Polyvinylimidazole-Based Cryogel as an Efficient Tool for the Capture and Release of Oleuropein in Aqueous Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Poly(VI) Cryogel
2.3. Cryogel Characterization
2.4. Adsorption Kinetics of Oleuropein
2.5. Adsorption Isotherm of Oleuropein
2.6. Release of Oleuropein and Reusability of Poly(VI)
3. Results
3.1. Synthesis and Characterization of the Material
3.2. Adsorption Kinetics Analysis
3.3. Adsorption Isotherms Analysis
3.4. Release of Oleuropein and Reusability of Poly(VI)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rahmanian, N.; Jafari, S.M.; Wani, T.A. Bioactive Profile, Dehydration, Extraction and Application of the Bioactive Components of Olive Leaves. Trends Food Sci. Technol. 2015, 42, 150–172. [Google Scholar] [CrossRef]
- Hassen, I.; Casabianca, H.; Hosni, K. Biological Activities of the Natural Antioxidant Oleuropein: Exceeding the Expectation—A Mini-Review. J. Funct. Foods 2015, 18, 926–940. [Google Scholar] [CrossRef]
- Yateem, H.; Afaneh, I.; Al-Rimawi, F. Optimum Conditions for Oleuropein Extraction from Olive Leaves. Int. J. Appl. Sci. Technol. 2014, 4, 153–157. [Google Scholar]
- Rodríguez-Llorente, D.; Martín-Gutiérrez, D.; Suárez-Rodríguez, P.; Navarro, P.; Álvarez-Torrellas, S.; García, J.; Larriba, M. Sustainable Recovery of Phenolic Antioxidants from Real Olive Vegetation Water with Natural Hydrophobic Eutectic Solvents and Terpenoids. Environ. Res. 2023, 220, 115207. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fabiano-Tixier, A.S.; Tomao, V.; Cravotto, G.; Chemat, F. Green Ultrasound-Assisted Extraction of Carotenoids Based on the Bio-Refinery Concept Using Sunflower Oil as an Alternative Solvent. Ultrason. Sonochem. 2013, 20, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Mourtzinos, I.; Anastasopoulou, E.; Petrou, A.; Grigorakis, S.; Makris, D.; Biliaderis, C.G. Optimization of a Green Extraction Method for the Recovery of Polyphenols from Olive Leaf Using Cyclodextrins and Glycerin as Co-Solvents. J. Food Sci. Technol. 2016, 53, 3939–3947. [Google Scholar] [CrossRef] [PubMed]
- Mourtzinos, I.; Salta, F.; Yannakopoulou, K.; Chiou, A.; Karathanos, V.T. Encapsulation of Olive Leaf Extract in β-Cyclodextrin. J. Agric. Food Chem. 2007, 55, 8088–8094. [Google Scholar] [CrossRef]
- Dietz, M.L. Ionic Liquids as Extraction Solvents: Where Do We Stand? Sep. Sci. Technol. 2006, 41, 2047–2063. [Google Scholar] [CrossRef]
- Poole, C.F.; Poole, S.K. Extraction of Organic Compounds with Room Temperature Ionic Liquids. J. Chromatogr. A 2010, 1217, 2268–2286. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Luo, H.; Dai, S. Ionic Liquids-Based Extraction: A Promising Strategy for the Advanced Nuclear Fuel Cycle. Chem. Rev. 2012, 112, 2100–2128. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Huo, T.; Wu, X.; Wei, J.; Pei, D.; Di, D.; Wang, J.; Sun, Y. Effect of the Ionic Liquid Group in Novel Interpenetrating Polymer Networks on the Adsorption Properties for Oleuropein from Aqueous Solutions. New J. Chem. 2015, 39, 9181–9190. [Google Scholar] [CrossRef]
- Liu, B.; Liu, J.; Huang, D.; Pei, D.; Di, D. Separation and Purification of Hydroxytysol and Oleuropein from Olea europaea L. (Olive) Leaves Using Macroporous Resins and a Novel Solvent System. J. Sep. Sci. 2020, 43, 2619–2625. [Google Scholar] [CrossRef] [PubMed]
