Metal–Organic Framework-Derived Co9S8 Nanowall Array Embellished Polypropylene Separator for Dendrite-Free Lithium Metal Anodes
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zou, P.; Sui, Y.; Zhan, H.; Wang, C.; Xin, H.L.; Cheng, H.; Kang, F.; Yang, C. Polymorph evolution mechanisms and regulation strategies of lithium metal anode under multiphysical fields. Chem. Rev. 2021, 121, 5986–6056. [Google Scholar] [CrossRef] [PubMed]
- Acebedo, B.; Morant-Minana, M.C.; Gonzalo, E.; Larramendi, I.R.; Villaverde, A.; Rikarte, J.; Fallarino, L. Current status and future perspective on lithium metal anode production methods. Adv. Energy Mater. 2023, 13, 2203477. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, R.; Xu, R.; Li, Y.; Tian, W.; Gao, M.; Wang, M.; Li, D.; Liang, X.; Xie, L.; et al. Super-assembled hierarchical cellulose aerogel-gelatin solid electrolyte for implantable and biodegradable zinc ion battery. Adv. Funct. Mater. 2022, 32, 2111406. [Google Scholar] [CrossRef]
- Lu, G.; Nai, J.; Luan, D.; Tao, X.; Lou, X.W. Surface engineering toward stable lithium metal anodes. Sci. Adv. 2023, 9, adf1550. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.; Wang, T.; Liu, Y.; Du, H.; Li, S.; Du, Z.; Ai, W. Impact of morphological dimensions in carbon-based interlayers on lithium metal anode stabilization. Adv. Energy Mater. 2023, 13, 2302565. [Google Scholar] [CrossRef]
- Molaiyan, P.; Abdollahifar, M.; Boz, B.; Beutl, A.; Krammer, M.; Zhang, N.; Tron, A.; Romio, M.; Ricci, M.; Adelung, R.; et al. Optimizing current collector interfaces for efficient “anode-free” lithium metal batteries. Adv. Funct. Mater. 2023, 34, 2311301. [Google Scholar] [CrossRef]
- Han, Y.; Liu, B.; Xiao, Z.; Zhang, W.; Wang, X.; Pan, G.; Xia, Y.; Xia, X.; Tu, J. Interface issues of lithium metal anode for high-energy batteries: Challenges, strategies, and perspectives. InfoMat 2021, 3, 155–174. [Google Scholar] [CrossRef]
- Sanchez, A.J.; Dasgupta, N.P. Lithium metal anodes: Advancing our mechanistic understanding of cycling phenomena in liquid and solid electrolytes. J. Am. Chem. Soc. 2024, 146, 4282–4300. [Google Scholar] [CrossRef] [PubMed]
- Lyu, T.; Luo, F.; Wang, D.; Bu, L.; Tao, L.; Zheng, Z. Carbon/lithium composite anode for advanced lithium metal batteries: Design, progress, in situ characterization, and perspectives. Adv. Energy Mater. 2022, 12, 2201493. [Google Scholar] [CrossRef]
- Li, P.; Fang, Z.; Dong, X.; Wang, C.; Xia, Y. The pathway toward practical application of lithium-metal anodes for non-aqueous secondary batteries. Natl. Sci. Rev. 2022, 9, nwac031. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhang, K.; Zhu, Z.; Tong, Z.; Liang, X. 3D-hosted lithium metal anodes. Chem. Soc. Rev. 2024, 53, 9–24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Li, Y.; Qiao, L.; Li, D.; Deng, J.; Zhou, J.; Xie, L.; Hou, Y.; Wang, T.; Tian, W.; et al. Atomic layer deposition assisted superassembly of ultrathin ZnO layer decorated hierarchical Cu foam for stable lithium metal anode. Energy Storage Mater. 2021, 37, 123–134. [Google Scholar] [CrossRef]
- Zhang, R.; Li, Y.; Wang, M.; Li, D.; Zhou, J.; Xie, L.; Wang, T.; Tian, W.; Zhai, Y.; Gong, H.; et al. Super-assembled hierarchical CoO nanosheets-Cu foam composites as multi-level hosts for high-performance lithium metal anodes. Small 2021, 17, 2101301. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Cheng, F.; Zhang, N.; Tian, W.; Zhou, J.; Zhang, R.; Cao, J.; Luo, M.; Li, N.; Jiang, L.; et al. Superassembled red phosphorus nanorod–reduced graphene oxide microflowers as high-performance lithium-ion battery anodes. Adv. Eng. Mater. 2021, 23, 2001507. [Google Scholar] [CrossRef]
