The Impact of Biomass Composition Variability on the Char Features and Yields Resulted through Thermochemical Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Biomass Supplies
2.2. Analytical Methods for Biomass Compositional Attributes
2.3. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
2.4. Scanning Electron Microscopy (SEM)
2.5. Thermogravimetric Analysis (TGA)
3. Results and Discussion
3.1. Chemical (Proximate and Ultimate Analysis), Biochemical, and Trace Elements Characterization of SB, WS, and VS
3.2. Fourier Transform Infrared Spectroscopy (FTIR) of Feedstock
3.3. Scanning Electron Microscopy (SEM) Analysis of Biomass
3.4. Thermal Behavior of Feedstock
3.5. Predicted Yield of Feedstock Conversion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petre, M.; Pătrulescu, F.; Teodorescu, R.I. Chapter 3—Controlled Cultivation of Mushrooms on Winery and Vineyard Wastes. In Mushroom Biotechnology; Petre, M., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 31–47. [Google Scholar] [CrossRef]
- Agegnehu, G.; Srivastava, A.K.; Bird, M.I. The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Appl. Soil Ecol. 2017, 119, 156–170. [Google Scholar] [CrossRef]
- Wang, K.; Remón, J.; Jiang, Z.; Ding, W. Recent Advances in the Preparation and Application of Biochar Derived from Lignocellulosic Biomass: A Mini Review. Polymers 2024, 16, 851. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, C.R.; Sudhanshu, S.B. Chapter 3—Solid State Fermentation for Production of Microbial Cellulases. In Biotechnology of Microbial Enzymes; Brahmachari, G., Ed.; Academic Press: San Diego, CA, USA, 2017; pp. 43–79. [Google Scholar] [CrossRef]
- Afolalu, A.; Enesi, S.; Ogedengbe, T.; Joseph, O.; Okwilagwe, O.; Emetere, M.; Yusuf, O.; Akinlabi, S.A. Bio-Agro Waste Valorization and its Sustainability in the Industry: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1107, 012140. [Google Scholar] [CrossRef]
- Avitabile, V.; Baldoni, E.; Baruth, B.; Bausano, G.; Boysen-Urban, K.; Caldeira, C.; Camia, A.; Cazzaniga, N.; Ceccherini, G.; De Laurentiis, V.; et al. Biomass Supply and Uses in the EU; Publications Office of the European Union: Luxembourg, 2023; Available online: https://data.europa.eu/doi/10.2760/368529 (accessed on 1 June 2024).
- Zhang, B.; Li, H.; Chen, L.; Fu, T.; Tang, B.; Hao, Y.; Li, J.; Li, Z.; Zhang, B.; Chen, Q.; et al. Recent Advances in the Bioconversion of Waste Straw Biomass with Steam Explosion Technique: A Comprehensive Review. Processes 2022, 10, 1959. [Google Scholar] [CrossRef]
- Saad, A.S.; Mohamed, A.I.; Mohamed, E.M.; Emad, H.N.; Tarek, M.K. Availability, sustainability and accessibility of agro crop residue production and solar radiation in Egypt for producing highly chemical products through pyrolysis processes. Clean Energy 2023, 7, 654–670. [Google Scholar] [CrossRef]
- Su, Y.; Wang, X. Innovation of agricultural economic management in the process of constructing smart agriculture by big data. SUSCOM 2021, 31, 100579. [Google Scholar] [CrossRef]
- Takkellapati, S.; Li, T.; Gonzalez, M.A. An Overview of Biorefinery Derived Platform Chemicals from a Cellulose and Hemicellulose Biorefinery. Clean Technol. Environ. Policy 2018, 20, 1615–1630. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Bhattacharya, D.; Mukhopadhyay, M. Bioactive Compounds Production from Vegetable Biomass. In Biorefinery Production Technologies for Chemicals and Energy; Kuila, A., Mukhopadhyay, M., Eds.; Wiley-Scrivener: Hoboken, NJ, USA, 2020; Volume 12, pp. 241–253. [Google Scholar] [CrossRef]
