The Role of Superabsorbent Polymers and Polymer Composites in Water Resource Treatment and Management
Abstract
:1. Introduction
2. SAPs as Water-Retaining Systems
2.1. Synthetic Polymers (SPs)
2.2. Natural-Polymer-Modified (NPM) Systems
2.3. Organic–Inorganic Composites (OICs)
3. SAP in Water Treatment
4. SAPs, Pristine and Composite, as a Controlled-Release System for Fertilizers
5. SAPs in Urban Green Areas
- (1)
- Polyacrylamide gel at a high application rate (1 vol%), providing a water reserve;
- (2)
- Coarser particle sizes of red brick, promoting slower and more sustainable plant growth.
6. How to Use WRA and Long-Term Stability Assessment
Type of SAPs | Swelling in Tap Water, % | SAP to Soil Ratio, wt.% | Application Time, Day | Regeneration | Ref | |
---|---|---|---|---|---|---|
SP | 150 | 400 g/tree | Up to 360 | Rain | [142] | |
185 | 0.01 | Up to 35 | – | [78] | ||
– | 0.5 | Up to 15 | – | [144] | ||
96.7–122.1 | 0.1–0.3 | Up to 28 | 4 times (by adding water) | [145] | ||
– | 0.04–0.4 | Up to 77 | 8 times (by adding 1.2 l of water for plant) | [45] | ||
350 * (T = 50 °C) | 0.1–0.2 | Up to 22 | – | [65] | ||
604 * | 0.01 | Up to 7 | – | [66] | ||
– | 2.5 kg/ha | Up to 84 | 12 times (by adding water) | [69] | ||
190 | 0.006 | Up to 22 | – | [70] | ||
– | 0.1–1 | Up to 30 | – | [71] | ||
1665.8 * | 0.002 | Up to 270 | – | [72] | ||
300–350 | 250 g/m 25 g/tree | Up to 90 Up to 360 | Rain | [81] | ||
180 | 0.01 | Up to 30 | – | |||
NPM | 350–800 * (T = 50 °C) | 2.5–5 kg/ha | Up to 365 | Irrigation and Rain | [73] | |
187 | 3–5 | Up to 30 | 4–10 times (by adding water or Hoagland’s solution) | [141] | ||
390 * | 0.01 | Up to 28 | 4 times (by adding water) | [85] | ||
1107 * | 0.001–0.01 | Up to 28 | – | [88] | ||
OIC | tuff | 22.24–34 | 0.01 | Up to 30 | – | [135] |
nano char | 215.1 * | 1 | Up to 7 | – | [103] | |
zeolite | 92.5 | – | Up to 16 | 2 times (by adding water) | [70] |
7. Conclusions and Perspectives
- Developing new types of green composite hydrogels from sustainable raw materials (such as starch and cellulose) with multi-performance properties, including water retention capacity and the controlled release of water and/or fertilizers, is important. The non-optimized use of fertilizers remains a major factor in environmental pollution. Encapsulating fertilizer granules in superabsorbent polymer (SAP) systems, traditionally used only as water reservoirs, can reduce overdosing and minimize the frequency of fertilizer application. Specifically, incorporating capsule-like fillers (such as zeolites, diatomite, clays, etc.) into hydrogels can enhance their functionality as nutrient/fertilizer reservoirs. These capsules facilitate controlled nutrient release, allowing crops to absorb nutrients efficiently and thereby reducing soil and water pollution.
- The development of sustainable smart hydrogels focuses on creating materials that are stimuli-responsive, i.e., capable of reacting to various environmental factors such as pH, temperature, moisture levels, and light. These advanced hydrogels can be particularly beneficial in agricultural applications, where they facilitate the controlled release of water and nutrients, enhancing crop growth and resource efficiency. These developments highlight the potential of green composite hydrogels in creating more sustainable and efficient agricultural practices.
- Developing new sustainable and regenerable composite hydrogels that can be easily regenerated after fulfilling their role in releasing water and/or nutrients remains a significant challenge. This endeavor is crucial within the framework of the circular economy. This challenge can be addressed by integrating Covalent Adaptable Networks (CANs) into hydrogels’ chemical structures. CANs are characterized by their ability to form and break covalent bonds reversibly, allowing the material to be repaired, reprocessed, and recycled.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tomlinson, I. Doubling Food Production to Feed the 9 Billion: A Critical Perspective on a Key Discourse of Food Security in the UK. J. Rural. Stud. 2013, 29, 81–90. [Google Scholar] [CrossRef]
- Nasser, A.A.; Rashad, M.Z.; Hussein, S.E. A Two-Layer Water Demand Prediction System in Urban Areas Based on Micro-Services and LSTM Neural Networks. IEEE Access 2020, 8, 147647–147661. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A Review of Drought Concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Geng, S.M.; Yan, D.H.; Zhang, T.X.; Weng, B.S.; Zhang, Z.B.; Qin, T.L.; Yan, Á.D.H.; Weng, B.S.; Zhang, Á.Z.B.; Zhang, T.X. Effects of Drought Stress on Agriculture Soil. Nat. Hazards 2015, 75, 1997–2011. [Google Scholar] [CrossRef]
- Jiménez-Rosado, M.; Alonso-González, M.; Rubio-Valle, J.F.; Perez-Puyana, V.; Romero, A. Biodegradable Soy Protein-Based Matrices for the Controlled Release of Zinc in Horticulture. J. Appl. Polym. Sci. 2020, 137, 49187. [Google Scholar] [CrossRef]