- Wen, Z.; Fang, W.; Wu, X.; Qin, Z.; Kang, H.; Chen, L.; Zhang, N.; Liu, X.; Chen, G. High-concentration additive and triiodide/iodide redox couple stabilize lithium metal anode and rejuvenate the inactive lithium in carbonate-based electrolyte. Adv. Funct. Mater. 2022, 32, 2204768. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Q.-K.; Zhang, X.-Q.; Lu, J.; Pei, C.; Min, D.; Huang, J.Q.; Park, H.S. Electrolyte additive for interfacial engineering of lithium and zinc metal anodes. Adv. Energy Mater. 2024. [Google Scholar] [CrossRef]
- Huang, Y.; Wen, B.; Jiang, Z.; Li, F. Solvation chemistry of electrolytes for stable anodes of lithium metal batteries. Nano Res. 2023, 16, 8072–8081. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, K.; Deng, L.; Yang, Y.; Tan, L.; Niu, X.; Chen, Y.; Zeng, L.; Fan, X.; Zhu, Y. An additive-enabled ether-based electrolyte to realize stable cycling of high-voltage anode-free lithium metal batteries. Energy Storage Mater. 2023, 54, 450–460. [Google Scholar] [CrossRef]
- Zhang, S.; Cheng, B.; Fang, Y.; Dang, D.; Shen, X.; Li, Z.; Wu, M.; Hong, Y.; Liu, Q. Inhibition of lithium dendrites and dead lithium by an ionic liquid additive toward safe and stable lithium metal anodes. Chinese Chem. Lett. 2022, 33, 3951–3954. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, S.; Li, J.; Xie, B.; Ma, J.; Dong, S.; Cui, G. Robust transport: An artificial solid electrolyte interphase design for anode-free lithium-metal batteries. Adv. Mater. 2023, 35, 2209404. [Google Scholar] [CrossRef]
- Shin, W.; Manthiram, A. A facile potential hold method for fostering an inorganic solid-electrolyte interphase for anode-free lithium-metal batteries. Angew. Chem. Int. Edit. 2022, 61, e202115909. [Google Scholar] [CrossRef]
- Fan, H.; Mao, P.; Sun, H.; Wang, Y.; Mofarah, S.S.; Koshy, P.; Arandiyan, H.; Wang, Z.; Liu, Y.; Shao, Z. Recent advances of metal telluride anodes for high-performance lithium/sodium–ion batteries. Mater. Horiz. 2022, 9, 524–546. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Jin, T.; Cheng, G.; Yuan, S.; Sun, Z.; Li, N.-W.; Yu, L.; Ding, S. Functional polymers in electrolyte optimization and interphase design for lithium metal anodes. J. Mater. Chem. A 2021, 9, 13388–13401. [Google Scholar] [CrossRef]
- Guan, J.; Li, N.; Yu, L. Artificial interphase layers for lithium metal anode. Acra. Phys. Chim. Sin. 2021, 37, 2009011. [Google Scholar] [CrossRef]
- Sayavong, P.; Zhang, W.; Oyakhire, S.T.; Boyle, D.T.; Chen, Y.; Kim, S.C.; Vilá, R.A.; Holmes, S.E.; Kim, M.S.; Bent, S.F.; et al. Dissolution of the Solid Electrolyte Interphase and Its Effects on Lithium Metal Anode Cyclability. J. Am. Chem. Soc. 2023, 145, 12342–12350. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.; Choi, K.; Song, H.Y.S.; Kim, D.; Youn, D.Y.; Cho, S.H.; Jeon, D.; Lee, J.Y.; Lee, J.Y.; Jang, W.; et al. Reinforcing Native Solid-Electrolyte Interphase Layers via Electrolyte-Swellable Soft-Scaffold for Lithium Metal Anode. Adv. Energy Mater. 2023, 13, 202203818. [Google Scholar] [CrossRef]
- Li, Z.; Ding, X.; Feng, W.; Han, B.-H. Aligned artificial solid electrolyte interphase layers as versatile interfacial stabilizers on lithium metal anodes. J. Mater. Chem. A 2022, 10, 10474–10483. [Google Scholar] [CrossRef]
- Zhu, J.; Cui, Z.; He, S.-A.; Wang, H.; Gao, M.; Wang, W.; Yang, J.; Xu, X.; Hu, J.; Lu, A.; et al. Inorganic-rich and flexible solid-electrolyte interphase formed over dipole-dipole interaction for highly stable lithium-metal anodes. Adv. Funct. Mater. 2022, 32, 2205304. [Google Scholar] [CrossRef]
