Production of Nanocellulose from Sugarcane Bagasse and Development of Nanocellulose Conjugated with Polylysine for Fumonisin B1 Toxicity Absorption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of NC and Conjugation with PL
2.3. Chemical Composition and Yield
2.4. Fourier Transform Infrared Spectroscopy (FTIR)
2.5. The Morphological Analysis
2.6. Measuring the Particle Size by Dynamic Light Scattering (DLS) and Zeta Potential Measurements
2.7. Adsorption of FB1 by NC and NC–PL
2.8. Cell Culture
2.9. The Cytotoxicity of NC and NC–PL by MTT Assay
2.10. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition and Yield
Samples | α-Cellulose (%) | Hemicellulose (%) | Lignin (%) | Yield (%) | References |
---|---|---|---|---|---|
RF | 41.4–58.8 | 20–32 | 17–32 | – | [5,6,40] |
CL | 56–42 | 12.5–34 | 18–22 | 40–55 | [37,39,41] |
NC | 87.3–81.0 | 6.9–12 | 2.5–6.5 | 27.7–40.1 | [3,4,36,41] |
RF | 41.7 ± 1.3 c | 29.1 ± 1.1 a | 19.7 ± 0.5 a | – | Our work |
CL | 68.3 ± 1.4 b | 6.5 ± 0.8 b | 3.7 ± 0.5 b | 52.3 ± 1.5 a | Our work |
NC | 90.1 ± 1.3 a | 3.5 ± 0.6 c | 0.6 ± 0.3 c | 32.4 ± 0.2 b | Our work |
3.2. Fourier Transform Infrared Spectroscopy (FTIR)
3.3. Morphological Analysis
3.4. Measuring the Particle Size by Dynamic Light Scattering (DLS) and Zeta Potential Measurements
3.5. Adsorption of FB1 by NC and NC–PL
3.6. The Effect of NC and NC–PL on HepG2 Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Owusu Prempeh, C. Generation of Biogenic Silica from Biomass Residues for Sustainable Industrial Material Applications. Ph.D. Thesis, Universität Rostock, Rostock, Germany, 2024. [Google Scholar]
- Yang, J.; Tang, S.; Mei, W.; Chen, Y.; Yi, W.; Lv, P.; Yang, G. Valorising lignocellulosic biomass to high-performance electrocatalysts via anaerobic digestion pretreatment. Biochar 2024, 6, 23. [Google Scholar] [CrossRef]
- Rana, A.K.; Frollini, E.; Thakur, V.K. Cellulose nanocrystals: Pretreatments, preparation strategies, and surface functionalization. Int. J. Biol. Macromol. 2021, 182, 1554–1581. [Google Scholar] [CrossRef]
- Tang, S.; Chen, Z.; Chen, F.; Lai, X.; Wei, Q.; Chen, X.; Jiang, C. Extraction and Surface Functionalization of Cellulose Nanocrystals from Sugarcane Bagasse. Molecules 2023, 28, 5444. [Google Scholar] [CrossRef]
- Abdel-Hakim, A.; Mouradb, R.M. Nanocellulose and its polymer composites: Preparation, characterization, and applications. Russ. Chem. Rev. 2023, 92, RCR5076. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, V.; Singh, B. Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective. Int. J. Biol. Macromol. 2021, 169, 564–582. [Google Scholar]
- Rachtanapun, P.; Klunklin, W.; Jantrawut, P.; Leksawasdi, N.; Jantanasakulwong, K.; Phimolsiripol, Y.; Seesuriyachan, P.; Chaiyaso, T.; Ruksiriwanich, W.; Phongthai, S.; et al. Effect of Monochloroacetic Acid on Properties of Carboxymethyl Bacterial Cellulose Powder and Film from Nata de Coco. Polymers 2021, 13, 488. [Google Scholar] [CrossRef]