- Villarreal, E.L.; Bengtsson, L. Response of a Sedum Green-Roof to Individual Rain Events. Ecol. Eng. 2005, 25, 1–7. [Google Scholar] [CrossRef]
- Cuthbert, M.O.; Rau, G.C.; Ekström, M.; O’carroll, D.M.; Bates, A.J. Global Climate-Driven Trade-Offs between the Water Retention and Cooling Benefits of Urban Greening. Nat. Commun. 2022, 13, 518. [Google Scholar] [CrossRef] [PubMed]
- Mora, C.; Dousset, B.; Caldwell, I.R.; Powell, F.E.; Geronimo, R.C.; Bielecki, C.R.; Counsell, C.W.W.; Dietrich, B.S.; Johnston, E.T.; Louis, L.V.; et al. Global Risk of Deadly Heat. Nat. Clim. Chang. 2017, 7, 501–506. [Google Scholar] [CrossRef]
- Verdolotti, L.; Oliviero, M.; Lavorgna, M.; Santillo, C.; Tallia, F.; Iannace, S.; Chen, S.; Jones, J.R. “Aerogel-like” Polysiloxane-Polyurethane Hybrid Foams with Enhanced Mechanical and Thermal-Insulating Properties. Compos. Sci. Technol. 2021, 213, 108917. [Google Scholar] [CrossRef]
- de Luca Bossa, F.; Verdolotti, L.; Russo, V.; Campaner, P.; Minigher, A.; Lama, G.C.; Boggioni, L.; Tesser, R.; Lavorgna, M. Upgrading Sustainable Polyurethane Foam Based on Greener Polyols: Succinic-Based Polyol and Mannich-Based Polyol. Materials 2020, 13, 3170. [Google Scholar] [CrossRef]
- Oliviero, M.; Verdolotti, L.; Stanzione, M.; Lavorgna, M.; Iannace, S.; Tarello, M.; Sorrentino, A. Bio-Based Flexible Polyurethane Foams Derived from Succinic Polyol: Mechanical and Acoustic Performances. J. Appl. Polym. Sci. 2017, 134, 518. [Google Scholar] [CrossRef]
- Galzerano, B.; Capasso, I.; Verdolotti, L.; Lavorgna, M.; Vollaro, P.; Caputo, D.; Iannace, S.; Liguori, B. Design of Sustainable Porous Materials Based on 3D-Structured Silica Exoskeletons, Diatomite: Chemico-Physical and Functional Properties. Mater. Des. 2018, 145, 196–204. [Google Scholar] [CrossRef]
- Liguori, B.; Capasso, I.; Romeo, V.; D’Auria, M.; Lavorgna, M.; Caputo, D.; Iannace, S.; Verdolotti, L. Hybrid Geopolymeric Foams with Diatomite Addition: Effect on Chemico-Physical Properties. J. Cell. Plast. 2017, 53, 525–536. [Google Scholar] [CrossRef]
- Verdolotti, L.; Di Caprio, M.R.; Lavorgna, M.; Buonocore, G.G. Polyurethane Nanocomposite Foams: Correlation between Nanofillers, Porous Morphology, and Structural and Functional Properties. In Polyurethane Polymers: Composites and Nanocomposites; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Monterusso, M.A.; Rowe, D.B.; Rugh, C.L.; Russell, D.K. Runoff Water Quantity and Quality from Green Roof Systems. Acta Hortic. 2004, 639, 369–376. [Google Scholar] [CrossRef]
- Stovin, V.; Vesuviano, G.; Kasmin, H. The Hydrological Performance of a Green Roof Test Bed under UK Climatic Conditions. J. Hydrol. 2012, 414–415, 148–161. [Google Scholar] [CrossRef]
- Shahmohammad, M.; Hosseinzadeh, M.; Bruce, D.; Bordbar, F.; Shahmohammadmirab, H.; Aghamohammadi, N. Sustainable Green Roofs: A Comprehensive Review of Influential Factors. Environ. Sci. Pollut. Res. 2022, 29, 78228–78254. [Google Scholar] [CrossRef]
- Getter, K.L.; Rowe, D.B.; Robertson, G.P.; Andersen, J.A. Carbon Sequestration Potential of Extensive Green Roofs. Environ. Sci. Technol. 2009, 43, 7564–7570. [Google Scholar] [CrossRef]
- Niachou, A.; Papakonstantinou, K.; Santamouris, M.; Tsangrassoulis, A.; Mihalakakou, G. Analysis of the Green Roof Thermal Properties and Investigation of Its Energy Performance. Energy Build. 2001, 33, 719–729. [Google Scholar] [CrossRef]
- Wong, N.H.; Chen, Y.; Ong, C.L.; Sia, A. Investigation of Thermal Benefits of Rooftop Garden in the Tropical Environment. Build. Environ. 2003, 38, 261–270. [Google Scholar] [CrossRef]
- Mandavgade, N.K.; Mungle, N.P.; Mandavgade, S.K.; Mungle, A.N.; Muley, M.D. Experimental Analysis on Roof Construction. Mater. Today Proc. 2022, 49, 1395–1400. [Google Scholar] [CrossRef]
- Vanwoert, N.D.; Rowe, D.B.; Andresen, J.A.; Rugh, C.L.; Fernandez, R.T.; Xiao, L. Green Roof Stormwater Retention: Effects of Roof Surface, Slope, and Media Depth. J. Environ. Qual. 2005, 34, 1036–1044. [Google Scholar] [CrossRef]
- Sailor, D.J. A Green Roof Model for Building Energy Simulation Programs. Energy Build. 2008, 40, 1466–1478. [Google Scholar] [CrossRef]
- Cristiano, E.; Urru, S.; Farris, S.; Ruggiu, D.; Deidda, R.; Viola, F. Analysis of Potential Benefits on Flood Mitigation of a CAM Green Roof in Mediterranean Urban Areas. Build. Environ. 2020, 183, 107179. [Google Scholar] [CrossRef]
- Olszewski, M.W.; Holmes, M.H.; Young, C.A. Assessment of Physical Properties and Stonecrop Growth in Green Roof Substrates Amended with Compost and Hydrogel. Technol. Prod. Rep. 2010, 20, 438–444. [Google Scholar] [CrossRef]
- Nektarios, P.A.; Amountzias, I.; Kokkinou, I.; Ntoulas, N. Green Roof Substrate Type and Depth Affect the Growth of the Native Species Dianthus Fruticosus under Reduced Irrigation Regimens. HortScience 2011, 46, 1208–1216. [Google Scholar] [CrossRef]
