Response Surface Modelling Nafion-117 Sorption of Tetraammineplatinum(II) Chloride in the Electroless Plating of IPMCs
Abstract
:1. Introduction
Electroless Plating of Ionic Polymer–Metal Composites (IPMCs)
2. Materials and Methods
2.1. Atomic Absorption Spectroscopy (AAS)
Gage Repeatability and Reproducibility Analysis
2.2. Design of Experiments (DOE)
Definitive Screening Design (DSD)
2.3. Sample Preparation
2.3.1. IPMC Preparation
2.3.2. Solution Preparation
2.4. Surface Resistance Measurement
2.5. Scanning Electron Microscopy (SEM)
3. Results and Discussion
3.1. Gage R&R Analysis
3.2. Definitive Screening Design (DSD) Results
3.2.1. Sorption Amount-DSD
3.2.2. Sorption Efficiency-DSD
4. Parameter Optimisation and Characterisation
4.1. Response Surface Methodology (RSM)
4.1.1. Sorption Amount-CCD
4.1.2. Sorption Efficiency-CCD
4.2. Surface Resistance Measurement Results
4.3. Response Surface Modelling Validation
4.4. Limitations and Recommendations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Run | Conc. (g/L) | Soak Time (Hour) | pH | Temp. (°C) | Sorption Amount (g/L) | Sorption Efficiency (%) |
---|---|---|---|---|---|---|
1 | 4.25 | 24 | 11 | 60 | 1.086 | 25.559 |
2 | 4.25 | 0.5 | 3 | 20 | 1.135 | 26.708 |
3 | 8 | 12.25 | 11 | 20 | 0.567 | 7.085 |
4 | 0.5 | 12.25 | 3 | 60 | 0.428 | 85.559 |
5 | 8 | 24 | 7 | 60 | 0.874 | 10.922 |
6 | 0.5 | 0.5 | 7 | 20 | 0.118 | 23.610 |
7 | 8 | 0.5 | 11 | 40 | 0.804 | 10.050 |
8 | 0.5 | 24 | 3 | 40 | 0.322 | 64.351 |
9 | 8 | 0.5 | 3 | 60 | 0.909 | 11.358 |
10 | 0.5 | 24 | 11 | 20 | 0.391 | 78.164 |
11 | 8 | 24 | 3 | 20 | 0.734 | 9.178 |
12 | 0.5 | 0.5 | 11 | 60 | 0.150 | 30.028 |
13 | 4.25 | 12.25 | 7 | 40 | 0.528 | 12.427 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Model | 8 | 1.27955 | 0.159944 | 10.64 | 0.018 |
Linear | 4 | 0.67607 | 0.169018 | 11.25 | 0.019 |
Conc | 1 | 0.61441 | 0.614412 | 40.88 | 0.003 |
ST | 1 | 0.00846 | 0.008463 | 0.56 | 0.495 |
pH | 1 | 0.02804 | 0.028037 | 1.87 | 0.244 |
Temp | 1 | 0.02516 | 0.025160 | 1.67 | 0.265 |
Square | 2 | 0.46784 | 0.233918 | 15.56 | 0.013 |
Conc*Conc | 1 | 0.20873 | 0.208734 | 13.89 | 0.020 |
pH*pH | 1 | 0.23273 | 0.232733 | 15.49 | 0.017 |
2-Way Interactions | 2 | 0.16638 | 0.083190 | 5.54 | 0.070 |
Conc*Temp | 1 | 0.09254 | 0.092543 | 6.16 | 0.068 |
ST*Temp | 1 | 0.06001 | 0.060006 | 3.99 | 0.116 |
Error | 4 | 0.06012 | 0.015029 | ||
Total | 12 | 1.33967 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Model | 6 | 8304.90 | 1384.15 | 11.40 | 0.005 |