- Rachtanapun, P.; Luangkamin, S.; Tanprasert, K.; Suriyatem, R. Carboxymethyl cellulose film from durian rind. LWT-Food Sci. Technol. 2012, 48, 52–58. [Google Scholar] [CrossRef]
- Naseem, S.; Rizwan, M.; Durrani, A.I.; Munawar, A.; Siddique, S.; Habib, F. Green and efficient synthesis of cellulose nanocrystals from Hamelia patens leftover via hydrolysis of microwave assisted-ionic liquid (MWAIL) pretreated microcrystalline cellulose. Int. J. Biol. Macromol. 2024, 271, 132791. [Google Scholar] [CrossRef]
- Thakur, V.; Guleria, A.; Kumar, S.; Sharma, S.; Singh, K. Recent advances in nanocellulose processing, functionalization and applications: A review. Mater. Adv. 2021, 2, 1872–1895. [Google Scholar] [CrossRef]
- Chanabodeechalermrung, B.; Chaiwarit, T.; Sommano, S.R.; Rachtanapun, P.; Kantrong, N.; Chittasupho, C.; Jantrawut, P. Dual crosslinked ion-based bacterial cellulose composite hydrogel containing polyhexamethylene biguanide. Membranes 2022, 12, 825. [Google Scholar] [CrossRef]
- O-chongpian, P.; Chaiwarit, T.; Jantanasakulwong, K.; Rachtanapun, P.; Worajittiphon, P.; Kantrong, N.; Jantrawut, P. Surface-modified carboxylated cellulose nanofiber hydrogels for prolonged release of polyhexamethylene biguanide hydrochloride (PHMB) for antimicrobial applications. Polymers 2023, 15, 3572. [Google Scholar] [CrossRef]
- Rachtanapun, P.; Jantrawut, P.; Klunklin, W.; Jantanasakulwong, K.; Phimolsiripol, Y.; Leksawasdi, N.; Seesuriyachan, P.; Chaiyaso, T.; Insomphun, C.; Phongthai, S. Carboxymethyl bacterial cellulose from nata de coco: Effects of NaOH. Polymers 2021, 13, 348. [Google Scholar] [CrossRef] [PubMed]
- Thipchai, P.; Punyodom, W.; Jantanasakulwong, K.; Thanakkasaranee, S.; Hinmo, S.; Pratinthong, K.; Kasi, G.; Rachtanapun, P. Preparation and Characterization of Cellulose Nanocrystals from Bamboos and Their Application in Cassava Starch-Based Film. Polymers 2023, 15, 2622. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.; Ma, X.; Zhang, C.; Han, J.; He, S.; Liu, K.; Jiang, S. Nanocellulose-based nanogenerators for sensor applications: A review. Int. J. Biol. Macromol. 2024, 259, 129268. [Google Scholar] [CrossRef] [PubMed]
- Tshikovhi, A.; Mishra, S.B.; Mishra, A.K. Nanocellulose-based composites for the removal of contaminants from wastewater. Int. J. Biol. Macromol. 2020, 152, 616–632. [Google Scholar] [CrossRef]
- González-Jartín, J.M.; de Castro Alves, L.; Piñeiro, Y.; Alfonso, A.; Alvariño, R.; Gomez, M.G.; Vieytes, M.R.; Rivas, J.; Botana, L.M. Magnetic nanostructured agents for the mitigation of mycotoxins and cyanotoxins in the food chain. Food Chem. 2024, 456, 140004. [Google Scholar] [CrossRef]
- Gurikar, C.; Shivaprasad, D.P.; Sabillón, L.; Nanje Gowda, N.A.; Siliveru, K. Impact of mycotoxins and their metabolites associated with food grains. Grain Oil Sci. Technol. 2023, 6, 1–9. [Google Scholar] [CrossRef]
- Najjar, A.A. Managing Major Foodborne Mycotoxins: A Therapeutic Approach for Safety and Health. World J. Environ. Biosci. 2023, 12, 46–53. [Google Scholar] [CrossRef]