- Durhman, A.K.; Rowe, D.B.; Rugh, C.L. Effect of Substrate Depth on Initial Growth, Coverage, and Survival of 25 Succulent Green Roof Plant Taxa. HortScience 2007, 42, 588–595. [Google Scholar] [CrossRef]
- Oschmann, C.; Kobayashi, N.; Perkuhn, C.; Grüneberg, H.; Wissemeier, A.H. Study to Expand the Range of Wild Plants for Extensive Roof Greening Systems Using Superabsorbent Polymers (SAP). Acta Hortic. 2009, 813, 421–426. [Google Scholar] [CrossRef]
- Farrell, C.; Ang, X.Q.; Rayner, J.P. Water-Retention Additives Increase Plant Available Water in Green Roof Substrates. Ecol. Eng. 2013, 52, 112–118. [Google Scholar] [CrossRef]
- Savi, T.; Marin, M.; Boldrin, D.; Incerti, G.; Andri, S.; Nardini, A. Green Roofs for a Drier World: Effects of Hydrogel Amendment on Substrate and Plant Water Status. Sci. Total Environ. 2014, 490, 467–476. [Google Scholar] [CrossRef]
- Liberalesso, T.; Tassi, R.; Ceconi, D.E.; Allasia, D.G.; Arboit, N.K.S. Effect of Rice Husk Addition on the Physicochemical and Hydrological Properties on Green Roof Substrates under Subtropical Climate Conditions. J. Clean. Prod. 2021, 315, 128133. [Google Scholar] [CrossRef]
- Yang, M.; Dong, W.; Cheng, R.; Wang, H.; Zhao, Z.; Wang, F.; Wang, Y. Effect of Highly Efficient Substrate Modifier, Super-Absorbent Polymer, on the Performance of the Green Roof. Sci. Total Environ. 2022, 806, 150638. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, C. Selecting the Proper Components for a Green Roof Growing Media. In Proceedings of the 2nd National Low Impact Development Conference, Wilmington, CA, USA, 12–14 March 2007; pp. 240–251. [Google Scholar] [CrossRef]
- Gómez, S.J. Characterization and Effects of Cross-Linked Potassium Polyacrylate as Soil Amendmen. Ph.D. Thesis, University of Seville, Seville, Spain, 2015. [Google Scholar]
- Zohuriaan-Mehr, M.J.; Omidian, H.; Doroudiani, S.; Kabiri, K. Advances in Non-Hygienic Applications of Superabsorbent Hydrogel Materials. J. Mater. Sci. 2010, 45, 5711–5735. [Google Scholar] [CrossRef]
- Tomczykowa, M.; Plonska-Brzezinska, M.E. Conducting Polymers, Hydrogels and Their Composites: Preparation, Properties and Bioapplications. Polymers 2019, 11, 350. [Google Scholar] [CrossRef] [PubMed]
- Maiti, S.; Maji, B.; Yadav, H. Progress on Green Crosslinking of Polysaccharide Hydrogels for Drug Delivery and Tissue Engineering Applications. Carbohydr. Polym. 2024, 326, 121584. [Google Scholar] [CrossRef] [PubMed]
- Kabiri, K.; Omidian, H.; Zohuriaan-Mehr, M.J.; Doroudiani, S. Superabsorbent Hydrogel Composites and Nanocomposites: A Review. Polym. Compos. 2011, 32, 277–289. [Google Scholar] [CrossRef]
- Warson, H. Modern Superabsorbent Polymer Technology. Polym. Int. 2000, 49, 1548. [Google Scholar] [CrossRef]
- Hartmann, R.; Verplancke, H.; Bishay, B.G. Study of the Water Repellency of Soils under Citrus Trees in Egypt, and Means of Improvement. Meded. Fac. Landbouwwet. Rijksuniv. Gent. 1976, 41, 201–209. [Google Scholar]
- Rietveld, W.J. Hydrophilic Polymer Reduces Germination of Ponderosa Pine in Seed Spots. Tree Plant. Notes 1976, 27, 18–20. [Google Scholar]
- Lamont, G.P.; O’Connell, M.A. Shelf-Life of Bedding Plants as Influenced by Potting Media and Hydrogels. Sci. Hortic. 1987, 31, 141–149. [Google Scholar] [CrossRef]
- Swietlik, D. Effect of Soil Amendment with Viterra Hydrogel on Establishment of Newly-Planted Grapefruit Trees Cv Ruby Red. Commun. Soil Sci. Plant Anal. 1989, 20, 1697–1705. [Google Scholar] [CrossRef]
- Austin, M.E.; Bondari, K. Hydrogel as a Field Medium Amendment for Blueberry Plants. HortScience 1992, 27, 973–974. [Google Scholar] [CrossRef]
- Hüttermann, A.; Zommorodi, M.; Reise, K. Addition of Hydrogels to Soil for Prolonging the Survival of Pinus Halepensis Seedlings Subjected to Drought. Soil Tillage Res. 1999, 50, 295–304. [Google Scholar] [CrossRef]
- Well, F.; Ludwig, F. Blue–Green Architecture: A Case Study Analysis Considering the Synergetic Effects of Water and Vegetation. Front. Archit. Res. 2020, 9, 191–202. [Google Scholar] [CrossRef]
- Reinstädtler, S.; Islam, S.N.; Levy, J.; Eslamian, S. Water Harvesting Case Studies in Germany: Urban and Regional Investigations. In Handbook of Water Harvesting and Conservation: Case Studies and Application Examples; Wiley-Blackwell: Hoboken, NJ, USA, 2021; ISBN 9781119776017. [Google Scholar]
- Morone, A.; Parlato, S.; Sarno, I.; Adad, G.N. AURA “Green & Smart Urban Furniture” Integration of Urban Furniture IoT and Phytoremediation. MD J. 2021, 11, 62–75. [Google Scholar]
- Reinstädtler, S.; Schmidt, M. Environmental Impact Assessment for Urban Water Reuse–A Tool for Sustainable Development. In Urban Water Reuse Handbook; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Li, H. Smart Hydrogel Modelling; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 9783642023675. [Google Scholar]