Linear | 4 | 6430.37 | 1607.59 | 13.25 | 0.004 |
Conc | 1 | 5434.54 | 5434.54 | 44.78 | 0.001 |
ST | 1 | 746.85 | 746.85 | 6.15 | 0.048 |
pH | 1 | 214.07 | 214.07 | 1.76 | 0.232 |
Temp | 1 | 34.90 | 34.90 | 0.29 | 0.611 |
Square | 1 | 846.38 | 846.38 | 6.97 | 0.039 |
pH*pH | 1 | 846.38 | 846.38 | 6.97 | 0.039 |
2-Way Interactions | 1 | 1028.16 | 1028.16 | 8.47 | 0.027 |
pH*Temp | 1 | 1028.16 | 1028.16 | 8.47 | 0.027 |
Error | 6 | 728.22 | 121.37 | ||
Total | 12 | 9033.12 |
Run | Conc. (g/L) | Soak Time (Hour) | pH | Temp. (°C) | Sorption Amount (g/L) | Sorption Eff. (%) |
---|---|---|---|---|---|---|
1 | 2.375 | 6.375 | 5 | 30 | 1.426 | 60.061 |
2 | 6.125 | 6.375 | 5 | 30 | 3.229 | 52.712 |
3 | 2.375 | 18.125 | 5 | 30 | 1.340 | 56.430 |
4 | 6.125 | 18.125 | 5 | 30 | 3.016 | 49.234 |
5 | 2.375 | 6.375 | 9 | 30 | 1.234 | 51.945 |
6 | 6.125 | 6.375 | 9 | 30 | 2.442 | 39.876 |
7 | 2.375 | 18.125 | 9 | 30 | 1.142 | 48.101 |
8 | 6.125 | 18.125 | 9 | 30 | 1.895 | 30.932 |
9 | 2.375 | 6.375 | 5 | 50 | 0.579 | 24.394 |
10 | 6.125 | 6.375 | 5 | 50 | 2.600 | 42.443 |
11 | 2.375 | 18.125 | 5 | 50 | 0.787 | 33.150 |
12 | 6.125 | 18.125 | 5 | 50 | 2.407 | 39.296 |
13 | 2.375 | 6.375 | 9 | 50 | 0.326 | 13.715 |
14 | 6.125 | 6.375 | 9 | 50 | 2.153 | 35.155 |
15 | 2.375 | 18.125 | 9 | 50 | 0.077 | 3.249 |
16 | 6.125 | 18.125 | 9 | 50 | 0.809 | 13.209 |
17 | 0.5 | 12.25 | 7 | 40 | 0.285 | 57.087 |
18 | 8 | 12.25 | 7 | 40 | 0.538 | 6.730 |
19 | 4.25 | 0.5 | 7 | 40 | 0.735 | 17.289 |
20 | 4.25 | 24 | 7 | 40 | 0.709 | 16.692 |
21 | 4.25 | 12.25 | 3 | 40 | 1.550 | 36.471 |
22 | 4.25 | 12.25 | 11 | 40 | 1.740 | 40.947 |
23 | 4.25 | 12.25 | 7 | 20 | 1.496 | 35.208 |
24 | 4.25 | 12.25 | 7 | 60 | 1.277 | 30.043 |
25 | 4.25 | 12.25 | 7 | 40 | 1.248 | 29.354 |
26 | 4.25 | 12.25 | 7 | 40 | 1.399 | 32.912 |
27 | 4.25 | 12.25 | 7 | 40 | 1.184 | 27.862 |
28 | 4.25 | 12.25 | 7 | 40 | 1.121 | 26.370 |
29 | 4.25 | 12.25 | 7 | 40 | 1.155 | 27.174 |
30 | 4.25 | 12.25 | 7 | 40 | 1.453 | 34.178 |
31 | 4.25 | 12.25 | 7 | 40 | 1.396 | 32.851 |
32 | 2.375 | 6.375 | 5 | 30 | 1.264 | 53.208 |
33 | 6.125 | 6.375 | 5 | 30 | 1.312 | 21.421 |
34 | 2.375 | 18.125 | 5 | 30 | 1.295 | 54.541 |
35 | 6.125 | 18.125 | 5 | 30 | 1.257 | 20.517 |
36 | 2.375 | 6.375 | 9 | 30 | 1.169 | 49.212 |
37 | 6.125 | 6.375 | 9 | 30 | 1.193 | 19.483 |
38 | 2.375 | 18.125 | 9 | 30 | 1.280 | 53.875 |
39 | 6.125 | 18.125 | 9 | 30 | 1.059 | 17.288 |
40 | 2.375 | 6.375 | 5 | 50 | 0.995 | 41.885 |
41 | 6.125 | 6.375 | 5 | 50 | 1.059 | 17.288 |