- Machado, M.; Hofmann, M.; Garrido, M.; Correia, J.R.; Bordado, J.C.; Rosa, I.C. Incorporation of Lignin in Bio-Based Resins for Potential Application in Fiber–Polymer Composites. Appl. Sci. 2023, 13, 8342. [Google Scholar] [CrossRef]
- Manavalan, V.; Ammaiyappan, B.S.; Duggirala, S.R.; Tata, N.R.; Mani, K. Conversion of Biomass Waste into High Performance Supercapacitor Electrodes for Real-Time Supercapacitor Applications. ACS Sustain. Chem. Eng. 2019, 7, 17175–17185. [Google Scholar] [CrossRef]
- Bolan, S.; Hou, D.; Liuwei, W.; Hale, L.; Dilfuza, E.; Priit, T.; Rui, L.; Bing, W.; Jiaping, X.; Ting, W.; et al. The potential of biochar as a microbial carrier for agricultural and environmental applications. Sci. Total Environ. 2023, 886, 163968. [Google Scholar] [CrossRef] [PubMed]
- Reshma, A.C.; Krishna, R.R. Biomass and chemical amendments for enhanced phytoremediation of mixed contaminated soils. Ecol. Eng. 2015, 85, 265–274. [Google Scholar] [CrossRef]
- Ravindra, K.G.; Ackmez, M.; Giusy, L.; Mahesh, C.C. Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration. J. Environ. Chem. Eng. 2014, 2, 239–259. [Google Scholar] [CrossRef]
- Gupta, N.; Mahur, B.K.; Izrayeel, A.M.D. Biomass conversion of agricultural waste residues for different applications: A comprehensive review. Environ. Sci. Pollut. Res. 2022, 29, 73622–73647. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, T.; Nanthi, B.; Mary, K.; Wijesekara, C.; Wang, X. Soil Organic Carbon Dynamics: Impact of Land Use Changes and Management Practices: A Review. Adv. Agron. 2019, 156, 1–107. [Google Scholar] [CrossRef]
- Vance, E.D.; Prisley, S.P.; Schilling, E.B.; Tatum, V.L.; Wigley, T.B.; Lucier, A.A.; Van Deusen, P.C. Environmental implications of harvesting lower-value biomass in forests. For. Ecol. Manag. 2018, 407, 47–56. [Google Scholar] [CrossRef]
- Camia, A.; Robert, N.; Jonsson, K.; Pilli, R.; Garcia, C.S.; Lopez, L.R.; Van Der Velde, M.; Ronzon, T.; Gurria, A.P.; M`barek, R.; et al. Biomass Production, Supply, Uses and Flows in the European Union: First Results from an Integrated Assessment; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Arun, L.S.; Abhishek, K.B.; Mukesh, K. Valorization of Biomass Wastes for Environmental Sustainability. Green Practices for the Rural Circular Economy; Srivastav, A.L., Bhardwaj, K., Kumar, M., Eds.; Springer Nature: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Vasile, C.; Baican, M. Lignins as Promising Renewable Biopolymers and Bioactive Compounds for High-Performance Materials. Polymers 2023, 15, 3177. [Google Scholar] [CrossRef] [PubMed]
- Yadav, D.; Saha, S.; Sahu, G. A comparative review on thermal behavior of feedstocks during gasification via thermogravimetric analyzer. J. Therm. Anal. Calorim. 2023, 148, 329–354. [Google Scholar] [CrossRef]
- Qambrani, N.A.; Rahman, M.M.; Won, S.; Shim, S.; Ra, C. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renew. Sustain. Energy Rev. 2017, 79, 255–273. [Google Scholar] [CrossRef]
- Wang, G.; Dai, Y.; Yang, H.; Xiong, Q.; Wang, K.; Zhou, J.; Wang, S. A Review of Recent Advances in Biomass Pyrolysis. Energy Fuels 2020, 34, 15557–15578. [Google Scholar] [CrossRef]