- Elliot, M. Superabsorbent polymers—Media for the enzymatic detection of ethyl alcohol in urine. Anal. Biochem. 2013, 182, 257–261. [Google Scholar] [CrossRef]
- Ono, T.; Sugimoto, T.; Shinkai, S.; Sada, K. Lipophilic Polyelectrolyte Gels as Super-Absorbent Polymers for Nonpolar Organic Solvents. Nature 2007, 6, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Avni, Y.; Andelman, D.; Podgornik, R. Charge Regulation of Polyelectrolyte Gels: Swelling Transition. Macromolecules 2023, 56, 5217–5224. [Google Scholar] [CrossRef]
- Hoffman, A.S. Hydrogels for Biomedical Applications. Adv. Drug Deliv. Rev. 2002, 54, 3–12. [Google Scholar] [CrossRef]
- Jones, D.S.; Andrews, G.P.; Gorman, S.P. Characterization of Crosslinking Effects on the Physicochemical and Drug Diffusional Properties of Cationic Hydrogels Designed as Bioactive Urological Biomaterials. J. Pharm. Pharmacol. 2005, 57, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Chang, A. PH-Sensitive Starch-g-Poly(Acrylic Acid)/Sodium Alginate Hydrogels for Controlled Release of Diclofenac Sodium. Iran. Polym. J. 2015, 24, 161–169. [Google Scholar] [CrossRef]
- Guerassimoff, L.; Ferrere, M.; Van Herck, S.; Dehissi, S.; Nicolas, V.; De Geest, B.G.; Nicolas, J. Thermosensitive Polymer Prodrug Nanoparticles Prepared by an All-Aqueous Nanoprecipitation Process and Application to Combination Therapy. J. Control. Release 2024, 369, 376–393. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, H.; Rashid, M.; Rahman, M.M.; Miah, M.A.J.; Tauer, K.; Gafur, M.A. Surface Modification of Temperature-Responsive Polymer Particles by an Electrically Conducting Polyaniline Shell Layer. Polym. Int. 2014, 63, 667–673. [Google Scholar] [CrossRef]
- Jung, S.C.; Bae, Y.C. Molecular Thermodynamic Analysis for Assessing the Relationship between Reentrant Swelling Behavior and Ternary Liquid-Liquid Equilibrium for Poly (N-Isopropylacrylamide) Nanometer-Sized Gel Particles in a Water-Tetrahydrofuran Cosolvent System. J. Phys. Chem. B 2012, 116, 2208–2215. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.Y.; Li, C.Y.; Du, M.; Yin, J.; Qian, J.; Wu, Z.L.; Zheng, Q. Programmable Deformations of Biomimetic Composite Hydrogels Embedded with Printed Fibers. ACS Appl. Mater. Interfaces 2020, 12, 57497–57504. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.I.; Bae, Y.H. A Sulfonamide Based Glucose-Responsive Hydrogel with Covalently Immobilized Glucose Oxidase and Catalase. J. Control. Release 2003, 86, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Behera, S.; Mahanwar, P.A. Superabsorbent Polymers in Agriculture and Other Applications: A Review. Polym. Plast. Technol. Mater. 2020, 59, 341–356. [Google Scholar] [CrossRef]
- Smagin, A.V.; Budnikov, V.I.; Sadovnikova, N.B.; Kirichenko, A.V.; Belyaeva, E.A.; Krivtsova, V.N. Gel-Forming Soil Conditioners of Combined Action: Laboratory Tests for Functionality and Stability. Polymers 2022, 14, 4665. [Google Scholar] [CrossRef] [PubMed]
- Andry, H.; Yamamoto, T.; Irie, T.; Moritani, S.; Inoue, M.; Fujiyama, H. Water Retention, Hydraulic Conductivity of Hydrophilic Polymers in Sandy Soil as Affected by Temperature and Water Quality. J. Hydrol. 2009, 373, 177–183. [Google Scholar] [CrossRef]
- Narjary, B.; Aggarwal, P.; Singh, A.; Chakraborty, D.; Singh, R. Water Availability in Different Soils in Relation to Hydrogel Application. Geoderma 2012, 187–188, 94–101. [Google Scholar] [CrossRef]
- Guo, Y.; Guo, R.; Shi, X.; Lian, S.; Zhou, Q.; Chen, Y.; Liu, W.; Li, W. Synthesis of Cellulose-Based Superabsorbent Hydrogel with High Salt Tolerance for Soil Conditioning. Int. J. Biol. Macromol. 2022, 209, 1169–1178. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Mohdy, H.L.; Hegazy, E.A.; El-Nesr, E.M.; El-Wahab, M.A. Control Release of Some Pesticides from Starch/(Ethylene Glycol-Co-Methacrylic Acid) Copolymers Prepared by γ-Irradiation. J. Polym. Res. 2011, 18, 1605–1615. [Google Scholar] [CrossRef]
- Abedi-Koupai, J.; Sohrab, F.; Swarbrick, G. Evaluation of Hydrogel Application on Soil Water Retention Characteristics. J. Plant Nutr. 2008, 31, 317–331. [Google Scholar] [CrossRef]
- Rehman, A.; Ahmad, R.; Safdar, M. Effect of Hydrogel on the Performance of Aerobic Rice Sown under Different Techniques. Plant Soil Environ. 2011, 57, 321–325. [Google Scholar] [CrossRef]
- Rajanna, G.A.; Manna, S.; Singh, A.; Babu, S.; Singh, V.K.; Dass, A.; Chakraborty, D.; Patanjali, N.; Chopra, I.; Banerjee, T.; et al. Biopolymeric Superabsorbent Hydrogels Enhance Crop and Water Productivity of Soybean-Wheat System in Indo-Gangetic Plains of India. Sci. Rep. 2022, 12, 11955. [Google Scholar] [CrossRef] [PubMed]
- Abedi-Koupai, J.; Asadkazemi, J. Effects of a Hydrophilic Polymer on the Field Performance of an Ornamental Plant (Cupressus Arizonica) under Reduced Irrigation Regimes. Iran. Polym. J. Engl. Ed. 2006, 15, 715–725. [Google Scholar]