42 | 2.375 | 18.125 | 5 | 50 | 0.995 | 41.885 |
43 | 6.125 | 18.125 | 5 | 50 | 1.146 | 18.709 |
44 | 2.375 | 6.375 | 9 | 50 | 0.924 | 38.888 |
45 | 6.125 | 6.375 | 9 | 50 | 0.909 | 14.835 |
46 | 2.375 | 18.125 | 9 | 50 | 0.892 | 37.556 |
47 | 6.125 | 18.125 | 9 | 50 | 0.814 | 13.285 |
48 | 0.5 | 12.25 | 7 | 40 | 0.278 | 55.627 |
49 | 8 | 12.25 | 7 | 40 | 0.498 | 6.222 |
50 | 4.25 | 0.5 | 7 | 40 | 0.560 | 13.180 |
51 | 4.25 | 24 | 7 | 40 | 0.339 | 7.969 |
52 | 4.25 | 12.25 | 3 | 40 | 0.592 | 13.925 |
53 | 4.25 | 12.25 | 11 | 40 | 0.608 | 14.297 |
54 | 4.25 | 12.25 | 7 | 20 | 0.639 | 15.042 |
55 | 4.25 | 12.25 | 7 | 60 | 0.442 | 10.389 |
56 | 4.25 | 12.25 | 7 | 40 | 0.434 | 10.203 |
57 | 4.25 | 12.25 | 7 | 40 | 0.331 | 7.783 |
58 | 4.25 | 12.25 | 7 | 40 | 0.275 | 6.481 |
59 | 4.25 | 12.25 | 7 | 40 | 0.117 | 2.758 |
60 | 4.25 | 12.25 | 7 | 40 | 1.024 | 24.090 |
61 | 4.25 | 12.25 | 7 | 40 | 0.971 | 22.844 |
62 | 4.25 | 12.25 | 7 | 40 | 0.994 | 23.378 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Model | 11 | 13.0368 | 1.18516 | 4.38 | 0.000 |
Blocks | 1 | 4.7092 | 4.70924 | 17.41 | 0.000 |
Linear | 4 | 5.8665 | 1.46662 | 5.42 | 0.001 |
Conc | 1 | 3.2661 | 3.26606 | 12.08 | 0.001 |
ST | 1 | 0.1999 | 0.19994 | 0.74 | 0.394 |
pH | 1 | 0.7445 | 0.74450 | 2.75 | 0.103 |
Temp | 1 | 1.6560 | 1.65597 | 6.12 | 0.017 |
Square | 3 | 1.8340 | 0.61133 | 2.26 | 0.093 |
Conc*Conc | 1 | 0.0872 | 0.08721 | 0.32 | 0.573 |
pH*pH | 1 | 1.1636 | 1.16363 | 4.30 | 0.043 |
Temp*Temp | 1 | 0.6030 | 0.60305 | 2.23 | 0.142 |
2-Way Interactions | 3 | 0.6270 | 0.20901 | 0.77 | 0.515 |
Conc*ST | 1 | 0.1780 | 0.17798 | 0.66 | 0.421 |
Conc*pH | 1 | 0.3031 | 0.30306 | 1.12 | 0.295 |
ST*pH | 1 | 0.1460 | 0.14601 | 0.54 | 0.466 |
Error | 50 | 13.5218 | 0.27044 | ||
Lack-of-Fit | 38 | 12.5029 | 0.32902 | 3.88 | 0.008 |
Pure Error | 12 | 1.0189 | 0.08491 | ||
Total | 61 | 26.5586 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Model | 12 | 9234.0 | 769.50 | 5.65 | 0.000 |
Blocks | 1 | 1422.8 | 1422.80 | 10.45 | 0.002 |
Linear | 4 | 5575.4 | 1393.85 | 10.24 | 0.000 |
Conc | 1 | 3604.2 | 3604.24 | 26.47 | 0.000 |
ST | 1 | 67.4 | 67.40 | 0.50 | 0.485 |
pH | 1 | 390.3 | 390.30 | 2.87 | 0.097 |
Temp | 1 | 1513.4 | 1513.45 | 11.12 | 0.002 |
Square | 3 | 1524.3 | 508.09 | 3.73 | 0.017 |
Conc*Conc | 1 | 1027.4 | 1027.38 | 7.55 | 0.008 |
pH*pH | 1 | 507.7 | 507.74 | 3.73 | 0.059 |
Temp*Temp | 1 | 237.9 | 237.86 | 1.75 | 0.192 |
2-Way Interaction | 4 | 711.5 | 177.87 | 1.31 | 0.281 |
