Development of Ultraviolet-Shielding Bamboo/Silk Fibroin Hybrid Films with Good Mechanical Properties: A Proof Study on Human Keratinocyte Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bamboo Solution Preparation
2.2. Silk Fibroin and Silk Fibroin/Bamboo Hybrid Solution Preparation
2.3. Silk Fibroin and Silk Fibroin/Bamboo Hybrid Film Preparation
2.4. FTIR Characterization
2.5. Degradation and Mechanical Characterization
2.6. Optical and Thermal Characterization
2.7. Differential Scanning Calorimetry
2.8. Cell Culture
2.9. Irradiation and MTT Assay
2.10. Statistical Analysis
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Ethical Statement
References
- Yang, Y.; Greco, G.; Maniglio, D.; Mazzolai, B.; Migliaresi, C.; Pugno, N.; Motta, A. Spider (Linothele megatheloides) and silkworm (Bombyx mori) silks: Comparative physical and biological evaluation. Mater. Sci. Eng. C 2020, 107, 110197. [Google Scholar] [CrossRef] [PubMed]
- Wegst, U.G.K.; Bai, H.; Saiz, E.; Tomsia, A.P.; Ritchie, R.O. Bioinspired structural materials. Nat. Mater. 2015, 14, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Greco, G.; Pantano, M.F.; Mazzolai, B.; Pugno, N.M. Imaging and mechanical characterization of different junctions in spider orb webs. Sci. Rep. 2019, 9, 5776. [Google Scholar] [CrossRef] [PubMed]
- Greco, G.; Mastellari, V.; Holland, C.; Pugno, N.M. Comparing modern and classical perspectives on spider silks and webs. Perspect. Sci. 2021, 29, 133–156. [Google Scholar] [CrossRef]
- Holland, C.; Numata, K.; Rnjak-Kovacina, J.; Seib, F.P. The Biomedical Use of Silk: Past, Present, Future. Adv. Healthc. Mater. 2019, 8, 1800465. [Google Scholar] [CrossRef] [PubMed]
- Dellaquila, A.; Greco, G.; Campodoni, E.; Mazzocchi, M.; Mazzolai, B.; Tampieri, A.; Pugno, N.M.; Sandri, M. Optimized production of a high-performance hybrid biomaterial: Biomineralized spider silk for bone tissue engineering. J. Appl. Polym. Sci. 2020, 137, 48739. [Google Scholar] [CrossRef]
- Lewis, R.V. Spider silk: Ancient ideas for new biomaterials spider silk: Ancient ideas for new biomaterials. Chem. Rev. 2006, 106, 3762–3774. [Google Scholar] [CrossRef] [PubMed]
- Greco, G.; Pugno, N.M. Mechanical properties and Weibull scaling laws of unknown spider silks. Molecules 2020, 25, 2938. [Google Scholar] [CrossRef] [PubMed]
- Greco, G.; Wolff, J.; Pugno, N.M. Strong and tough silk for resilient attachment discs: The mechanical properties of piriform silk, in the spider Cupiennius salei. Front. Mater. 2020, 7, 138. [Google Scholar] [CrossRef]
- Greco, G.; Mirbaha, H.; Schmuck, B.; Rising, A.; Pugno, N. Artificial and natural silk materials have high mechanical property variability regardless of sample size. Sci. Rep. 2022, 12, 3507. [Google Scholar] [CrossRef]
- Vollrath, F.; Madsen, B.; Shao, Z. The effect of spinning conditions on the mechanics of a spider’s dragline silk. Proc. R. Soc. B Biol. Sci. 2001, 268, 2339–2346. [Google Scholar] [CrossRef] [PubMed]
- Cunniff, P.M.; Fossey, S.A.; Auerbach, M.A.; Song, J.W.; Kaplan, D.L.; Adams, W.W.; Eby, R.K.; Mahoney, D.; Vezie, D.L. Mechanical and thermal properties of dragline silk from the spider Nephila clavipes. Polym. Adv. Technol. 1994, 5, 401–410. [Google Scholar] [CrossRef]