- Zhao, W.; Cao, T.; Dou, P.; Sheng, J.; Luo, M. Effect of Various Concentrations of Superabsorbent Polymers on Soil Particle-Size Distribution and Evaporation with Sand Mulching. Sci. Rep. 2019, 9, 3511. [Google Scholar] [CrossRef] [PubMed]
- Oksińska, M.P.; Magnucka, E.G.; Lejcuś, K.; Pietr, S.J. Biodegradation of the Cross-Linked Copolymer of Acrylamide and Potassium Acrylate by Soil Bacteria. Environ. Sci. Pollut. Res. 2016, 23, 5969–5977. [Google Scholar] [CrossRef] [PubMed]
- Neethu, T.M.; Dubey, P.K.; Kaswala, A.R. Prospects and Applications of Hydrogel Technology in Agriculture. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3155–3162. [Google Scholar] [CrossRef]
- Ekebafe, L.O.; Ogbeifun, D.E.; Okieimen, F.E. Polymer Applications in Agriculture. Biokemistri 2011, 23, 81–89. [Google Scholar]
- Yang, M.; Shi, Y. Categories and Application Fields and Manufacturing Process and Action Mechanism of Water Retaining Agent. Adv. Polym. Technol. 2022, 2022, 2211441. [Google Scholar] [CrossRef]
- Kadhim, S.A.; Hameed, A.M.; Rasheed, R.T. Synthesis and Study of Magnesium Complexes Derived from Polyacrylate and Polyvinyl Alcohol and Their Applications as Superabsorbent Polymers. J. Mech. Behav. Mater. 2022, 31, 462–472. [Google Scholar] [CrossRef]
- Liu, M.; Liang, R.; Zhan, F.; Liu, Z.; Niu, A. Preparation of Superabsorbent Slow Release Nitrogen Fertilizer by Inverse Suspension Polymerization. Polym. Int. 2007, 56, 729–737. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, L.; Kong, Y.; Zhang, E.; Liu, Y. Synthesis and Properties of N-Maleyl Chitosan-Cross-Linked Poly(Acrylic Acid-Co-Acrylamide) Superabsorbents. J. Polym. Environ. 2011, 19, 926–934. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, Characterization, and Applications: A Review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Yang, H.; Cao, H.; Tan, T. Using Polyaspartic Acid Hydro-Gel as Water Retaining Agent and Its Effect on Plants under Drought Stress. Saudi J. Biol. Sci. 2016, 23, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Pushpamalar, J.; Langford, S.J.; Ahmad, M.B.; Lim, Y.Y.; Hashim, K. Eco-Friendly Smart Hydrogels for Soil Conditioning and Sustain Release Fertilizer. Int. J. Environ. Sci. Technol. 2018, 15, 2059–2074. [Google Scholar] [CrossRef]
- Pang, L.; Gao, Z.; Feng, H.; Wang, S.; Wang, Q. Cellulose Based Materials for Controlled Release Formulations of Agrochemicals: A Review of Modifications and Applications. J. Control. Release 2019, 316, 105–115. [Google Scholar] [CrossRef]
- Sannino, A.; Esposito, A.; De Rosa, A.; Cozzolino, A.; Ambrosio, L.; Nicolais, L. Biomedical Application of a Superabsorbent Hydrogel for Body Water Elimination in the Treatment of Edemas. J. Biomed. Mater. Res. A 2003, 67, 1016–1024. [Google Scholar] [CrossRef] [PubMed]
- Essawy, H.A.; Ghazy, M.B.M.; El-Hai, F.A.; Mohamed, M.F. Superabsorbent Hydrogels via Graft Polymerization of Acrylic Acid from Chitosan-Cellulose Hybrid and Their Potential in Controlled Release of Soil Nutrients. Int. J. Biol. Macromol. 2016, 89, 144–151. [Google Scholar] [CrossRef]
- Yoshimura, T.; Sengoku, K.; Fujioka, R. Pectin-Based Surperabsorbent Hydrogels Crosslinked by Some Chemicals: Synthesis and Characterization. Polym. Bull. 2005, 55, 123–129. [Google Scholar] [CrossRef]
- Wang, W.B.; Huang, D.J.; Kang, Y.R.; Wang, A.Q. One-Step in Situ Fabrication of a Granular Semi-IPN Hydrogel Based on Chitosan and Gelatin for Fast and Efficient Adsorption of Cu2+ Ion. Colloids Surf. B Biointerfaces 2013, 106, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, A. Preparation, Swelling and Water-Retention Properties of Crosslinked Superabsorbent Hydrogels Based on Guar Gum. Adv. Mat. Res. 2010, 96, 177–182. [Google Scholar] [CrossRef]
- Maitra, J.; Shukla, V.K. Cross-Linking in Hydrogels—A Review. Am. J. Polym. Sci. 2014, 4, 25–31. [Google Scholar] [CrossRef]
- Mudiyanselage, T.K.; Neckers, D.C. Highly Absorbing Superabsorbent Polymer. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 1357–1364. [Google Scholar] [CrossRef]
- Dannert, C.; Stokke, B.T.; Dias, R.S. Nanoparticle-Hydrogel Composites: From Molecular Interactions to Macroscopic Behavior. Polymers 2019, 11, 275. [Google Scholar] [CrossRef] [PubMed]
- Thoniyot, P.; Tan, M.J.; Karim, A.A.; Young, D.J.; Loh, X.J. Nanoparticle–Hydrogel Composites: Concept, Design, and Applications of These Promising, Multi-Functional Materials. Adv. Sci. 2015, 2, 1400010. [Google Scholar] [CrossRef] [PubMed]
- Kabiri, K.; Zohuriaan-Mehr, M.J. Superabsorbent Hydrogel Composites. Polym. Adv. Technol. 2003, 14, 438–444. [Google Scholar] [CrossRef]
- Baek, S.H.; Kim, B.K. Synthesis of Polyacrylamide/Polyurethane Hydrogels by Latex IPN and AB Crosslinked Polymers. Colloids Surf. A Physicochem. Eng. Asp. 2003, 220, 191–198. [Google Scholar] [CrossRef]
