Bandwidth Microwave Absorber. Carbon 2015, 86, 98–107. [Google Scholar] [CrossRef]
- Guo, W.Q.; Hong, B.; Xu, J.C.; Han, Y.B.; Peng, X.L.; Ge, H.L.; Li, J.; Chen, H.W.; Wang, X.Q. CNTs-Improved Electromagnetic Wave Absorption Performance of Sr-Doped Fe3O4/CNTs Nanocomposites and Physical Mechanism. Diam. Relat. Mater. 2024, 141, 110699. [Google Scholar] [CrossRef]
- Qiu, H.; Luo, X.; Wang, J.; Zhong, X.; Qi, S. Synthesis and Characterization of Ternary Polyaniline/Barium Ferrite/Reduced Graphene Oxide Composite as Microwave-Absorbing Material. J. Electron. Mater. 2019, 48, 4400–4408. [Google Scholar] [CrossRef]
- Wu, N.; Xu, D.; Wang, Z.; Wang, F.; Liu, J.; Liu, W.; Shao, Q.; Liu, H.; Gao, Q.; Guo, Z. Achieving Superior Electromagnetic Wave Absorbers through the Novel Metal-Organic Frameworks Derived Magnetic Porous Carbon Nanorods. Carbon 2019, 145, 433–444. [Google Scholar] [CrossRef]
- Wang, Y.-Z.; Xu, H.-X.; Wang, C.-H.; Wang, M.-Z.; Wang, S.-J. Research progress of electromagnetic metamaterial absorbers. Acta Phys. Sin. 2020, 69, 134101. [Google Scholar] [CrossRef]
- Xia, Z.; Wang, R.; Qu, B.; Wu, Q.; Zhuo, D.; Zheng, Y. Microwave Absorbing Properties of Polyaniline Coated Buckypaper Reinforced Epoxy Resin Composites. J. Appl. Polym. Sci. 2022, 139, e53154. [Google Scholar] [CrossRef]
- Wang, W.-J.; Zang, C.-G.; Jiao, Q.-J. Fabrication and Performance Optimization of Mn-Zn Ferrite/EP Composites as Microwave Absorbing Materials. Chin. Phys. B 2013, 22, 128101. [Google Scholar] [CrossRef]
- Ren, F.; Zhu, G.; Wang, Y.; Cui, X. Microwave Absorbing Properties of Graphene Nanosheets/Epoxy-Cyanate Ester Resins Composites. J. Polym. Res. 2014, 21, 585. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, D.; Zhou, W.; Luo, F. High Temperature Electromagnetic and Microwave Absorbing Properties of Polyimide/Multi-Walled Carbon Nanotubes Nancomposites. Chem. Phys. Lett. 2015, 633, 223–228. [Google Scholar] [CrossRef]
- Zhao, H.; Zhu, Z.; Xu, Y.; Wang, Z.; Zhou, J. Design and Preparation of an Epoxy Resin Matrix Composite Structure with Broadband Wave-Absorbing Properties. Results Phys. 2024, 57, 107353. [Google Scholar] [CrossRef]
- Marra, F.; Lecini, J.; Tamburrano, A.; Pisu, L.; Sarto, M.S. Broadband Electromagnetic Absorbing Structures Made of Graphene/Glass-Fiber/Epoxy Composite. IEEE Trans. Microw. Theory Tech. 2020, 68, 590–601. [Google Scholar] [CrossRef]
- Eun, S.-W.; Choi, W.-H.; Jang, H.-K.; Shin, J.-H.; Kim, J.-B.; Kim, C.-G. Effect of Delamination on the Electromagnetic Wave Absorbing Performance of Radar Absorbing Structures. Compos. Sci. Technol. 2015, 116, 18–25. [Google Scholar] [CrossRef]
- Kim, S.; Park, Y.; Kim, S. Double-layered Microwave Absorbers Composed of Ferrite and Carbon Fiber Composite Laminates. Phys. Status Solidi C Curr. Top. Solid State Phys. 2007, 4, 4602–4605. [Google Scholar] [CrossRef]
- Geeri, S.; Kolakoti, A.; Bobbili, P. Enhancing Electromagnetic Properties through Carbon Nanotube-Based Polymer Composites. J. Magn. Magn. Mater. 2024, 589, 171546. [Google Scholar] [CrossRef]
- Pang, H.; Duan, Y.; Dai, X.; Huang, L.; Yang, X.; Zhang, T.; Liu, X. The Electromagnetic Response of Composition-Regulated Honeycomb Structural Materials Used for Broadband Microwave Absorption. J. Mater. Sci. Technol. 2021, 88, 203–214. [Google Scholar] [CrossRef]
- Ming-liang, W.; Jia-qi, L.; Xin, L.; Xin-ying, Z.; Sheng-jun, Z.; Lei, M.; Xia, A.; Guo-bin, W.; Wei-dong, W.; Ju-yan, Z. Research on Influence of Special-Shaped Honeycomb Radar Absorbing Structure for Wide-Band Absorbing Design. J. Eng. 2019, 2019, 6723–6728. [Google Scholar] [CrossRef]
- He, Y.; Gong, R. Preparation and Microwave Absorption Properties of Foam-Based Honeycomb Sandwich Structures. Europhys. Lett. 2009, 85, 58003. [Google Scholar] [CrossRef]
- Li, H.; Bi, S.; Cai, J.; Chu, X.; Hou, G.; Zhang, J.; Wu, T. Reduced Graphene Oxide/Nonwoven Fabric Filled Honeycomb Composite Structure for Broadband Microwave Absorption. Carbon 2024, 223, 119005. [Google Scholar] [CrossRef]