Conc*ST | 1 | 41.0 | 41.00 | 0.30 | 0.586 |
Conc*Temp | 1 | 573.0 | 572.98 | 4.21 | 0.046 |
ST*pH | 1 | 66.0 | 66.02 | 0.48 | 0.490 |
pH*Temp | 1 | 31.5 | 31.49 | 0.23 | 0.633 |
Error | 49 | 6671.6 | 136.16 | ||
Lack-of-Fit | 37 | 6107.6 | 165.07 | 3.51 | 0.012 |
Pure Error | 12 | 564.1 | 47.01 | ||
Total | 61 | 15,905.6 |
References
- Bar-Cohen, Y.; Cardoso, V.F.; Ribeiro, C.; Lanceros-Méndez, S. Chapter 8—Electroactive Polymers as Actuators. In Advanced Piezoelectric Materials, 2nd ed.; Uchino, K., Ed.; Woodhead Publishing in Materials; Woodhead Publishing: Sawston, UK, 2017; pp. 319–352. ISBN 978-0-08-102135-4. [Google Scholar]
- Kusoglu, A.; Weber, A.Z. New Insights into Perfluorinated Sulfonic-Acid Ionomers. Chem. Rev. 2017, 117, 987–1104. [Google Scholar] [CrossRef]
- De Luca, V.; Digiamberardino, P.; Di Pasquale, G.; Graziani, S.; Pollicino, A.; Umana, E.; Xibilia, M.G. Ionic Electroactive Polymer Metal Composites: Fabricating, Modeling, and Applications of Postsilicon Smart Devices. J. Polym. Sci. Part B Polym. Phys. 2013, 51, 699–734. [Google Scholar] [CrossRef]
- Yang, L.; Wang, H.; Zhang, X. Recent Progress in Preparation Process of Ionic Polymer-Metal Composites. Results Phys. 2021, 29, 104800. [Google Scholar] [CrossRef]
- Tarditi, A.M.; Bosko, M.L.; Cornaglia, L.M. 3.1 Electroless Plating of Pd Binary and Ternary Alloys and Surface Characteristics for Application in Hydrogen Separation. In Comprehensive Materials Finishing; Hashmi, M., Ed.; Elsevier: Oxford, UK, 2017; pp. 1–24. ISBN 978-0-12-803249-7. [Google Scholar]
- Takenaka, H.; Torikai, E. Production of an Ion-Exchange Membrane-Catalytic Electrode Bonded Material for Electrolytic Cells; NASA: Washington, DC, USA, 1980; pp. 147–150. [Google Scholar]
- Fedkiw, P.S.; Her, W.-H. An Impregnation-Reduction Method to Prepare Electrodes on Nafion SPE. J. Electrochem. Soc. 1989, 136, 899. [Google Scholar] [CrossRef]
- Kim, K.J.; Shahinpoor, M. Ionic Polymer Metal Composites: II. Manufacturing Techniques. Smart Mater. Struct. 2003, 12, 65–79. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, D.; Zhang, X.; Tian, A.; Wang, X. Models of Displacement and Blocking Force of Ionic-Polymer Metal Composites Based on Actuation Mechanism. Appl. Phys. Mater. Sci. Process. 2020, 126, 365. [Google Scholar] [CrossRef]
- Oguro, K. Preparation Procedure Ion-Exchange Polymer Metal Composites (IPMC) Membranes. Available online: https://ndeaa.jpl.nasa.gov/nasa-nde/lommas/eap/IPMC_PrepProcedure.htm (accessed on 29 September 2021).