- Lin, J.; Wu, J.; Yang, Z.; Pu, M. Synthesis and Properties of Poly(Acrylic Acid)/Mica Superabsorbent Nanocomposite. Macromol. Rapid Commun. 2001, 22, 422–424. [Google Scholar] [CrossRef]
- Xiang, Y.; Peng, Z.; Chen, D. A New Polymer/Clay Nano-Composite Hydrogel with Improved Response Rate and Tensile Mechanical Properties. Eur. Polym. J. 2006, 42, 2125–2132. [Google Scholar] [CrossRef]
- Ding, M.; Su, H.; Li, Y.; Yang, K.; Dang, L.; Li, F.; Xue, B. Properties of Polyacrylamide Hydrogel Enhanced by Kaolinite with Expanded Layer Structure. Mater. Today Chem. 2022, 26, 101049. [Google Scholar] [CrossRef]
- Wu, J.; Wei, Y.; Lin, J.; Lin, S. Study on Starch-Graft-Acrylamide/Mineral Powder Superabsorbent Composite. Polymer 2003, 44, 6513–6520. [Google Scholar] [CrossRef]
- Cong, H.-P.; Wang, P.; Yu, S.-H.; Cong, H.-P.; Wang, P.; Yu, S.-H. Highly Elastic and Superstretchable Graphene Oxide/Polyacrylamide Hydrogels. Small 2013, 10, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Haraguchi, K.; Takehisa, T. Nanocomposite Hydrogels: A Unique Organic-Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/De-Swelling Properties. Adv. Mater. 2002, 14, 1120–1124. [Google Scholar] [CrossRef]
- Ganguly, S.; Das, N.C. Water Uptake Kinetics and Control Release of Agrochemical Fertilizers from Nanoclay-Assisted Semi-Interpenetrating Sodium Acrylate-Based Hydrogel. Polym. Plast. Technol. Eng. 2017, 56, 744–761. [Google Scholar] [CrossRef]
- Singh, A.; Sarkar, D.J.; Mittal, S.; Dhaka, R.; Maiti, P.; Singh, A.; Raghav, T.; Solanki, D.; Ahmed, N.; Singh, S.B. Zeolite Reinforced Carboxymethyl Cellulose-Na+-g-Cl-Poly(AAm) Hydrogel Composites with PH Responsive Phosphate Release Behavior. J. Appl. Polym. Sci. 2018, 136, 47332. [Google Scholar] [CrossRef]
- Salimi, M.; Motamedi, E.; Motesharezedeh, B.; Hosseini, H.M.; Alikhani, H.A. Starch-g-Poly(Acrylic Acid-Co-Acrylamide) Composites Reinforced with Natural Char Nanoparticles toward Environmentally Benign Slow-Release Urea Fertilizers. J. Environ. Chem. Eng. 2020, 8, 103765. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M.; Roy, P.; Bonilla-Petriciolet, A.; Badawi, M.; Ganachari, S.V.; Shetti, N.P.; Aminabhavi, T.M. Polymeric hydrogels-based materials for wastewater treatment. Chemosphere 2023, 331, 138743. [Google Scholar] [CrossRef]
- Ciğeroğlu, Z.; El Messaoudi, N.; Şenol, Z.M.; Başkan, G.; Georgin, J.; Gubernat, S. Clay-Based Nanomaterials and Their Adsorptive Removal Efficiency for Dyes and Antibiotics: A Review. Mater. Today Sustain. 2024, 26, 100735. [Google Scholar] [CrossRef]
- Kumar, N.; Gusain, R.; Pandey, S.; Ray, S.S. Hydrogel nanocomposite adsorbents and photocatalysts for sustainable water purification. Adv. Mater. Interfaces 2023, 10, 2201375. [Google Scholar] [CrossRef]
- Hou, C.; Zhang, Q.; Li, Y.; Wang, H. P25–Graphene Hydrogels: Room-Temperature Synthesis and Application for Removal of Methylene Blue from Aqueous Solution. J. Hazard. Mater. 2012, 205–206, 229–235. [Google Scholar] [CrossRef]
- Liu, H.; Liu, M.; Zhang, L.; Ma, L.; Chen, J.; Wang, Y. Dual-Stimuli Sensitive Composites Based on Multi-Walled Carbon Nanotubes and Poly(N,N-Diethylacrylamide-Co-Acrylic Acid) Hydrogels. React. Funct. Polym. 2010, 70, 294–300. [Google Scholar] [CrossRef]
- Gaharwar, A.K.; Peppas, N.A.; Khademhosseini, A. Nanocomposite Hydrogels for Biomedical Applications. Biotechnol. Bioeng. 2014, 111, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, X.; Yin, J.; Li, N.; Zhang, Z.; Xu, Y.; Zhang, L.; Qin, Z.; Jiao, T. Mechanically Robust, Degradable and Conductive MXene-Composited Gelatin Organohydrogel with Environmental Stability and Self-Adhesiveness for Multifunctional Sensor. Compos. Part B Eng. 2022, 241, 110052. [Google Scholar] [CrossRef]
- Kumari, S.; Khan, A.A.; Chowdhury, A.; Bhakta, A.K.; Mekhalif, Z.; Hussain, S. Efficient and Highly Selective Adsorption of Cationic Dyes and Removal of Ciprofloxacin Antibiotic by Surface Modified Nickel Sulfide Nanomaterials: Kinetics, Isotherm and Adsorption Mechanism. Colloids Surf A Physicochem Eng. Asp. 2020, 586, 124264. [Google Scholar] [CrossRef]
- Kumar, N.; Mittal, H.; Parashar, V.; Ray, S.S.; Ngila, J.C. Efficient Removal of Rhodamine 6G Dye from Aqueous Solution Using Nickel Sulphide Incorporated Polyacrylamide Grafted Gum Karaya Bionano-composite Hydrogel. RSC Adv. 2016, 6, 21929–21939. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, M.; Ji, M.; Zhang, L.; Qin, Z.; Zhang, Y.; Gao, L.; Jiao, T. Magnetic Graphene Oxide-Containing Chitosan sodium Alginate Hydrogel Beads for Highly Efficient and Sustainable Removal of Cationic Dyes. Int. J. Biol. Macromol. 2021, 193, 2221–2231. [Google Scholar] [CrossRef]
- Jovanović, Ž.; Stojkovska, J.; Obradović, B.; Mišković-Stanković, V. Alginate Hydrogel Microbeads Incorporated with Ag Nanoparticles Obtained by Electrochemical Method. Mater. Chem. Phys. 2012, 133, 182–189. [Google Scholar] [CrossRef]