- Bucciarelli, A.; Greco, G.; Corridori, I.; Pugno, N.M.; Motta, A. A design of experiment rational optimization of the degumming process and its impact on the silk fibroin properties. ACS Biomater. Sci. Eng. 2021, 57, 1374–1393. [Google Scholar] [CrossRef] [PubMed]
- Bucciarelli, A.; Greco, G.; Corridori, I.; Motta, A.; Pugno, N.M. Tidy dataset of the experimental design of the optimization of the alkali degumming process of Bombyx mori silk. Data Brief 2021, 38, 107294. [Google Scholar] [CrossRef]
- Kundu, B.; Rajkhowa, R.; Kundu, S.C.; Wang, X. Silk fibroin biomaterials for tissue regenerations. Adv. Drug. Deliver. Rev. 2013, 65, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Qin, J.; Zhang, P.; Chen, X.; You, X.; Zhang, F.; Zuo, B.; Yao, M. Facile preparation of a strong chitosan-silk biocomposite film. Carbohydr. Polym. 2020, 229, 115515. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Han, X.; Zong, L.; Li, M.; You, J.; Wu, X.; Li, C. Biomimetic hybridization of Kevlar into silk fibroin: Nanofibrous strategy for improved mechanic properties of flexible composites and filtration membranes. ACS Nano 2017, 11, 8178–8184. [Google Scholar] [CrossRef] [PubMed]
- Kostag, M.; Jedvert, K.; El Seoud, O.A. Engineering of sustainable biomaterial composites from cellulose and silk fibroin: Fundamentals and applications. Int. J. Biol. Macromol. 2021, 167, 687–718. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Li, X.; Li, M.; Ye, D.; Zhang, Q.; You, R.; Xu, W. Facile preparation of biocompatible silk fibroin/cellulose nanocomposite films with high mechanical performance. ACS Sustain. Chem. Eng. 2017, 5, 6227–6236. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, Q.; Wen, J.; Chen, X.; Shao, Z. Preparation and characterization of transparent silk fibroin/cellulose blend films. Polymer 2013, 54, 5035–5042. [Google Scholar] [CrossRef]
- Ceccarini, M.R.; Ripanti, F.; Raggi, V.; Paciaroni, A.; Petrillo, C.; Comez, L.; Donato, K.; Bertelli, M.; Beccari, T.; Valentini, L. Development of Salmon Sperm DNA/Regenerated Silk Bio-Based Films for Biomedical Studies on Human Keratinocyte HaCaT Cells under Solar Spectrum. J. Funct. Biomater. 2023, 14, 280. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Chakraborty, D. Evaluation of improvement of physical and mechanical properties of bamboo fibers due to alkali treatment. J. Appl. Polym. Sci. 2008, 107, 522–527. [Google Scholar] [CrossRef]
- Jain, S.; Kumar, R.; Jindal, U.C. Mechanical behavior of bamboo and bamboo composites. J. Mater. Sci. 1992, 27, 4598–4604. [Google Scholar] [CrossRef]
- Kerr, N.; Capjack, L.; Fedosejevs, R. Ability of textile covers to protect artifacts from ultraviolet radiation. J. Am. Inst. Conserv. 2000, 39, 345–353. [Google Scholar] [CrossRef]
- Liese, W. Bamboo as carbon-sink—Fact or fiction? In Proceedings of the 8th World Bamboo Congress, Bangkok, Thailand, 16–19 September 2009. [Google Scholar]
- D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV radiation and the skin. Int. J. Mol. Sci. 2013, 14, 12222–12248. [Google Scholar] [CrossRef] [PubMed]