- Zhang, C.H.; Jin, T.; Liu, J.; Ma, J.; Li, N.W.; Yu, L. In situ formed gradient composite solid electrolyte interphase layer for stable lithium metal anodes. Small 2023, 19, 2301523. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Zhang, R.; Li, Y.; Xu, R.; Li, Y.; Li, D.; Gao, M.; Xu, G.; Wang, M.; Liang, X.; et al. Super-assembled hierarchical and stable N-doped carbon nanotube nanoarrays for dendrite-free lithium metal batteries. ACS Appl. Energy Mater. 2022, 5, 815–824. [Google Scholar] [CrossRef]
- Wang, X.; Mai, W.; Guan, X.; Liu, Q.; Tu, W.; Li, W.; Kang, F.; Li, B. Recent advances of electroplating additives enabling lithium metal anodes to applicable battery techniques. Energy Environ. Mater. 2021, 4, 284–292. [Google Scholar] [CrossRef]
- Song, L.; Ning, D.; Chai, Y.; Ma, M.; Zhang, G.; Wang, A.; Su, H.; Hao, D.; Zhu, M.; Zhang, J.; et al. Correlating solid electrolyte interphase composition with dendrite-free and long life-span lithium metal batteries via advanced characterizations and simulations. Small Methods 2023, 7, 2300168. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Pei, A.; Lin, D.; Xie, J.; Yang, A.; Xu, J.; Lin, K.; Wang, J.; Wang, H.; Shi, F.; et al. Uniform High Ionic Conducting Lithium Sulfide Protection Layer for Stable Lithium Metal Anode. Adv. Energy Mater. 2019, 9, 1900858. [Google Scholar] [CrossRef]
- Pan, K.; Zhang, L.; Qian, W.; Wu, X.; Dong, K.; Zhang, H.; Zhang, S. A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries. Adv. Mater. 2020, 32, 2000399. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Li, Q.; Yu, X.; Chen, L.; Li, H. Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. Chem. Rev. 2020, 120, 6820–6877. [Google Scholar] [CrossRef] [PubMed]
- Mei, W.; Jiang, L.; Liang, C.; Sun, J.; Wang, Q. Understanding of Li-plating on graphite electrode: Detection, quantification and mechanism revelation. Energy Storage Mater. 2021, 41, 209–221. [Google Scholar] [CrossRef]
- Zhou, T.; Tang, W.; Lv, J.; Deng, Y.; Liu, Q.; Zhang, L.; Liu, R. Yolk-Shell Structured ST@Al2O3 Enables Functional PE Separator with Enhanced Lewis Acid Sites for High-Performance Lithium Metal Batteries. Small 2023, 19, 202303924. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.M.; Son, H.; Park, K.U.; Choi, J.; Suk, J.; Kang, E.S.; Kim, D.W.; Kim, D. Al2O3 Ceramic/Nanocellulose-Coated Non-Woven Separator for Lithium-Metal Batteries. Coatings 2023, 13, 916. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, Z.; Gu, X.; Chen, Q.; Zhai, Q.; Zuo, J.; He, Q.; Jiang, H.; Yang, Y.; Duan, H.; et al. A functional SnS2-engineered separator for durable and practical lithium metal battery. Energy Storage Mater. 2023, 61, 102900. [Google Scholar] [CrossRef]
- Huang, Z.; Sun, W.; Sun, Z.; Ding, R.; Wang, X. Graphene-Based Materials for the Separator Functionalization of Lithium-Ion/Metal/Sulfur Batteries. Materials 2023, 16, 4449. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Sheng, L.; Gao, X.; Xie, X.; Bai, Y.; Liu, G.; Dong, H.; Wang, T.; Huang, X.; He, J. rGO/Li-Al-LDH composite nanosheets modified commercial polypropylene (PP) separator to suppress lithium dendrites for lithium metal battery. Electrochim. Acta 2022, 430, 141073. [Google Scholar] [CrossRef]
- Sharma, B.; Alolaywi, H.; Tan, B.; Shepard, D.; Li, Y.; Liao, Y.; Cheng, Y. Zeolite Coated Separators for Improved Performance and Safety of Lithium Metal Batteries. J. Electrochem. Soc. 2023, 170, 090506. [Google Scholar] [CrossRef]
