3-Pentadecylphenol (PDP) as a Novel Compatibilizer for Simultaneous Toughened and Reinforced PA10,12 Composites
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Sample Preparation
2.3. Characterizations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qian, M.; Xu, X.; Qin, Z.; Yan, S. Silicon carbide whiskers enhance mechanical and anti-wear properties of PA6 towards potential applications in aerospace and automobile fields. Compos. B Eng. 2019, 175, 107096. [Google Scholar] [CrossRef]
- Sun, J.; Li, Q.; Jiang, Y.; Jiang, J.; Yang, L.; Jia, C.; Chen, F.; Wang, X. Lightweight and High Impact Toughness PP/PET/POE Composite Foams Fabricated by In Situ Nanofibrillation and Microcellular Injection Molding. Polymers 2023, 15, 227. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, Y.; Shen, C.; Gao, S. PP/POE thermoplastic elastomer prepared by dynamic vulcanization and its flame retardant modification. J. Elastom. Plast. 2022, 54, 2. [Google Scholar] [CrossRef]
- Liu, S.; Wang, K.; Zhang, Z.; Ren, Y.; Chen, L.; Sun, X.; Liang, W. Effects of ethylene-octene copolymer (POE) on the brittle to ductile transition of high-density polyethylene/POE blends. Polym. Eng. Sci. 2020, 60, 10. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Xu, Y.; Liu, X.; Guo, W. Research on compatibility and surface of high impact bio-based polyamide. High Perform. Polym. 2021, 33, 960–968. [Google Scholar] [CrossRef]
- Ying, J.; Xie, X.; Peng, S.; Zhou, H.; Li, D. Morphology and rheology of PP/POE blends in high shear stress field. J. Thermoplast. Compos. 2018, 31, 9. [Google Scholar] [CrossRef]
- Cai, F.; Jiang, B.; Wang, B.; Yang, G.; Tan, C.; Chen, H.; Guo, Y.; Li, X. The Material Performance of PA6 Modified with POE-g-MAH. Sci. Environ. Eng. 2017, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhu, P.; Liu, X.; Dong, X.; Wang, D. The toughening mechanism of core-shell particles by the interface interaction and crystalline transition in polyamide 1012. Compos. B Eng. 2021, 206, 108539. [Google Scholar] [CrossRef]
- Ning, N.; Fu, S.; Zhang, W.; Chen, F.; Wang, K.; Deng, H.; Zhang, Q.; Fu, Q. Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization. Prog. Polym. Sci. 2012, 37, 1425–1455. [Google Scholar] [CrossRef]
- Bucknall, C.; Drinkwater, C. Rubber-toughening of plastics. J. Mater. Sci. 1972, 7, 1443–1453. [Google Scholar] [CrossRef]
- Muratoglu, O.; Argon, A.; Cohen, R. Toughening mechanism of rubber-modified polyamides. Polymer 1995, 36, 921–930. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, N.; Ran, X.; Han, C.; Han, L.; Zhuang, Y.; Dong, L. Toughening of polylactide by melt blending with methyl methacrylate–butadiene–styrene copolymer. J. Appl. Polym. Sci. 2012, 125, E550–E561. [Google Scholar] [CrossRef]
- Li, L.; Liu, S.; Liu, R.; Geng, C.; Hu, Z. Preparation and Characterization of Hydrophilic Wetting-Modified Polyamide Fibers. Adv. Polym. Technol. 2020, 11, 8475497. [Google Scholar] [CrossRef]
- Ding, C.; Liang, H.; Chen, Y.; Sun, D. Effect of HDPE Content on Properties of PA1012/POE-g-MAH/HDPE blends. Plast. Ind. 2014, 42, 46–49. [Google Scholar] [CrossRef]