- Aboelela, D.; Saleh, H.; Attia, A.M.; Elhenawy, Y.; Majozi, T.; Bassyouni, M. Recent Advances in Biomass Pyrolysis Processes for Bioenergy Production: Optimization of Operating Conditions. Sustainability 2023, 15, 11238. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, X.; Zhang, H.; Chu, C.; Zheng, K.; Ju, M.; Liu, L. Liquefaction of Biomass and Upgrading of Bio-Oil: A Review. Molecules 2019, 24, 2250. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Jiang, Y.; Park, E.; Han, X.; Zeng, Y.; Xu, C. Hydrothermal Liquefaction of Pinewood Sawdust: Influence of Reaction Atmosphere. Sustainability 2023, 15, 6698. [Google Scholar] [CrossRef]
- Marulanda, V.A.; Gutierrez, C.D.B.; Alzate, C.A.C. Chapter 4—Thermochemical, Biological, Biochemical, and Hybrid Conversion Methods of Bio-derived Molecules into Renewable Fuels. In Advanced Bioprocessing for Alternative Fuels, Biobased Chemicals, and Bioproducts; Hosseini, M., Ed.; Woodhead: Cambridge, UK, 2019; pp. 59–81. [Google Scholar] [CrossRef]
- Naranjo, J.; Juiña, E.; Loyo, C.; Romero, M.; Vizuete, K.; Debut, A.; Ponce, S.; Murillo, H.A. Preparation of Adsorbent Materials from Rice Husk via Hydrothermal Carbonization: Optimization of Operating Conditions and Alkali Activation. Resources 2023, 12, 145. [Google Scholar] [CrossRef]
- Basso, D.; Patuzzi, F.; Castello, D.; Baratieri, M.; Rada, E.C.; Weiss-Hortala, E. Agro-industrial waste to solid biofuel through hydrothermal carbonization. Waste Manag. 2016, 47, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Funke, A.; Ziegler, F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuel Bioprod. Biorefin. 2010, 4, 160–177. [Google Scholar] [CrossRef]
- Charles, W.E.; Eliezer, A.R.M.; Nicolas, A.; Choo, H.; Sunkyu, P.; Oladira, F.; Sushil, A.; Stephen, S.K.; Jaya, S.T.; Timothy, R.; et al. Blended Feedstocks for Thermochemical Conversion: Biomass Characterization and Bio-Oil Production from Switchgrass-Pine Residues Blends. Front. Energy Res. 2018, 6, 79. [Google Scholar] [CrossRef]
- Williams, C.L.; Emerson, R.M.; Tumuluru, J.S. Biomass Compositional Analysis for Conversion to Renewable Fuels and Chemicals. In Biomass Volume Estimation and Valorization for Energy; InTech Open: London, UK, 2017. [Google Scholar] [CrossRef]
- Hu, B.; Wang, K.; Wu, L.H.; Yu, S.H.; Antonietti, M.; Titirici, M.M. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 2010, 22, 813–828. [Google Scholar] [CrossRef] [PubMed]
- Durak, H. Comprehensive Assessment of Thermochemical Processes for Sustainable Waste Management and Resource Recovery. Processes 2023, 11, 2092. [Google Scholar] [CrossRef]
- Chee, H.C.; Downie, A.; Munroe, P. Characteristics of Biochar: Physical and Structural Properties. In Biochar for Environmental Management, 2nd ed.; Lehmann, J., Joseph, S., Eds.; Taylor&Francis Group: London, UK, 2015; Volume 22, pp. 89–109. [Google Scholar] [CrossRef]
- Lucaci, A.R.; Bulgariu, D.; Ahmad, I.; Lisă, G.; Mocanu, A.M.; Bulgariu, L. Potential Use of Biochar from Various Waste Biomass as Biosorbent in Co(II) Removal Processes. Water 2019, 11, 1565. [Google Scholar] [CrossRef]
- Sharma, S.P. Chapter 20—Biochar for Carbon Sequestration: Bioengineering for Sustainable Environment. In Omics Technologies and Bio-Engineering; Barh, D., Azevedo, V., Eds.; Elsevier Academic Press: London, UK, 2018; Volume 2, pp. 365–385. [Google Scholar] [CrossRef]
- Dzionek, A.; Wojcieszyńska, D.; Guzik, U. Natural carriers in bioremediation: A review. Electron. J. Biotechnol. 2016, 19, 5. [Google Scholar] [CrossRef]