- Şahin, S.; Bilgin, M. Selective Adsorption of Oleuropein from Olive (Olea europaea) Leaf Extract Using Macroporous Resin. Chem. Eng. Commun. 2017, 204, 1391–1400. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.; Huang, S.; Zhang, L.; Ge, Z.; Sun, L.; Zong, W. Purification of Polyphenols from Distiller’s Grains by Macroporous Resin and Analysis of the Polyphenolic Components. Molecules 2019, 24, 1284. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zheng, Y.; Wang, X.; Feng, S.; Di, D. Simultaneous Separation and Purification of Flavonoids and Oleuropein from Olea europaea L. (Olive) Leaves Using Macroporous Resin. J. Sci. Food Agric. 2011, 91, 2826–2834. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.; Mitchell, A.E. Use of Amberlite Macroporous Resins to Reduce Bitterness in Whole Olives for Improved Processing Sustainability. J. Agric. Food Chem. 2019, 67, 1546–1553. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Liu, J.; Huang, D.; Pei, D.; Wei, J.; Di, D. Isolation and Purification of Oleuropein from Olive Leaves Using Boric Acid Affinity Resin and a Novel Solvent System. Colloids Surf. Physicochem. Eng. Asp. 2021, 614, 126145. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Zhang, J.; Wu, X.; Wei, J.; Pei, D.; Di, D. Adsorption Behaviors for Oleuropein from Olive Leaves Extracts by Porous Materials with Carbon Nanotubes. Colloid Polym. Sci. 2015, 293, 2395–2404. [Google Scholar] [CrossRef]
- Mecca, T.; Ussia, M.; Caretti, D.; Cunsolo, F.; Dattilo, S.; Scurti, S.; Privitera, V.; Carroccio, S.C. N-Methyl-D-Glucamine Based Cryogels as Reusable Sponges to Enhance Heavy Metals Removal from Water. Chem. Eng. J. 2020, 399, 125753. [Google Scholar] [CrossRef]
- Zagni, C.; Dattilo, S.; Mecca, T.; Gugliuzzo, C.; Scamporrino, A.A.; Privitera, V.; Puglisi, R.; Carola Carroccio, S. Single and Dual Polymeric Sponges for Emerging Pollutants Removal. Eur. Polym. J. 2022, 179, 111556. [Google Scholar] [CrossRef]
- Türkmen, D.; Bakhshpour, M.; Akgönüllü, S.; Aşır, S.; Denizli, A. Heavy Metal Ions Removal from Wastewater Using Cryogels: A Review. Front. Sustain. 2022, 3, 765592. [Google Scholar] [CrossRef]
- Fosso Tene, P.L.; Weltin, A.; Tritz, F.; Defeu Soufo, H.J.; Brandstetter, T.; Rühe, J. Cryogel Monoliths for Analyte Enrichment by Capture and Release. Langmuir 2021, 37, 11041–11048. [Google Scholar] [CrossRef] [PubMed]
- Calik, F.; Degirmenci, A.; Maouati, H.; Sanyal, R.; Sanyal, A. Redox-Responsive “Catch and Release” Cryogels: A Versatile Platform for Capture and Release of Proteins and Cells. ACS Biomater. Sci. Eng. 2024, 10, 3017–3028. [Google Scholar] [CrossRef] [PubMed]
- Silva de Sousa, L.; Chaves, F.S.; Ferraro, R.B.; Pessoa, A.; Minim, L.A. A Quaternary Amine Cryogel Column for Chromatographic Capture of L-Asparaginase. Process Biochem. 2023, 127, 92–98. [Google Scholar] [CrossRef]
- Malakhova, I.; Privar, Y.; Parotkina, Y.; Eliseikina, M.; Golikov, A.; Skatova, A.; Bratskaya, S. Supermacroporous Monoliths Based on Polyethyleneimine: Fabrication and Sorption Properties under Static and Dynamic Conditions. J. Environ. Chem. Eng. 2020, 8, 104395. [Google Scholar] [CrossRef]
- Zhong, T.; Feng, X.; Sun, L.; Zhang, J.; Tian, Y.; Zhang, X. Highly Effective Adsorption of Copper Ions by Poly(vinyl imidazole) Cryogels. Polym. Bull. 2021, 78, 5873–5890. [Google Scholar] [CrossRef]
- Tercan, M.; Demirci, S.; Dayan, O.; Sahiner, N. Simultaneous Degradation and Reduction of Multiple Organic Compounds by Poly(vinyl imidazole) Cryogel-Templated Co, Ni, and Cu Metal Nanoparticles. New J. Chem. 2020, 44, 4417–4425. [Google Scholar] [CrossRef]