- Nasef, M.M.; Yahaya, A.H. Adsorption of Some Heavy Metal Ions from Aqueous Solutions on Nafion 117 Membrane. Desalination 2009, 249, 677–681. [Google Scholar] [CrossRef]
- Shahinpoor, M. Chapter 2: Ionic Polymer Metal Composites (IPMCs) Optimal Manufacturing. In Ionic Polymer Metal Composites (IPMCs); The Royal Society of Chemistry: London, UK, 2015; pp. 61–147. [Google Scholar]
- Yip, J.; Feng, L.S.; Hang, C.W.; Marcus, Y.C.W.; Wai, K.C. Experimentally Validated Improvement of IPMC Performance through Alternation of Pretreatment and Electroless Plating Processes. Smart Mater. Struct. 2010, 20, 015009. [Google Scholar] [CrossRef]
- Liu, R.; Her, W.-H.; Fedkiw, P.S. In Situ Electrode Formation on a Nafion Membrane by Chemical Platinization. J. Electrochem. Soc. 1992, 139, 15. [Google Scholar] [CrossRef]
- Tian, A.; Sun, Y.; Wang, X.; Li, J.; Zhang, X.; Wang, H. Effects of Surface Roughening Method on the Performance of Ionic Polymer Metal Composition. In Proceedings of the 2021 IEEE International Symposium on Applications of Ferroelectrics (ISAF), Sydney, Australia, 16–21 May 2021; pp. 1–4. [Google Scholar]
- Palmre, V.; Pugal, D.; Kim, K.J.; Leang, K.K.; Asaka, K.; Aabloo, A. Nanothorn Electrodes for Ionic Polymer-Metal Composite Artificial Muscles. Sci. Rep. 2014, 4, 6176. [Google Scholar] [CrossRef]
- Kim, K.J.; Lee, D.C.; Nam, J.; Hwang, T.S. Fabricating Ionic/Polyimide Membranes. U.S. Patent 11,312,851, 26 April 2022. [Google Scholar]
- Xu, B.; Wang, S.; Zhang, Z.; Ling, J.; Wu, X. Improving the Torsion Performance of IPMC by Changing the Electrode Separation. Sci. Rep. 2021, 11, 7639. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, Y.; Liang, Y.; Ren, L.; Tian, W.; Ren, L. High-Performance Ionic-Polymer–Metal Composite: Toward Large-Deformation Fast-Response Artificial Muscles. Adv. Funct. Mater. 2020, 30, 1908508. [Google Scholar] [CrossRef]
- Rashid, M.; Jun, T.-S.; Kim, Y.S. Material Properties of the Pt Electrode Deposited on Nafion Membrane by the Impregnation–Reduction Method. J. Nanosci. Nanotechnol. 2013, 13, 3627–3633. [Google Scholar] [CrossRef] [PubMed]
- Allen, T.T. Introduction to Engineering Statistics and Lean Six Sigma: Statistical Quality Control and Design of Experiments and Systems; Springer: London, UK, 2018; ISBN 978-1-4471-7419-6. [Google Scholar]
- Scibilia, B. Besides Traditional Designs, Definitive Screening Designs Can Help Process & Product Optimization. 2008. Available online: https://blog.minitab.com/en/bruno-scibilia/definitive-screening-designs-for-products-and-processes-optimization (accessed on 29 September 2021).
- Surhone, L.M.; Tennoe, M.T.; Henssonow, S.F. Sparsity-of-Effects Principle; Betascript Publishing: Beau Bassin, Mauritius, 2011; ISBN 978-613-6-33178-2. [Google Scholar]
- Heckert, A.; Filliben, J.J.; Croarkin, C.; Hembree, B.; Guthrie, W.; Tobias, P.; Prins, J.; Trutna, L.; Spagon, P.; del Castillo, E.; et al. NIST/SEMATECH e-Handbook of Statistical Methods; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2002.