- Zeng, X.; Zhao, J.; Pang, C. Properties and impact profile of toughened polyamide 6 by EPDM grafted with maleic anhydride. Rubber Ind. 2002, 3, 142–145. [Google Scholar] [CrossRef]
- Lu, J.; Jalali, A.; Yao, J.; Ma, Q.; Yin, J.; Zhang, R.; Luo, F. Toughness enhancement of polyamide 6, 12 with intermolecular hydrogen bonding with 3-pentadecylphenol. Appl. Polym. Sci. 2022, 28, 139. [Google Scholar] [CrossRef]
- Avrami, M. Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III. J. Chem. Phys. 1941, 9, 177–184. [Google Scholar] [CrossRef]
- Mo, Z. A method for the non-isothermal crystallization kinetics of polymers. Acta Polym. Sin. 2008, 7, 26–31. [Google Scholar] [CrossRef]
- Ducray, V.; Vlachomitrou, A.; Bouscambert-Duchamp, M.; Si-Mohamed, S.; Gouttard, S.; Mansuy, A.; Wickert, F.; Sigal, A.; Gaymard, A.; Talbot, F.; et al. Chest CT for rapid triage of patients in multiple emergency departments during COVID-19 epidemic: Experience report from a large French university hospital. Eur. Radiol. 2021, 31, 795–803. [Google Scholar] [CrossRef]
- Anjali, S.; Aishwaryalakshmi, S.; Ashwin, V.; Neeraja, S.; Rasana, N.; Jayanarayanan, K. Effect of Compatibilizer and Carbon Nanotubes on Blends of Polypropylene and Nylon 6. Mater. Today Proc. 2018, 5, 25524–25533. [Google Scholar] [CrossRef]
- Martínez, L.; Andrade, R.; Birgin, E.; Martínez, J. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Chen, N.; Wang, C.; Wei, L.; Chen, J. Method for determining crystal grain size by X-Ray diffraction. Cryst. Res. Technol. 2018, 53, 1700157. [Google Scholar] [CrossRef]
- Wang, L.; Dong, X.; Huang, M.; Müller, A.; Wang, D. The effect of microstructural evolution during deformation on the post-yielding behavior of self-associated polyamide blends. Polymers 2017, 117, 231–242. [Google Scholar] [CrossRef]
- Kim, J.; Jang, J.; Zin, W. Thickness dependence of the melting temperature of thin polymer films. Macromol. Rapid Commun. 2001, 22, 386–389. [Google Scholar] [CrossRef]
- Bo, J.; Cai, F.; Qin, X.; Wang, B.; Jiang, G.; Gao, J. The influence of extrusion process on micromorphology of PA 6/POE/POE-g-MA ternary blends: A quantitative analysis. J. Elastom. Plast. 2021, 53, 110–122. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Z.; Zhang, H.; Mo, Z. Isothermal and nonisothermal crystallization kinetics of nylon-46. J. Polym. Sci. B Polym. Phys. 2002, 40, 1784–1793. [Google Scholar] [CrossRef]
- Shi, J.; Yang, X.; Wang, X.; Lu, L. Non-isothermal crystallization kinetics of nylon 6/attapulgite nanocomposites. Polym. Test. 2010, 29, 596–602. [Google Scholar] [CrossRef]
- Li, C.; Zhou, S.; Liu, Z.; Ma, J.; Wang, C.; Dai, J. Effect of POE and POE-G-MA on the structure and properties of PA66 composites. Plast. Addit. 2013, 1, 35–40. [Google Scholar] [CrossRef]
Samples | PA10,12/w% | POE/w% | PDP/w% |
---|---|---|---|
PA10,12 | 100 | 0 | 0 |
PA10,12/POE (97/3) | 97 | 0 | 3 |
PA10,12/POE (95/5) | 95 | 0 | 5 |
PA10,12/POE (90/10) | 90 | 0 | 10 |
PA10,12/POE (80/20) | 80 | 0 | 20 |
PA10,12/POE/PDP (92/3/5) | 92 | 3 | 5 |
PA10,12/POE/PDP (90/5/5) | 90 | 5 | 5 |
PA10,12/POE/PDP (85/10/5) | 85 | 10 | 5 |
PA10,12/POE/PDP (75/20/5) | 75 | 20 | 5 |