- Liao, C.; Wu, Q.; Su, T.; Zhang, D.; Wu, Q.; Wang, Q. Nanocomposite Gels via in Situ Photoinitiation and Disassembly of TiO2–Clay Composites with Polymers Applied as UV Protective Films. ACS Appl. Mater. Interfaces 2014, 6, 1356–1360. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Yang, J.; Bao, S.; Wu, Q.; Wang, Q. Semiconductor Nanoparticle-Based Hydrogels Prepared via Self-Initiated Polymerization under Sunlight, Even Visible Light. Sci. Rep. 2013, 3, 1399. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.; Pu, W.; Gao, H. Synthesis and Characterization of Acrylamide/Zeolite Nanocomposite Hydrogels for Aqueous Zinc-Ion Batteries. Alex. Eng. J. 2024, 87, 417–423. [Google Scholar] [CrossRef]
- Lei, C.; Zhu, X.; Zhu, B.; Jiang, C.; Le, Y.; Yu, J. Superb Adsorption Capacity of Hierarchical Calcined Ni/Mg/Al Layered Double Hydroxides for Congo Red and Cr(VI) Ions. J. Hazard. Mater. 2017, 321, 801–811. [Google Scholar] [CrossRef]
- Duan, C.; Liu, C.; Meng, X.; Gao, K.; Lu, W.; Zhang, Y.; Dai, L.; Zhao, W.; Xiong, C.; Wang, W.; et al. Facile Synthesis of Ag NPs@ MIL-100(Fe)/Guar Gum Hybrid Hydrogel as a Versatile Photocatalyst for Wastewater Remediation: Photocatalytic Degradation, Water/Oil Separation and Bacterial Inactivation. Carbohydr. Polym. 2020, 230, 115642. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Kong, Y.; Wang, X.; Shi, B. Novel One Step Preparation of a 3D Alginate Based MOF Hydrogel for Water Treatment. New J. Chem. 2019, 43, 7202–7208. [Google Scholar] [CrossRef]
- Zhang, X.; Elsayed, I.; Navarathna, C.; Schueneman, G.T.; Hassan, E.B. Biohybrid Hydrogel and Aerogel from Self-Assembled Nanocellulose and Nanochitin as a High-Efficiency Adsorbent for Water Purification. ACS Appl. Mater. Interfaces 2019, 11, 46714–46725. [Google Scholar] [CrossRef]
- Gonzalez, J.S.; Ludueña, L.N.; Ponce, A.; Alvarez, V.A. Poly(Vinyl Alcohol)/Cellulose Nanowhiskers Nanocomposite Hydrogels for Potential Wound Dressings. Mater. Sci. Eng. C 2014, 34, 54–61. [Google Scholar] [CrossRef]
- Kaşgöz, H.; Durmuş, A.; Kaşgöz, A. Enhanced Swelling and Adsorption Properties of AAm-AMPSNa/Clay Hydrogel Nanocomposites for Heavy Metal Ion Removal. Polym. Adv. Technol. 2008, 19, 213–220. [Google Scholar] [CrossRef]
- Kundakci, S.; Üzüm, Ö.B.; Karadaǧ, E. Swelling and Dye Sorption Studies of Acrylamide/2-Acrylamido-2-Methyl-1-Propanesulfonic Acid/Bentonite Highly Swollen Composite Hydrogels. React. Funct. Polym. 2008, 68, 458–473. [Google Scholar] [CrossRef]
- Gopal, G.; Nirmala, M.J.; Mukherjee, A. A Novel Chitosan-Coated Fe–Cu CNS Loaded with CMC–Alginate Composite for Adsorptive Removal of Ciprofloxacin from Water. Surf. Interfaces 2023, 39, 102981. [Google Scholar] [CrossRef]
- Doğaroğlu, Z.G.; Uysal, Y.; Demir, A.; Makas, M.N.; Çaylalı, Z. Synthesis, Characterization and Optimization of PVA/SA Hydrogel Functionalized with Zeolite (Clinoptilolite): Efficient and Rapid Color Removal from Complex Textile Effluents. Mater. Chem. Phys. 2023, 295, 127090. [Google Scholar] [CrossRef]
- Farasati Far, B.; Naimi-Jamal, M.R.; Jahanbakhshi, M.; Khalafvandi, S.A.; Alian, M.; Razeghi Jahromi, D. Decontamination of Congo Red Dye from Aqueous Solution Using Nanoclay/Chitosan-Graft-Gelatin Nanocomposite Hydrogel. J. Mol. Liq. 2024, 395, 123839. [Google Scholar] [CrossRef]
- Xu, H.; Ou, Z.; Li, W.; Hu, T.; Zhang, Y.; Xu, H.; Wang, J.; Li, Y. Cadmium(II) Adsorption by Recyclable Zeolite-Loaded Hydrogel: Extension to the Removal of Cadmium(II) from Contaminated Soil. Chem. Eng. J. 2024, 492, 151842. [Google Scholar] [CrossRef]
- Priya, E.; Sarkar, S.; Maji, P.K. A Review on Slow-Release Fertilizer: Nutrient Release Mechanism and Agricultural Sustainability. J. Environ. Chem. Eng. 2024, 12, 113211. [Google Scholar] [CrossRef]
- Azeem, B.; Kushaari, K.; Man, Z.B.; Basit, A.; Thanh, T.H. Review on Materials & Methods to Produce Controlled Release Coated Urea Fertilizer. J. Control. Release 2014, 181, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.H.; Peppas, N.A. Preparation of Controlled Release Systems by Free-Radical UV Polymerizations in the Presence of a Drug. J. Control. Release 2001, 71, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Teodorescu, M.; Lungu, A.; Stanescu, P.O.; Neamţu, C. Preparation and Properties of Novel Slow-Release NPK Agrochemical Formulations Based on Poly(Acrylic Acid) Hydrogels and Liquid Fertilizers. Ind. Eng. Chem. Res. 2009, 48, 6527–6534. [Google Scholar] [CrossRef]
- Liu, M.; Liang, R.; Zhan, F.; Liu, Z.; Niu, A.; Liu, M. Synthesis of a Slow-Release and Superabsorbent Nitrogen Fertilizer and Its Properties. Polym. Adv. Technol. 2006, 17, 430–438. [Google Scholar] [CrossRef]