- Yang, L.; Zhang, D.; Zhang, X.; Tian, A.; Ding, Y. Surface Roughening of Nafion Membranes Using Different Route Planning for IPMCs. Int. J. Smart Nano Mater. 2020, 11, 117–128. [Google Scholar] [CrossRef]
- Cho, H.-S.; Ohashi, M.; Van Zee, J.W. Absorption Behavior of Vanadium in Nafion®. J. Power Sources 2014, 267, 547–552. [Google Scholar] [CrossRef]
- Ghaedi, M. Adsorption: Fundamental Processes and Applications; Academic Press: Cambridge, MA, USA, 2021; ISBN 978-0-12-818808-8. [Google Scholar]
- Hutin, A. Difference between Isoelectric Point (IEP), Point of Zero Charge (PZC), and Isoionic Point (IIP); Zenodo: Geneve, Switzerland, 2022. [Google Scholar]
- Sánchez, L. Experimental Characterization of Water Sorption and Transport Properties of Polymer Electrolyte Membranes for Fuel Cells. Ph.D. Thesis, Université de Lorraine, Lorraine, France, 2012. [Google Scholar]
- Kusoglu, A.; Savagatrup, S.; Clark, K.T.; Weber, A.Z. Role of Mechanical Factors in Controlling the Structure–Function Relationship of PFSA Ionomers. Macromolecules 2012, 45, 7467–7476. [Google Scholar] [CrossRef]
- Hinatsu, J.T.; Mizuhata, M.; Takenaka, H. Water Uptake of Perfluorosulfonic Acid Membranes from Liquid Water and Water Vapor. J. Electrochem. Soc. 1994, 141, 1493. [Google Scholar] [CrossRef]
- Maldonado, L.; Perrin, J.-C.; Dillet, J.; Lottin, O. Characterization of Polymer Electrolyte Nafion Membranes: Influence of Temperature, Heat Treatment and Drying Protocol on Sorption and Transport Properties. J. Membr. Sci. 2012, 389, 43–56. [Google Scholar] [CrossRef]
- Albright, L. Albright’s Chemical Engineering Handbook; CRC Press: Boca Raton, FL, USA, 2008; ISBN 978-0-8247-5362-7. [Google Scholar]
- Ballantine, D.S.; Martin, S.J.; Ricco, A.J.; Frye, G.C.; Wohltjen, H.; White, R.M.; Zellers, E.T. Chapter 4—Materials Characterization. In Acoustic Wave Sensors; Ballantine, D.S., Martin, S.J., Ricco, A.J., Frye, G.C., Wohltjen, H., White, R.M., Zellers, E.T., Eds.; Applications of Modern Acoustics; Academic Press: Burlington, MA, USA, 1997; pp. 150–221. ISBN 978-0-12-077460-9. [Google Scholar]
- Bar-Cohen, Y.; Sherrit, S. Characterization of the Electromechanical Properties of EAP Materials. Proc. SPIE Int. Soc. Opt. Eng. 2001, 4329. [Google Scholar] [CrossRef]
- Bar-Cohen, Y.; Bao, X.; Sherrit, S.; Lih, S.-S. Characterization of the Electromechanical Properties of Ionomeric Polymer-Metal Composite (IPMC). Proc. SPIE Int. Soc. Opt. Eng. 2002, 4695, 286–293. [Google Scholar] [CrossRef]
- Ragot, P.M.; Hunt, A.; Sacco, L.N.; Sarro, P.M.; Mastrangeli, M. Manufacturing Thin Ionic Polymer Metal Composite for Sensing at the Microscale. Smart Mater. Struct. 2023, 32, 035006. [Google Scholar] [CrossRef]
- Shahinpoor, M.; Kim, K.J. The Effect of Surface-Electrode Resistance on the Performance of Ionic Polymer-Metal Composite (IPMC) Artificial Muscles. Smart Mater. Struct. 2000, 9, 543–551. [Google Scholar] [CrossRef]
- Rao, C.R.K.; Trivedi, D.C. Chemical and Electrochemical Depositions of Platinum Group Metals and Their Applications. Coord. Chem. Rev. 2005, 249, 613–631. [Google Scholar] [CrossRef]