- Belzile, C.; Vincent, W.F.; Kumagai, M. Contribution of absorption and scattering to the attenuation of UV and photosynthetically available radiation in Lake Biwa. Limnol. Oceanogr. 2002, 47, 95–107. [Google Scholar] [CrossRef]
- Turi, E. Thermal Characterization of Polymeric Materials; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Muller, C.; Andersson, L.M.; Garriga, M.; Campoy-quiles, M.; Peña-Rodríguez, O.; Inganas, O. Determination of Thermal Transition Depth Profiles in Polymer Semiconductor Films with Ellipsometry. Macromolecules 2013, 46, 7325–7331. [Google Scholar] [CrossRef]
- Ceccarini, M.R.; Chiesa, I.; Ripanti, F.; Cardinali, M.A.; Micalizzi, S.; Scattini, G.; De Maria, C.; Paciaroni, A.; Petrillo, C.; Comez, L.; et al. Electrospun Nanofibrous UV Filters with Bidirectional Actuation Properties Based on Salmon Sperm DNA/Silk Fibroin for Biomedical Applications. ACS Omega 2024, 9, 6025. [Google Scholar] [CrossRef] [PubMed]
- Pei, W.; Shang, W.; Liang, C.; Jiang, X.; Huang, C.; Yong, Q. Using lignin as the precursor to synthesize Fe3O4@lignin composite for preparing electromagnetic wave absorbing lignin-phenol-formaldehyde adhesive. Ind. Crops Prod. 2020, 154, 112638. [Google Scholar] [CrossRef]
- Fang, L.; Zeng, J.; Liao, X.; Zou, Y.; Shen, J. Tensile shear strength and microscopic characterization of veneer bonding interface withpolyethylene film as wood adhesive. Sci. Adv. Mater. 2019, 11, 1223–1231. [Google Scholar] [CrossRef]
- Zheng, L.; Lu, G.; Pei, W.; Yan, W.; Li, Y.; Zhang, L.; Huang, C.; Jiang, Q. Understanding the relationship between the structural properties of lignin and their biological activities. Int. J. Biol. Macromol. 2021, 190, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Hu, X.; Wang, X.; Kluge, J.A.; Lu, S.; Cebe, P.; Kaplan, D.L. Water-insoluble silk films with silk I structure. Acta Biomater. 2010, 6, 1380–1387. [Google Scholar] [CrossRef]
- Hu, X.; Kaplan, D.; Cebe, P. Determining Beta-Sheet Crystallinity in Fibrous Proteins by Thermal Analysis and Infrared Spectroscopy. Macromolecules 2006, 39, 6161–6170. [Google Scholar] [CrossRef]
- Partlow, B.P.; Hanna, C.W.; Rnjak-Kovacina, J.; Moreau, J.E.; Applegate, M.B.; Burke, K.A.; Marelli, B.; Mitropoulos, A.N.; Omenetto, F.G.; Kaplan, D.L. Highly tunable elastomeric silk biomaterials. Adv. Funct. Mater. 2014, 24, 4615–4624. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.J.; Park, J.; Valluzzi, R.; Cebe, P.; Kaplan, D.L. Biomaterial films of Bombyx mori silk fibroin with poly(ethylene oxide). Biomacromolecules 2004, 5, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.J.; Park, J.; Karageorgiou, V.; Kim, U.-J.; Valluzzi, R.; Cebe, P.; Kaplan, D. Water-Stable Silk Films with Reduced β-Sheet Content. Adv. Funct. Mater. 2005, 15, 1241–1247. [Google Scholar] [CrossRef]
- Yu, X.; Hu, Y.; Shi, H.; Sun, Z.; Li, J.; Liu, H.; Lyu, H.; Xia, J.; Meng, J.; Lu, X.; et al. Molecular Design and Preparation of Protein-Based Soft Ionic Conductors with Tunable Properties. ACS Appl. Mater. Interfaces 2022, 14, 48061–48071. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Q.; Liu, Q.; Zhao, B.; Ling, S.; Yao, J.; Shao, Z.Z.; Chen, X. Intelligent Silk Fibroin Ionotronic Skin for Temperature Sensing. Adv. Mater. Technol. 2020, 5, 2000430. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Wu, Y.; Zhao, W. A Multilayer Transparent Bamboo with Good Optical Properties and UV Shielding Prepared by Different Lamination Methods. ACS Sustain. Chem. Eng. 2022, 10, 6106–6116. [Google Scholar] [CrossRef]