- Schmidt, H.P.; Wilson, K. The 55 uses of biochar. Ithaka J. 2012, 1, 286–289. [Google Scholar]
- Tofanica, B.M.; Cappelletto, E.; Gavrilescu, D.; Mueller, K. Properties of rapeseed (Brassica napus) stalks fibers. J. Nat. Fibers. 2011, 8, 241–262. [Google Scholar] [CrossRef]
- Chesca, A.M.; Nicu, R.; Tofănică, B.M.; Pui¸tel, A.C.; Vlase, R.; Gavrilescu, D. Pulping of Corn Stalks—Assessment in Bio-Based Packaging Materials. Cellul. Chem. Technol. 2018, 52, 645–653. [Google Scholar]
- Oktaviananda, C.; Rahmawati, R.F.; Prasetya, A.; Purnomo, C.W.; Yuliansyah, A.T.; Cahyono, R.B. Effect of temperature and biomass-water ratio to yield and product characteristics of hydrothermal treatment of biomass. AIP Conf. Proc. 2017, 1823, 020029. [Google Scholar] [CrossRef]
- Bejenari, I.; Hristea, G.; Cărăușu, C.; Mija, A.; Volf, I. A Sustainable Approach on Spruce Bark Waste Valorization through Hydrothermal Conversion. Processes 2022, 10, 111. [Google Scholar] [CrossRef]
- Zhao, X.; Oyedeji, O.; Webb, E.; Wast, S.; Bhagia, S.; Hinton, H.; Li, K.; Kim, K.; Wang, Y.; Zhu, H.; et al. Impact of biomass ash content on biocomposite properties. JCOMC 2022, 9, 100319. [Google Scholar] [CrossRef]
- Puri, L.; Hu, Y.; Naterer, G. Critical review of the role of ash content and composition in biomass pyrolysis. Front. Fuels 2024, 2, 1378361. [Google Scholar] [CrossRef]
- Geremew, A.; De Winne, P.; Demissie, T.A.; De Backer, H. Characterization of Wheat Straw Fiber Grown Around Jimma Zone, Ethiopia. J. Nat. Fibers 2022, 20, 2134268. [Google Scholar] [CrossRef]
- Chen, F.; Li, X. Preparation and Application of Biochar-Based Catalysts for Biofuel Production. Catalysts 2018, 8, 346. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Sharma, R.; Jasrotia, K.; Singh, N.; Ghosh, P.; Shubhangi, S.; Sharma, N.R.; Singh, J.; Kanwar, R.; Kumar, A. A Comprehensive Review on Hydrothermal Carbonization of Biomass and its Applications. Chem. Afr. 2020, 3, 1–19. [Google Scholar] [CrossRef]
- Kalderis, D.; Kotti, M.S.; Méndez, A.; Gascó, G. Characterization of hydrochars produced by hydrothermal carbonization of rice husk. Solid Earth 2014, 5, 477–483. [Google Scholar] [CrossRef]
- Brebu, M.; Vasile, C. Thermal degradation of lignin—A review. Cellul. Chem. Technol. 2009, 44, 353–363. Available online: https://api.semanticscholar.org/CorpusID:102077372 (accessed on 1 August 2024).
- Liu, W.J.; Yu, H.Q. Thermochemical Conversion of Lignocellulosic Biomass into Mass-Producible Fuels: Emerging Technology Progress and Environmental Sustainability Evaluation. ACS Environ. Au 2021, 2, 98–114. [Google Scholar] [CrossRef]
- Cai, J.; Li, B.; Chen, C.; Wang, J.; Zhao, M.; Zhang, K. Hydrothermal carbonization of tobacco stalk for fuel application. Bioresour. Technol. 2016, 220, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Coleman, M.M.; Skrovanek, D.J.; Hu, J.; Painter, P.C. Hydrogen bonding in polymer blends. 1. FTIR studies of urethane-ether blends. Macromolecules 1988, 21, 59–65. [Google Scholar] [CrossRef]
- Yao, Z.; Ma, X.; Wu, Z.; Yao, T. TGA–FTIR analysis of co-pyrolysis characteristics of hydrochar and paper sludge. J. Anal. Appl. Pyrolysis 2017, 123, 40–48. [Google Scholar] [CrossRef]
- El-Hendawy, A.N.A. Variation in the FTIR spectra of a biomass under impregnation, carbonization and oxidation conditions. J. Anal. Appl. Pyrolysis 2006, 75, 159–166. [Google Scholar] [CrossRef]