- Bortolin, A.; Aouada, F.A.; Mattoso, L.H.C.; Ribeiro, C. Nanocomposite PAAm/Methyl Cellulose/Montmorillonite Hydrogel: Evidence of Synergistic Effects for the Slow Release of Fertilizers. J. Agric. Food Chem. 2013, 61, 7431–7439. [Google Scholar] [CrossRef] [PubMed]
- Rashidzadeh, A.; Olad, A.; Reyhanitabar, A. Hydrogel/Clinoptilolite Nanocomposite-Coated Fertilizer: Swelling, Water-Retention and Slow-Release Fertilizer Properties. Polym. Bull. 2015, 72, 2667–2684. [Google Scholar] [CrossRef]
- Deska, I.; Mrowiec, M.; Ociepa, E.; Michniewski, M. Impact of the Hydrogel Amendment and the Dry Period Duration on the Green Roof Retention Capacity. Ecol. Chem. Eng. S. 2020, 27, 357–371. [Google Scholar] [CrossRef]
- Ju, J.H.; Xu, H.; Yeum, K.J.; Yoon, Y.H. Effects of Hydrophilic Polymer on the Survival, Growth, and Flowering Characteristics of Pineapple Sage (Salvia Elegans) in Unirrigated Green Roofs. Appl. Ecol. Environ. Res. 2020, 18, 3887–3896. [Google Scholar] [CrossRef]
- Young, T.M.; Cameron, D.D.; Phoenix, G.K. Increasing Green Roof Plant Drought Tolerance through Substrate Modification and the Use of Water Retention Gels. Urban Water J. 2017, 14, 551–560. [Google Scholar] [CrossRef]
- Ju, J.-H.; Yoon, Y.-H.; Ju, S.-Y. Influence of Substrates and Hydrogels on Spearmint (Mentha Spicata) Growth and Flowering in a Rooftop Garden. HortScience 2021, 56, 629–633. [Google Scholar] [CrossRef]
- Saha, A.; Sekharan, S.; Manna, U. Superabsorbent Hydrogel (SAH) as a Soil Amendment for Drought Management: A Review. Soil Tillage Res. 2020, 204, 104736. [Google Scholar] [CrossRef]
- Tan, W.K.; Zhu, J.; Lim, J.Y.; Gao, Z.; Loh, C.S.; Li, J.; Ong, C.N. Use of Okara-Derived Hydrogel for Enhancing Growth of Plants by Minimizing Leaching and Locking Nutrients and Water in Growing Substrate. Ecol. Eng. 2021, 159, 106122. [Google Scholar] [CrossRef]
- Chehab, H.; Tekaya, M.; Mechri, B.; Jemai, A.; Guiaa, M.; Mahjoub, Z.; Boujnah, D.; Laamari, S.; Chihaoui, B.; Zakhama, H.; et al. Effect of the Super Absorbent Polymer Stockosorb® on Leaf Turgor Pressure, Tree Performance and Oil Quality of Olive Trees Cv. Chemlali Grown under Field Conditions in an Arid Region of Tunisia. Agric. Water Manag. 2017, 192, 221–231. [Google Scholar] [CrossRef]
- Songara, J.C.; Patel, J.N.; Mungray, A.A. Preparation and Characterization of PAA/GG-Zeolite Nano-Composite Hydrogel for Agricultural Applications. J. Indian Chem. Soc. 2022, 99, 100686. [Google Scholar] [CrossRef]
- Shi, Y.; Li, J.; Shao, J.; Deng, S.; Wang, R.; Li, N.; Sun, J.; Zhang, H.; Zhu, H.; Zhang, Y.; et al. Effects of Stockosorb and Luquasorb Polymers on Salt and Drought Tolerance of Populus Popularis. Sci. Hortic. 2010, 124, 268–273. [Google Scholar] [CrossRef]
- Bai, W.; Zhang, H.; Liu, B.; Wu, Y.; Song, J. Effects of Super-Absorbent Polymers on the Physical and Chemical Properties of Soil Following Different Wetting and Drying Cycles. Soil Use Manag. 2010, 26, 253–260. [Google Scholar] [CrossRef]
Hydrogels’ Characteristics | Reference |
---|---|
Greater resistance in a saline environment | [63] |
Maximum absorption capacity at T = 40–50 °C * | [64] |
Gradual release of absorbed water | [65] |
High stability in the soil for at least one year | [66] |
Reduction in herbicide and fertilizer leaching | [67] |
Improved physical properties of soils, root growth, and density | [68] |
Increased seed germination rate and seedling emergence | [69] |
Reduced irrigation frequency and plant water stress | [70] |
Delay of permanent wilting point | [71] |
Cost-effectiveness | [72] |
Biodegradability without formation of toxic species | [73] |
pH neutrality after swelling in water | [74] |
Photostability | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campanile, A.; Liguori, B.; Lama, G.C.; Recupido, F.; Donatiello, S.; Gagliardi, M.; Morone, A.; Verdolotti, L. The Role of Superabsorbent Polymers and Polymer Composites in Water Resource Treatment and Management. Polymers 2024, 16, 2337. https://doi.org/10.3390/polym16162337
Campanile A, Liguori B, Lama GC, Recupido F, Donatiello S, Gagliardi M, Morone A, Verdolotti L. The Role of Superabsorbent Polymers and Polymer Composites in Water Resource Treatment and Management. Polymers. 2024; 16(16):2337. https://doi.org/10.3390/polym16162337
Chicago/Turabian StyleCampanile, Assunta, Barbara Liguori, Giuseppe Cesare Lama, Federica Recupido, Silvana Donatiello, Mariarita Gagliardi, Alfonso Morone, and Letizia Verdolotti. 2024. "The Role of Superabsorbent Polymers and Polymer Composites in Water Resource Treatment and Management" Polymers 16, no. 16: 2337. https://doi.org/10.3390/polym16162337
APA StyleCampanile, A., Liguori, B., Lama, G. C., Recupido, F., Donatiello, S., Gagliardi, M., Morone, A., & Verdolotti, L. (2024). The Role of Superabsorbent Polymers and Polymer Composites in Water Resource Treatment and Management. Polymers, 16(16), 2337. https://doi.org/10.3390/polym16162337