- Luty-Błocho, M.; Wojnicki, M.; Csapo, E.; Fitzner, K. On the Rate of Interaction of Sodium Borohydride with Platinum (IV) Chloride Complexes in Alkaline Media. Materials 2021, 14, 3137. [Google Scholar] [CrossRef] [PubMed]
- Lancon, T. The Role of Neutron Activation Analysis in the Pathological Evaluation of Silver-Eluting Biomedical Devices in Biological Matrices. Master’s Thesis, Texas A&M University, College Station, TX, USA, 2014. [Google Scholar]
- Newbury, D.E.; Ritchie, N.W.M. Is Scanning Electron Microscopy/Energy Dispersive X-ray Spectrometry (SEM/EDS) Quantitative? Scanning 2013, 35, 141–168. [Google Scholar] [CrossRef]
- Cho, W.-H.; Kei, C.-C.; Liu, B.-H.; Yu, Y.-S.; Chen, F.-Z. Platinum Growth Analysis in Atomic Layer Deposition Using In-Situ Resistance Measurement. In Proceedings of the 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings, Taipei, Taiwan, 23–26 May 2016; pp. 1–4. [Google Scholar]
- Schlupp, M.V.F.; Wehrle, M.M.; Kunze, K.; Remhof, A.; Vogt, U.F. Platinum Thin-Film Electrodes Prepared by a Cost-Effective Chemical Vapor Deposition Technique. Adv. Eng. Mater. 2016, 18, 1200–1207. [Google Scholar] [CrossRef]
Platinum Complex Solution Impregnation | |||||
---|---|---|---|---|---|
Author(s) | Membrane Size | Concentration | Soak Time | pH Adjustment | Temp. °C |
Kim et al., 2003 [8] | 5 × 5 cm | NS 1 | >1 h | 5% NH4OH 2 | NS |
Shahinpoor, 2015 [12] | 5 × 5 cm | NS | 2–4 h | 30% NH4OH | 40–60 |
Yip et al., 2011 [13] | 50 × 60 mm | 0.5 g/L | Overnight | 5% NH4OH | NS |
Liu et al., 1992 [14] | 1 in sides hexagon | 0.5–1.6 mM (0.17–0.54 g/L) | 24 h | NS | 50 |
Tian et al., 2021 [15] | 30 × 10 mm | 0.01 M (3.34 g/L) | 12 h | NS | NS |
Palmre et al., 2014 [16] | 50 × 10 mm | 15–25 mM (5.01–8.35 g/L) | 3–4 h | NS | NS |
Kim et al., 2022 [17] | 0.5 × 2.5 cm | 0.02 M (6.68 g/L) | 3.5 h | NS | NS |
Yang et al., 2020 [9] | 10 × 50 mm | 2 g/L | 24 h | NS | NS |
Oguro et al., 2000 [10] | 30 cm2 | 2 g/L | >3 h (usually overnight) | 5% NH4OH | NS |
Xu et al., 2021 [18] | 30 × 29 mm | 3 mg/mm2 | 14 h | NS | NS |
Ma et al., 2020 [19] | 30 × 30 mm | 0.5 wt% | 24 h | NS | NS |
Rashid et al., 2013 [20] | 15 mm dia. circle | 5–40 mM | 3 h | pH 12 (0.1M NaOH) | 5, 25, 50 |
Variable | Settings |
---|---|
Wavelength | 265.9 nm |
Instrument Mode | Absorbance |
Measurement Mode | Integrate |
Slit Width | 0.2 nm |
Lamp Current | 5 mA |
Background Correction | BC Off |
Measurement Time | 5.0 s |
Pre-Read Delay | 5.0 s |
Flame Type | Air/Acetylene |
Air Flow | 13.50 L/min |
Acetylene Flow | 2.0 L/min |
Burner Height | 13.5 mm |
Screening Design Factor Configurations | ||||
---|---|---|---|---|
Factors | Units | Notation | Factor Levels | |
Low | High | |||
Concentration of Platinum Complex | g/L | Conc. | 0.5 | 8 |
Soak Time | hours | ST | 0.5 | 24 |
pH | - | pH | 3 | 11 |
Temperature | °C | Temp. | 20 | 60 |
Source | Variance Components (VarComp) | % Contribution (of VarComp) |
---|---|---|
Total Gage R&R | 0.0000020 | 0.03 |
Repeatability | 0.0000020 | 0.03 |
Part-To-Part | 0.0073146 | 99.97 |
Total Variation | 0.0073165 | 100.00 |
Source | Standard Deviation (SD) | Study Var. (6 × SD) | % Study Variation |
---|---|---|---|
Total Gage R&R | 0.0013981 | 0.008388 | 1.63 |
Repeatability | 0.0013981 | 0.008388 | 1.63 |