- Hezarkhani, M.; Ustürk, S.; Özbilenler, C.; Yilmaz, E. Pullulan/Poly(N-vinylimidazole) Cryogel: An Efficient Adsorbent for Methyl Orange. J. Appl. Polym. Sci. 2021, 138, 50958. [Google Scholar] [CrossRef]
- Zagni, C.; Coco, A.; Dattilo, S.; Patamia, V.; Floresta, G.; Fiorenza, R.; Curcuruto, G.; Mecca, T.; Rescifina, A. HEMA-Based Macro and Microporous Materials for CO2 Capture. Mater. Today Chem. 2023, 33, 101715. [Google Scholar] [CrossRef]
- Dattilo, S.; Zagni, C.; Mecca, T.; Patamia, V.; Floresta, G.; Nicotra, P.; Carroccio, S.C.; Rescifina, A. Solvent-Free Conversion of CO2 in Carbonates through a Sustainable Macroporous Catalyst. Giant 2024, 18, 100258. [Google Scholar] [CrossRef]
- Zagni, C.; Patamia, V.; Dattilo, S.; Fuochi, V.; Furnari, S.; Furneri, P.M.; Carroccio, S.C.; Floresta, G.; Rescifina, A. Supramolecular Biomaterials as Drug Nanocontainers with Iron Depletion Properties for Antimicrobial Applications. Mater. Adv. 2024, 5, 3675–3682. [Google Scholar] [CrossRef]
- Ussia, M.; Di Mauro, A.; Mecca, T.; Cunsolo, F.; Nicotra, G.; Spinella, C.; Cerruti, P.; Impellizzeri, G.; Privitera, V.; Carroccio, S.C. ZnO–pHEMA Nanocomposites: An Ecofriendly and Reusable Material for Water Remediation. ACS Appl. Mater. Interfaces 2018, 10, 40100–40110. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Liu, Y.; Lu, H.; Fang, Q.; Rong, H. Efficient Adsorption of Tetracycline from Aqueous Solutions by Modified Alginate Beads after the Removal of Cu(II) Ions. ACS Omega 2021, 6, 6240–6251. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shim, Y.Y.; Reaney, M.J.T. Ionic Strength and Hydrogen Bonding Effects on Whey Protein Isolate–Flaxseed Gum Coacervate Rheology. Food Sci. Nutr. 2020, 8, 2102–2111. [Google Scholar] [CrossRef] [PubMed]
Wdry (mg) | WSwollen (mg) | |
---|---|---|
1 replicate | 50.2 | 214.5 |
2 replicate | 50.6 | 202.5 |
3 replicate | 50.5 | 209.2 |
Pseudo-First-Order Model | Pseudo-Second-Order Model | |||||
---|---|---|---|---|---|---|
Equation form | Qe (mg g−1) | K1 (L min−1) | R2 | Qe (mg g−1) | K2 (g/(mg min−1)) | R2 |
Non-Linear | 8.06 | 0.030 | 0.9467 | 8.96 | 0.0044 | 0.9906 |
Linear | 9.56 | −2.10 × 10−6 | 0.5378 | 9.01 | 0.0054 | 0.9976 |
Langmuir Model | Freundlich Model | |||||
---|---|---|---|---|---|---|
Equation form | Qmax (mg g−1) | KL (L min−1) | R2 | 1/n | KF (mg g−1)/(mL min−1) | R2 |
Non-Linear | 306.80 | 6.9 × 10−4 | 0.9972 | 0.81 | 0.518 | 0.9998 |
Linear | 109.76 | 0.0028 | 0.9987 | 0.79 | 0.55 | 0.9998 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giglio, V.; Zagni, C.; Spina, E.T.A.; Cunsolo, F.; Carroccio, S.C. Polyvinylimidazole-Based Cryogel as an Efficient Tool for the Capture and Release of Oleuropein in Aqueous Media. Polymers 2024, 16, 2339. https://doi.org/10.3390/polym16162339
Giglio V, Zagni C, Spina ETA, Cunsolo F, Carroccio SC. Polyvinylimidazole-Based Cryogel as an Efficient Tool for the Capture and Release of Oleuropein in Aqueous Media. Polymers. 2024; 16(16):2339. https://doi.org/10.3390/polym16162339
Chicago/Turabian StyleGiglio, Valentina, Chiara Zagni, Emanuela Teresa Agata Spina, Francesca Cunsolo, and Sabrina Carola Carroccio. 2024. "Polyvinylimidazole-Based Cryogel as an Efficient Tool for the Capture and Release of Oleuropein in Aqueous Media" Polymers 16, no. 16: 2339. https://doi.org/10.3390/polym16162339
APA StyleGiglio, V., Zagni, C., Spina, E. T. A., Cunsolo, F., & Carroccio, S. C. (2024). Polyvinylimidazole-Based Cryogel as an Efficient Tool for the Capture and Release of Oleuropein in Aqueous Media. Polymers, 16(16), 2339. https://doi.org/10.3390/polym16162339