- Wu, L.; Wang, Q.; Tang, Z. Absorbing Properties of Three Dimensional Honeycomb-Structured Absorbing Materials. In Proceedings of the 2012 6th Asia-Pacific Conference on Environmental Electromagnetics (CEEM), Shanghai, China, 6–9 November 2012; pp. 309–312. [Google Scholar]
- Wang, Y.; Chen, S.; Liu, S.; Wu, J.; Wang, Y.; Ding, X.; Yang, H. A Novel Ultra-Broadband Absorber Based on Carbon-Coated Honeycomb Panels Combined with Metamaterials. J. Phys. D Appl. Phys. 2022, 55, 455106. [Google Scholar] [CrossRef]
- Choi, W.-H.; Kim, C.-G. Broadband Microwave-Absorbing Honeycomb Structure with Novel Design Concept. Compos. Part B Eng. 2015, 83, 14–20. [Google Scholar] [CrossRef]
- Qiu, Q.; Yang, X.; Zhang, P.; Wang, D.; Lu, M.; Wang, Z.; Guo, G.; Yu, J.; Tian, H.; Li, J. Effect of Fiber Surface Treatment on the Structure and Properties of Rigid Bagasse Fibers/Polyurethane Composite Foams. Polym. Compos. 2021, 42, 2766–2773. [Google Scholar] [CrossRef]
- Yan, L.; Jiang, W.; Zhang, C.; Zhang, Y.; He, Z.; Zhu, K.; Chen, N.; Zhang, W.; Han, B.; Zheng, X. Enhancement by Metallic Tube Filling of the Mechanical Properties of Electromagnetic Wave Absorbent Polymethacrylimide Foam. Polymers 2019, 11, 372. [Google Scholar] [CrossRef]
- Li, Y.; Tian, H.; Zhang, J.; Zou, W.; Wang, H.; Du, Z.; Zhang, C. Fabrication and Properties of Rigid Polyurethane Nanocomposite Foams with Functional Isocyanate Modified Graphene Oxide. Polym. Compos. 2020, 41, 5126–5134. [Google Scholar] [CrossRef]
- Choi, W.-H.; Kwak, B.-S.; Kweon, J.-H.; Nam, Y.-W. Radar-Absorbing Foam-Based Sandwich Composite with Electroless Nickel-Plated Glass Fabric. Compos. Struct. 2020, 243, 112252. [Google Scholar] [CrossRef]
- Park, K.; Lee, S.; Kim, C.; Han, J. Fabrication and Electromagnetic Characteristics of Electromagnetic Wave Absorbing Sandwich Structures. Compos. Sci. Technol. 2006, 66, 576–584. [Google Scholar] [CrossRef]
- Wang, C.; Chen, M.; Lei, H.; Zeng, Z.; Yao, K.; Yuan, X.; Fang, D. Frequency-Selective-Surface Based Sandwich Structure for Both Effective Loadbearing and Customizable Microwave Absorption. Compos. Struct. 2020, 235, 111792. [Google Scholar] [CrossRef]
- Zheng, Q.; Fan, H.; Liu, J.; Ma, Y.; Yang, L. Hierarchical Lattice Composites for Electromagnetic and Mechanical Energy Absorptions. Compos. Part B Eng. 2013, 53, 152–158. [Google Scholar] [CrossRef]
- Huang, H.; Wang, W.; Cao, T.; Kuang, J.; Deng, Y.; Hua, M.; Xie, W. Broadband Radar Absorbing Performance of Corrugated Structure. Compos. Struct. 2020, 253, 112809. [Google Scholar] [CrossRef]
- Choi, J.; Jung, H.-T. A New Triple-Layered Composite for High-Performance Broadband Microwave Absorption. Compos. Struct. 2015, 122, 166–171. [Google Scholar] [CrossRef]
- Sarabandi, K.; Behdad, N. A Frequency Selective Surface with Miniaturized Elements. IEEE Trans. Antennas Propag. 2007, 55, 1239–1245. [Google Scholar] [CrossRef]
- Lee, W.-J.; Baek, S.-M.; Kim, S.-Y. Design of Electromagnetic Wave Absorbing Sandwich Composite for Secondary Bonding Application. J. Electromagn. Waves Appl. 2019, 33, 625–636. [Google Scholar] [CrossRef]
- Huang, Y.; Yuan, X.; Chen, M.; Song, W.-L.; Chen, J.; Fan, Q.; Tang, L.; Fang, D. Ultrathin Multifunctional Carbon/Glass Fiber Reinforced Lossy Lattice Metastructure for Integrated Design of Broadband Microwave Absorption and Effective Load Bearing. Carbon 2019, 144, 449–456. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Fan, Z.; Li, B.; Ren, D.; Xu, M. Study on Structure–Function Integrated Polymer-Based Microwave-Absorption Composites. Polymers 2024, 16, 2472. https://doi.org/10.3390/polym16172472
Zhang J, Fan Z, Li B, Ren D, Xu M. Study on Structure–Function Integrated Polymer-Based Microwave-Absorption Composites. Polymers. 2024; 16(17):2472. https://doi.org/10.3390/polym16172472
Chicago/Turabian StyleZhang, Jiaqu, Zexu Fan, Bo Li, Dengxun Ren, and Mingzhen Xu. 2024. "Study on Structure–Function Integrated Polymer-Based Microwave-Absorption Composites" Polymers 16, no. 17: 2472. https://doi.org/10.3390/polym16172472
APA StyleZhang, J., Fan, Z., Li, B., Ren, D., & Xu, M. (2024). Study on Structure–Function Integrated Polymer-Based Microwave-Absorption Composites. Polymers, 16(17), 2472. https://doi.org/10.3390/polym16172472