- Peivasteh-Roudsari, L.; Pirhadi, M.; Shahbazi, R.; Eghbaljoo-Gharehgheshlaghi, H.; Sepahi, M.; Mirza Alizadeh, A.; Tajdar-Oranj, B.; Jazaeri, S. Mycotoxins: Impact on health and strategies for prevention and detoxification in the food chain. Food Rev. Int. 2022, 38, 193–224. [Google Scholar] [CrossRef]
- Nada, S.; Nikola, T.; Bozidar, U.; Ilija, D.; Andreja, R. Prevention and practical strategies to control mycotoxins in the wheat and maize chain. Food Control 2022, 136, 108855. [Google Scholar] [CrossRef]
- Arumugam, T.; Ghazi, T.; Chuturgoon, A.A. Molecular and epigenetic modes of Fumonisin B1 mediated toxicity and carcinogenesis and detoxification strategies. Crit. Rev. Toxicol. 2021, 51, 76–94. [Google Scholar] [CrossRef]
- Jayeoye, T.J.; Eze, F.N.; Singh, S. Nanocellulose Materials and Composites for Emerging Applications. In Regenerated Cellulose and Composites: Morphology-Property Relationship; Springer: Berlin/Heidelberg, Germany, 2023; pp. 105–144. [Google Scholar]
- Li, Z.; Zhang, Y.; Anankanbil, S.; Guo, Z. Applications of nanocellulosic products in food: Manufacturing processes, structural features and multifaceted functionalities. Trends Food Sci. Technol. 2021, 113, 277–300. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, H.; Shi, Z.; Liu, Y.; Liu, L.; Yu, J.; Fan, Y. Preparation of amino cellulose nanofiber via ε-poly-L-lysine grafting with enhanced mechanical, anti-microbial and food preservation performance. Ind. Crops Prod. 2023, 194, 116288. [Google Scholar] [CrossRef]
- Badsha, I.; Namasivayam, S.K.R.; Jayaprakash, C.; Nachiyar, C.V.; Bharani, R.A. Polylysine: Natural Peptides as Antimicrobial Agents. A Recent Scenario in Food Preservation. Handb. Nutraceuticals Nat. Prod. Biol. Med. Nutr. Prop. Appl. 2022, 1, 257–272. [Google Scholar]
- Wang, C.; Cao, H.; Jia, L.; Liu, W.; Liu, P. Characterization of antibacterial aerogel based on ε-poly-l-lysine/nanocellulose by using citric acid as crosslinker. Carbohydr. Polym. 2022, 291, 119568. [Google Scholar] [CrossRef]
- Biranje, S.S.; Shi, Y.; Sun, J.; Cheng, L.; Jiao, H.; Lu, X.; Sethupathy, S.; Wang, Q.; Adivarekar, R.V.; Liu, J. Cellulose nanofibril/polylysine-based 3D composite antibacterial scaffold for wound healing applications. Cellulose 2023, 30, 5289–5306. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, X.; Li, J. Updating techniques on controlling mycotoxins—A review. Food Control 2018, 89, 123–132. [Google Scholar] [CrossRef]
- Thipchai, P.P.W.; Chantanasakunwong, K.; Thanaksaranee, S.; Sringam, K.; Panyathip, R.; Thanachangsaeng, N.; Worachittiphon, P.; Ratchatanaphan, P. Property Investigation of Nanocellulose I and II from Different Non-Wood Fibers Using Chemical Acid Hydrolysis Method. Ind. Crops Prod. 2024; INDCRO-D-24-01974R1 (in revision, 20 May 2024). [Google Scholar]
- T222 om-88; Code for Testing Acid-Insoluble Lignin in Wood and Pulp. TAPPI: North Avenue, Atlanta, 2004.
- T203 om-88; Code for Testing Alpha, Beta and Gamma Cellulose in Pulp. TAPPI: North Avenue, Atlanta, 2004.