Part-To-Part | 0.0855254 | 0.513152 | 99.99 |
Total Variation | 0.0855368 | 0.513221 | 100.00 |
Response | Uncoded Regression Equation | R2 (%) |
---|---|---|
Sorption Amount | 3.22 + 0.498 Conc + 0.0580 ST − 0.378 pH − 0.1003 Temp
− 0.0110 Conc*Conc + 0.0355 pH*pH + 0.001021 Temp*Temp − 0.00677 Conc*ST − 0.0260 Conc*pH − 0.00575 ST*pH | 49.09 |
Sorption Efficiency | 175.4 − 22.58 Conc + 1.09 ST − 8.31 pH − 2.80 Temp + 1.199 Conc*Conc + 0.741 pH*pH + 0.0203 Temp*Temp − 0.103 Conc*ST + 0.226 Conc*Temp − 0.122 ST*pH − 0.050 pH*Temp | 58.05 |
Run | Conc. (g/L) | Soak Time (Hour) | pH | Temp. (°C) | Sorption Amount (g/L) | Sorption Level |
---|---|---|---|---|---|---|
17 | 0.5 | 12.25 | 7 | 40 | 0.285 | Low |
48 | 0.5 | 12.25 | 7 | 40 | 0.278 | Low |
18 | 8 | 12.25 | 7 | 40 | 0.538 | Medium |
49 | 8 | 12.25 | 7 | 40 | 0.498 | Medium |
3 | 2.375 | 18.125 | 5 | 30 | 1.340 | High |
34 | 2.375 | 18.125 | 5 | 30 | 1.295 | High |
Low Sorption (Ω/Square) | |||||
Run 17 | Run 48 | ||||
15.474 | 39.171 | 60.931 | 11.011 | 8395.465 | 19995.370 |
14.049 | 29.499 | 40.764 | 15.327 | 639.066 | 6645.429 |
12.148 | 27.452 | 53.150 | 16.120 | 2768.155 | 9217.344 |
Medium Sorption (Ω/Square) | |||||
Run 18 | Run 49 | ||||
3.071 | 2.698 | 3.312 | 2.366 | 2.441 | 2.613 |
3.138 | 2.893 | 3.116 | 2.400 | 1.854 | 3.187 |
2.876 | 2.503 | 2.381 | 2.440 | 2.394 | 2.842 |
High Sorption (Ω/Square) | |||||
Run 3 | Run 34 | ||||
2.559 | 2.592 | 2.395 | 2.676 | 2.702 | 2.426 |
2.360 | 2.420 | 2.306 | 2.891 | 2.076 | 2.157 |
2.227 | 2.418 | 2.347 | 2.693 | 2.868 | 2.594 |
Run 5 (Ω/square) | Run 36 (Ω/square) | ||||
---|---|---|---|---|---|
4.702 | 4.254 | 3.487 | 3.093 | 3.238 | 3.331 |
5.706 | 3.538 | 3.403 | 2.775 | 2.793 | 2.932 |
4.289 | 4.097 | 3.577 | 2.880 | 2.853 | 3.113 |
Element Weight (%) | Run 3 | Run 5 | Run 17 | Run 48 |
---|---|---|---|---|
Fluorine | 0.77 | 3.31 | 6.05 | 23.42 |
Platinum | 47.62 | 74.24 | 50.98 | 27.73 |
Sample | Sorption Amount (g/L) | Sorption Efficiency (%) |
---|---|---|
1 | 0.643 | 64.281 |
2 | 0.934 | 93.371 |
3 | 0.917 | 91.722 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manaf, E.; Abdeali, G.; Reidy, S.; Higginbotham, C.L.; Lyons, J.G. Response Surface Modelling Nafion-117 Sorption of Tetraammineplatinum(II) Chloride in the Electroless Plating of IPMCs. Polymers 2024, 16, 2338. https://doi.org/10.3390/polym16162338
Manaf E, Abdeali G, Reidy S, Higginbotham CL, Lyons JG. Response Surface Modelling Nafion-117 Sorption of Tetraammineplatinum(II) Chloride in the Electroless Plating of IPMCs. Polymers. 2024; 16(16):2338. https://doi.org/10.3390/polym16162338
Chicago/Turabian StyleManaf, Eyman, Golnoosh Abdeali, Sean Reidy, Clement L. Higginbotham, and John G. Lyons. 2024. "Response Surface Modelling Nafion-117 Sorption of Tetraammineplatinum(II) Chloride in the Electroless Plating of IPMCs" Polymers 16, no. 16: 2338. https://doi.org/10.3390/polym16162338
APA StyleManaf, E., Abdeali, G., Reidy, S., Higginbotham, C. L., & Lyons, J. G. (2024). Response Surface Modelling Nafion-117 Sorption of Tetraammineplatinum(II) Chloride in the Electroless Plating of IPMCs. Polymers, 16(16), 2338. https://doi.org/10.3390/polym16162338