- Syed, W.A.S.; Qi, X.; Muhammad, W.U.; Zahoor; Sivasamy, S.; Gabriel, M.M.; Jianzhong, S.; Daochen, Z. Lignin-based additive materials: A review of current status, challenges, and future perspectives. Addit. Manuf. 2023, 74, 103711. [Google Scholar] [CrossRef]
- Haykiri-Acma, H.; Yaman, S.; Kucukbayrak, S. Gasification of biomass chars in steam–nitrogen mixture. Energy Convers. Manag. 2006, 47, 1004–1013. [Google Scholar] [CrossRef]
- Wei, J.; Guo, Q.; Ding, L.; Yoshikawa, K.; Yu, G. Synergy mechanism analysis of petroleum coke and municipal solid waste (MSW)-derived hydrochar co-gasification. Appl. Energy 2017, 206, 1354–1363. [Google Scholar] [CrossRef]
- Cagnon, B.; Py, X.; Guillot, A.; Stoeckli, F.; Chambat, G. Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Bioresour. Technol. 2009, 100, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Carrier, M.; Joubert, J.E.; Danje, S.; Hugo, T.; Gorgens, J.; Knoetze, J. Impact of the lignocellulosic material on fast pyrolysis yields and product quality. Bioresour. Technol. 2013, 150, 129–138. [Google Scholar] [CrossRef] [PubMed]
Type of Biomass Waste | Spruce Bark | Wheat Straws | Vine Shoots | |
---|---|---|---|---|
Proximate analysis | Moisture, wt% | 9.55 ± 0.33 | 7.4 ± 0.28 | 7.8 ± 0.30 |
Ash (600 °C), wt% | 2.75 ± 0.29 | 4 ± 0.34 | 2.1 ± 0.27 | |
Biochemical components | Extractables, wt% | 9.05 ± 0.74 | 5.1 ± 0.58 | 2.7 ± 0.45 |
Cellulose, wt% | 48.10 ± 1.10 | 33.80 ± 0.92 | 49.30 ± 1.03 | |
Hemicellulose, wt% | 19.75 ± 0.53 | 38.20 ± 0.81 | 21.50 ± 0.57 | |
Lignin, wt% | 22.87 ± 0.48 | 18.90 ± 0.45 | 24.40 ± 0.55 | |
Ultimate analysis | Carbon, wt% | 52.07 | 51.56 | 52.72 |
Hydrogen, wt% | 5.30 | 4.49 | 5.26 | |
Oxygen, wt% | 41.98 | 43.93 | 42.01 | |
Trace elements | Copper, ppm | 3.1 | 3.5 | 3.3 |
Cadmium, ppm | 1.0 | 0.1 | 0.41 | |
Lead, ppm | 2.5 | 0.2 | 0.7 |
Hemicellulose (H), g | Cellulose (C), g | Lignin (L), g | Predicted Yield, % | Predicted Char Weight, g | |||
---|---|---|---|---|---|---|---|
H | C | L | |||||
Feedstock | 10 | 10 | 10 | - | - | ||
Spruce bark | 3.38 | 4.81 | 4.93 | 24.05 | 2.4 | ||
0.46 | 0.91 | 1.03 | |||||
Wheat straws | 1.89 | 2.30 | 2.44 | 25.42 | 2.5 | ||
0.5 | 0.93 | 1.07 | |||||
Vine shoots | 3.82 | 1.97 | 2.15 | 23.92 | 2.4 | ||
0.5 | 0.98 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armanu, E.-G.; Secula, M.S.; Tofanica, B.-M.; Volf, I. The Impact of Biomass Composition Variability on the Char Features and Yields Resulted through Thermochemical Processes. Polymers 2024, 16, 2334. https://doi.org/10.3390/polym16162334
Armanu E-G, Secula MS, Tofanica B-M, Volf I. The Impact of Biomass Composition Variability on the Char Features and Yields Resulted through Thermochemical Processes. Polymers. 2024; 16(16):2334. https://doi.org/10.3390/polym16162334
Chicago/Turabian StyleArmanu, Emanuel-Gheorghita, Marius Sebastian Secula, Bogdan-Marian Tofanica, and Irina Volf. 2024. "The Impact of Biomass Composition Variability on the Char Features and Yields Resulted through Thermochemical Processes" Polymers 16, no. 16: 2334. https://doi.org/10.3390/polym16162334
APA StyleArmanu, E.-G., Secula, M. S., Tofanica, B.-M., & Volf, I. (2024). The Impact of Biomass Composition Variability on the Char Features and Yields Resulted through Thermochemical Processes. Polymers, 16(16), 2334. https://doi.org/10.3390/polym16162334