- Pan, X.; Yang, Y.; Li, H.; Xiao, J.; Zhang, L.; Wu, S.; Wen, H.; Wu, B.; Peng, D. Development of time-resolved fluorescence immunochromatography and ic-ELISA based on monoclonal antibodies specifically recognizing fumonisin B1. Food Biosci. 2024, 59, 104131. [Google Scholar] [CrossRef]
- Arjin, C.; Hongsibsong, S.; Pringproa, K.; Seel-Audom, M.; Ruksiriwanich, W.; Sutan, K.; Sommano, S.R.; Sringarm, K. Effect of ethanolic Caesalpinia sappan fraction on in vitro antiviral activity against porcine reproductive and respiratory syndrome virus. Vet. Sci. 2021, 8, 106. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Sari, G.; Ozdal, T.; Capanoglu, E. Guidelines for cell viability assays. Food Front. 2020, 1, 332–349. [Google Scholar] [CrossRef]
- Nang An, V.; Chi Nhan, H.T.; Tap, T.D.; Van, T.T.T.; Van Viet, P.; Van Hieu, L. Extraction of high crystalline nanocellulose from biorenewable sources of Vietnamese agricultural wastes. J. Polym. Environ. 2020, 28, 1465–1474. [Google Scholar] [CrossRef]
- Ali, S.Z.; Nahian, M.K.; Hoque, M.E. Chapter 19—Extraction of cellulose from agro-industrial wastes. In Extraction of Natural Products from Agro-Industrial Wastes; Bhawani, S.A., Khan, A., Ahmad, F.B., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 319–348. [Google Scholar]
- Mahur, B.K.; Ahuja, A.; Singh, S.; Maji, P.K.; Rastogi, V.K. Different nanocellulose morphologies (cellulose nanofibers, nanocrystals and nanospheres) extracted from Sunn hemp (Crotalaria juncea). Int. J. Biol. Macromol. 2023, 253, 126657. [Google Scholar] [CrossRef]
- Thiangtham, S.; Runt, J.; Manuspiya, H. Sulfonation of dialdehyde cellulose extracted from sugarcane bagasse for synergistically enhanced water solubility. Carbohydr. Polym. 2019, 208, 314–322. [Google Scholar] [CrossRef]
- Suriyatem, R.; Noikang, N.; Kankam, T.; Jantanasakulwong, K.; Leksawasdi, N.; Phimolsiripol, Y.; Insomphun, C.; Seesuriyachan, P.; Chaiyaso, T.; Jantrawut, P.; et al. Physical Properties of Carboxymethyl Cellulose from Palm Bunch and Bagasse Agricultural Wastes: Effect of Delignification with Hydrogen Peroxide. Polymers 2020, 12, 1505. [Google Scholar] [CrossRef]
- de Aguiar, J.; Bondancia, T.J.; Claro, P.I.C.; Mattoso, L.H.C.; Farinas, C.S.; Marconcini, J.M. Enzymatic Deconstruction of Sugarcane Bagasse and Straw to Obtain Cellulose Nanomaterials. ACS Sustain. Chem. Eng. 2020, 8, 2287–2299. [Google Scholar] [CrossRef]
- Klunklin, W.; Jantanasakulwong, K.; Phimolsiripol, Y.; Leksawasdi, N.; Seesuriyachan, P.; Chaiyaso, T.; Insomphun, C.; Phongthai, S.; Jantrawut, P.; Sommano, S.R.; et al. Synthesis, Characterization, and Application of Carboxymethyl Cellulose from Asparagus Stalk End. Polymers 2020, 13, 81. [Google Scholar] [CrossRef]
- Zheng, D.; Zhang, Y.; Guo, Y.; Yue, J. Isolation and Characterization of Nanocellulose with a Novel Shape from Walnut (Juglans regia L.) Shell Agricultural Waste. Polymers 2019, 11, 1130. [Google Scholar] [CrossRef]
- Zhang, P.P.; Tong, D.S.; Lin, C.X.; Yang, H.M.; Zhong, Z.K.; Yu, W.H.; Wang, H.; Zhou, C.H. Effects of acid treatments on bamboo cellulose nanocrystals. Asia-Pac. J. Chem. Eng. 2014, 9, 686–695. [Google Scholar] [CrossRef]
- Scheufele, F.B.; Ribeiro, C.; Módenes, A.N.; Espinoza-Quiñones, F.R.; Bergamasco, R.; Pereira, N.C. Assessment of drying temperature of sugarcane bagasse on sorption of reactive blue 5G dye. Fibers Polym. 2015, 16, 1646–1656. [Google Scholar] [CrossRef]