- Sionkowska, A.; Planecka, A. The influence of UV radiation on silk fibroin. Polym. Degrad. Stab. 2011, 96, 523–528. [Google Scholar] [CrossRef]
- Danley, R.L.; Reader, J.R.; Schaefer, J.W. Differential Scanning Calorimeter. U.S. Patent US5842788 A, 1 December 1998. [Google Scholar]
- Schroeder, B.C.; Chiu, Y.-C.; Gu, X.; Zhou, Y.; Xu, J.; Lopez, J.; Lu, C.; Toney, M.F.; Bao, Z. Non-Conjugated Flexible Linkers in Semiconducting Polymers: A Pathway to Improved Processability without Compromising Device Performance. Adv. Electron. Mater. 2016, 2, 1600104. [Google Scholar] [CrossRef]
- Hu, X.; Kaplan, D.; Cebe, P. Effect of water on the thermal properties of silk fibroin. Thermochim. Acta 2007, 461, 137–144. [Google Scholar] [CrossRef]
- Kenjiro, Y.; Kana, I.; Hiroyasu, M.; Takaaki, H.; Numata, K. Influence of Water Content on the β-Sheet Formation, Thermal Stability, Water Removal, and Mechanical Properties of Silk Materials. Biomacromolecules 2016, 17, 1057–1066. [Google Scholar]
- Anuduang, A.; Loo, Y.Y.; Jomduang, S.; Lim, S.J.; Wan Mustapha, W.A. Effect of Thermal Processing on Physico-Chemical and Antioxidant Properties in Mulberry Silkworm (Bombyx mori L.) Powder. Foods 2020, 9, 871. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Shmelev, K.; Sun, L.; Gil, E.S.; Park, S.H.; Cebe, P.; Kaplan, D.L. Regulation of silk material structure by temperature-controlled water vapor annealing. Biomacromolecules 2011, 12, 1686–1696. [Google Scholar] [CrossRef]
- Lu, Q.; Zhang, B.; Li, M.; Zuo, B.; Kaplan, D.L.; Huang, Y.; Zhu, H. Degradation mechanism and control of silk fibroin. Biomacromolecules 2011, 12, 1080–1086. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bittolo Bon, S.; Libera, V.; Ceccarini, M.R.; Malaspina, R.; Codini, M.; Valentini, L. Development of Ultraviolet-Shielding Bamboo/Silk Fibroin Hybrid Films with Good Mechanical Properties: A Proof Study on Human Keratinocyte Cells. Polymers 2024, 16, 2244. https://doi.org/10.3390/polym16162244
Bittolo Bon S, Libera V, Ceccarini MR, Malaspina R, Codini M, Valentini L. Development of Ultraviolet-Shielding Bamboo/Silk Fibroin Hybrid Films with Good Mechanical Properties: A Proof Study on Human Keratinocyte Cells. Polymers. 2024; 16(16):2244. https://doi.org/10.3390/polym16162244
Chicago/Turabian StyleBittolo Bon, Silvia, Valeria Libera, Maria Rachele Ceccarini, Rocco Malaspina, Michela Codini, and Luca Valentini. 2024. "Development of Ultraviolet-Shielding Bamboo/Silk Fibroin Hybrid Films with Good Mechanical Properties: A Proof Study on Human Keratinocyte Cells" Polymers 16, no. 16: 2244. https://doi.org/10.3390/polym16162244
APA StyleBittolo Bon, S., Libera, V., Ceccarini, M. R., Malaspina, R., Codini, M., & Valentini, L. (2024). Development of Ultraviolet-Shielding Bamboo/Silk Fibroin Hybrid Films with Good Mechanical Properties: A Proof Study on Human Keratinocyte Cells. Polymers, 16(16), 2244. https://doi.org/10.3390/polym16162244