- Yu, W.; Shen, L.; Lu, X.; Han, J.; Geng, N.; Lai, C.; Xu, Q.; Peng, Y.; Min, Y.; Lu, Y. Novel composite separators based on heterometallic metal-organic frameworks improve the performance of lithium-ion batteries. Adv. Energy Mater. 2023, 13, 202204055. [Google Scholar] [CrossRef]
- Lin, G.; Jia, K.; Bai, Z.; Liu, C.; Liu, S.; Huang, Y.; Liu, X. Metal-organic framework sandwiching porous super-engineering polymeric membranes as anionphilic separators for dendrite-free lithium metal batteries. Adv. Funct. Mater. 2022, 32, 2207969. [Google Scholar] [CrossRef]
- Gao, K.; Luo, J.; Li, X.; Fan, K.; Luo, L.; Liu, X. Electrospun heterocycle aramid nanofiber separator with MOF-supported porous structure enabled excellent cycling stability for lithium metal batteries with high LiFePO4 loading. J. Alloys Compd. 2023, 966, 171549. [Google Scholar] [CrossRef]
- Min, Y.; Liu, X.; Guo, L.; Wu, A.; Xian, D.; Zhang, B.; Wang, L. Construction of diversified ion channels in lithium-ion battery separator using polybenzimidazole and ion-modified metal-organic framework. ACS Appl. Energy Mater. 2022, 5, 9131–9140. [Google Scholar] [CrossRef]
- Dang, B.; Li, Q.; Luo, Y.; Zhao, R.; Li, J.; Wu, F. Metal-organic framework-based glass fiber separator as an efficacious polysulfide barrier and dendrite suppressor for lithium-sulfur batteries. J. Alloys Compd. 2022, 915, 165375. [Google Scholar] [CrossRef]
- Yao, S.; Yang, Y.; Liang, Z.; Chen, J.; Ding, J.; Li, F.; Liu, J.; Xi, L.; Zhu, M.; Liu, J. A dual-functional cationic covalent organic frameworks modified separator for high energy lithium metal batteries. Adv. Funct. Mater. 2023, 33, 202212466. [Google Scholar] [CrossRef]
- Ma, J.; Wu, Y.; Jiang, H.; Yao, X.; Zhang, F.; Hou, X.; Feng, X.; Xiang, H. In situ directional polymerization of poly(1,3-dioxolane) solid electrolyte induced by cellulose paper-based composite separator for lithium metal batteries. Energy Environ. Mater. 2023, 6, 12370. [Google Scholar] [CrossRef]
- Du, W.; Jiang, X.; Li, S.; Cao, P.; Li, L.; Feng, D.; Huang, X.; Xu, F.; Ye, C.; Liang, X.; et al. Maltodextrin as a commercial-grade electrolyte additive against dendrite formation and side reactions for aqueous zinc-ion batteries. Small Methods 2024, 2400249. [Google Scholar] [CrossRef]
- Li, L.; Guo, Z.; Li, S.; Cao, P.; Du, W.; Feng, D.; Wei, W.; Xu, F.; Ye, C.; Yang, M.; et al. Erythritol as a saccharide multifunctional electrolyte additive for highly reversible zinc anode. Nanomaterials 2024, 14, 644. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, D.; Zheng, R.; Qiao, L.; Li, S.; Xu, F.; Ye, C.; Zhang, J.; Li, Y. Metal–Organic Framework-Derived Co9S8 Nanowall Array Embellished Polypropylene Separator for Dendrite-Free Lithium Metal Anodes. Polymers 2024, 16, 1924. https://doi.org/10.3390/polym16131924
Feng D, Zheng R, Qiao L, Li S, Xu F, Ye C, Zhang J, Li Y. Metal–Organic Framework-Derived Co9S8 Nanowall Array Embellished Polypropylene Separator for Dendrite-Free Lithium Metal Anodes. Polymers. 2024; 16(13):1924. https://doi.org/10.3390/polym16131924
Chicago/Turabian StyleFeng, Deshi, Ruiling Zheng, Li Qiao, Shiteng Li, Fengzhao Xu, Chuangen Ye, Jing Zhang, and Yong Li. 2024. "Metal–Organic Framework-Derived Co9S8 Nanowall Array Embellished Polypropylene Separator for Dendrite-Free Lithium Metal Anodes" Polymers 16, no. 13: 1924. https://doi.org/10.3390/polym16131924
APA StyleFeng, D., Zheng, R., Qiao, L., Li, S., Xu, F., Ye, C., Zhang, J., & Li, Y. (2024). Metal–Organic Framework-Derived Co9S8 Nanowall Array Embellished Polypropylene Separator for Dendrite-Free Lithium Metal Anodes. Polymers, 16(13), 1924. https://doi.org/10.3390/polym16131924