PA10,12/POE/PDP (87/3/10) | 87 | 3 | 10 |
PA10,12/POE/PDP (85/5/10) | 85 | 5 | 10 |
PA10,12/POE/PDP (80/10/10) | 80 | 10 | 10 |
PA10,12/POE/PDP (70/20/10) | 70 | 20 | 10 |
Samples PA10,12/POE/PDP | Tc (°C) | Toneset (°C) | Toneset − Tc | Tm (°C) | Xc/% |
---|---|---|---|---|---|
100/0/0 | 166. 5 | 169.0 | 2.5 | 192.3 | 18.9 |
97/3/0 | 163.9 | 166.6 | 2.7 | 190.6 | 18.6 |
95/5/0 | 163.2 | 165.8 | 2.6 | 189.4 | 36.4 |
90/10/0 | 165.8 | 168.4 | 2.6 | 191.4 | 21.0 |
80/20/0 | 165.4 | 167.7 | 2.3 | 189.6 | 19.0 |
92/3/5 | 161.1 | 164.4 | 3.3 | 189.4 | 15.6 |
90/5/5 | 160.1 | 163.7 | 3.6 | 187.8 | 28.6 |
85/10/5 | 157.7 | 161.7 | 4.0 | 185.8 | 22.9 |
75/20/5 | 158.6 | 162.8 | 4.2 | 187.3 | 24.9 |
87/3/10 | 158.6 | 162.6 | 4.0 | 188.3 | 16.7 |
85/5/10 | 160.2 | 164.1 | 3.9 | 188.5 | 26.4 |
80/10/10 | 157.3 | 161.3 | 4.0 | 185.5 | 25.9 |
70/20/10 | 158.6 | 162.3 | 3.7 | 187.2 | 32.4 |
Samples: PA10,12/POE/PDP | T (°C) | n | K (min−1) | t½ (min) |
---|---|---|---|---|
100/0/0 | 182 | 1.9 | 0.79 | 0.15 |
183 | 1.9 | 0.69 | 0.15 | |
184 | 1.9 | 0.61 | 0.14 | |
185 | 1.9 | 0.66 | 0.15 | |
186 | 1.9 | 0.65 | 0.15 | |
97/3/0 | 182 | 2.5 | 0.98 | 0.31 |
183 | 2.3 | 0.85 | 0.38 | |
184 | 2.4 | 0.96 | 0.26 | |
185 | 2.4 | 0.96 | 0.31 | |
186 | 2.3 | 0.83 | 0.34 | |
92/3/5 | 182 | 2.3 | 1.23 | 0.40 |
183 | 2.2 | 1.09 | 0.40 | |
184 | 2.3 | 1.22 | 0.38 | |
185 | 2.3 | 1.24 | 0.37 | |
186 | 2.3 | 1.19 | 0.36 | |
87/3/10 | 182 | 2.4 | 1.45 | 0.39 |
183 | 2.3 | 1.22 | 0.38 | |
184 | 2.4 | 1.31 | 0.38 | |
185 | 2.4 | 1.31 | 0.31 | |
186 | 2.3 | 1.21 | 0.35 |
Samples | Xc (%) | 20 | 40 | 60 | 80 |
---|---|---|---|---|---|
PA10,12 | a | 1.33 | 1.40 | 1.51 | 1.59 |
F(T) | 0.44 | 0.73 | 0.90 | 1.16 | |
PA10,12/POE | a | 1.92 | 2.04 | 2.13 | 2.23 |
F(T) | 0.09 | 0.49 | 0.77 | 1.14 | |
PA10,12/POE/5%PDP | a | 1.91 | 1.97 | 2.03 | 2.14 |
F(T) | 0.51 | 0.94 | 1.27 | 1.58 | |
PA10,12/POE/10%PDP | a | 2.18 | 2.14 | 2.14 | 2.16 |
F(T) | 0.41 | 1.01 | 1.41 | 1.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Zhang, Q.; Zhai, X.; Teng, H.; Du, Y.; Lu, J.; Farzana, S.; Lee, P.C.; Zhang, R.; Luo, F. 3-Pentadecylphenol (PDP) as a Novel Compatibilizer for Simultaneous Toughened and Reinforced PA10,12 Composites. Polymers 2024, 16, 1915. https://doi.org/10.3390/polym16131915
Jin Y, Zhang Q, Zhai X, Teng H, Du Y, Lu J, Farzana S, Lee PC, Zhang R, Luo F. 3-Pentadecylphenol (PDP) as a Novel Compatibilizer for Simultaneous Toughened and Reinforced PA10,12 Composites. Polymers. 2024; 16(13):1915. https://doi.org/10.3390/polym16131915
Chicago/Turabian StyleJin, Yuwei, Qi Zhang, Xiaokun Zhai, Hao Teng, Youmei Du, Jing Lu, Sumaiya Farzana, Patrick C. Lee, Ruiyan Zhang, and Faliang Luo. 2024. "3-Pentadecylphenol (PDP) as a Novel Compatibilizer for Simultaneous Toughened and Reinforced PA10,12 Composites" Polymers 16, no. 13: 1915. https://doi.org/10.3390/polym16131915
APA StyleJin, Y., Zhang, Q., Zhai, X., Teng, H., Du, Y., Lu, J., Farzana, S., Lee, P. C., Zhang, R., & Luo, F. (2024). 3-Pentadecylphenol (PDP) as a Novel Compatibilizer for Simultaneous Toughened and Reinforced PA10,12 Composites. Polymers, 16(13), 1915. https://doi.org/10.3390/polym16131915