- Prégent, J.; Vandsburger, L.; Blanchard, V.; Blanchet, P.; Riedl, B.; Sarkissian, A.; Stafford, L. Determination of active species in the modification of hardwood samples in the flowing afterglow of N2 dielectric barrier discharges open to ambient air. Cellulose 2014, 22, 811–827. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, T.; Yao, J. A Two-Step Chemical Process for the Extraction of Cellulose Fiber and Pectin from Mulberry Branch Bark Efficiently. J. Polym. Environ. 2011, 19, 568–573. [Google Scholar] [CrossRef]
- Rachtanapun, P.; Kodsangma, A.; Homsaard, N.; Nadon, S.; Jantrawut, P.; Ruksiriwanich, W.; Seesuriyachan, P.; Leksawasdi, N.; Phimolsiripol, Y.; Chaiyaso, T. Thermoplastic mung bean starch/natural rubber/sericin blends for improved oil resistance. Int. J. Biol. Macromol. 2021, 188, 283–289. [Google Scholar] [CrossRef]
- Adunphatcharaphon, S.; Petchkongkaew, A.; Greco, D.; D’Ascanio, V.; Visessanguan, W.; Avantaggiato, G. The Effectiveness of Durian Peel as a Multi-Mycotoxin Adsorbent. Toxins 2020, 12, 108. [Google Scholar] [CrossRef]
- Ruiz-Palomero, C.; Soriano, M.L.; Valcarcel, M. Sulfonated nanocellulose for the efficient dispersive micro solid-phase extraction and determination of silver nanoparticles in food products. J. Chromatogr. A 2016, 1428, 352–358. [Google Scholar] [CrossRef]
- Li, R.; Fei, J.; Cai, Y.; Li, Y.; Feng, J.; Yao, J. Cellulose whiskers extracted from mulberry: A novel biomass production. Carbohydr. Polym. 2009, 76, 94–99. [Google Scholar] [CrossRef]
- Shanmugarajah, B.; Kiew, P.L.; Chew, I.M.L.; Choong, T.S.Y.; Tan, K.W. Isolation of nanocrystalline cellulose (NCC) from palm oil empty fruit bunch (EFB): Preliminary result on FTIR and DLS analysis. Chem. Eng. Trans. 2015, 45, 1705–1710. [Google Scholar]
- Jebali, A.; Hekmatimoghaddam, S.; Behzadi, A.; Rezapor, I.; Mohammadi, B.H.; Jasemizad, T.; Yasini, S.A.; Javadzadeh, M.; Amiri, A.; Soltani, M.; et al. Antimicrobial activity of nanocellulose conjugated with allicin and lysozyme. Cellulose 2013, 20, 2897–2907. [Google Scholar] [CrossRef]
- Edwards, J.V.; Prevost, N.T.; Condon, B.; French, A. Covalent attachment of lysozyme to cotton/cellulose materials: Protein verses solid support activation. Cellulose 2011, 18, 1239–1249. [Google Scholar] [CrossRef]
- Bao, R.; He, X.; Liu, Y.; Meng, Y.; Chen, J. Preparation, Characterization, and Application of Sodium Alginate/ε-Polylysine Layer-by-Layer Self-Assembled Edible Film. Coatings 2023, 13, 516. [Google Scholar] [CrossRef]
- Lv, J.M.; Meng, Y.C.; Shi, Y.G.; Li, Y.H.; Chen, J.; Sheng, F. Properties of epsilon-polylysine· HCl/high-methoxyl pectin polyelectrolyte complexes and their commercial application. J. Food Process. Preserv. 2020, 44, e14320. [Google Scholar] [CrossRef]
- Jebali, A.; Yasini Ardakani, S.A.; Shahdadi, H.; Balal Zadeh, M.H.; Hekmatimoghaddam, S. Modification of nanocellulose by poly-lysine can inhibit the effect of fumonisin B1 on mouse liver cells. Colloids Surf. B Biointerfaces 2015, 126, 437–443. [Google Scholar] [CrossRef]
- Bajpai, P. Nonwood Plant Fibers for Pulp and Paper; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Bakar, N.A.; Abd Rahman, N.; Mahadi, M.; Zuki, S.M.; Amin, K.M.; Wahab, M.; Lenggoro, I.W. Nanocellulose from oil palm mesocarp fiber using hydrothermal treatment with low concentration of oxalic acid. Mater. Today Proc. 2022, 48, 1899–1904. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, X.; Chen, X.; Zhang, Y.; Yang, H.; Li, Q.; Jiang, J. Isolation and characteristics of nanocellulose from hardwood pulp via phytic acid pretreatment. Ind. Crop. Prod. 2022, 182, 114921. [Google Scholar] [CrossRef]
- Seo, M.; Lee, K.-J.; Seo, B.; Lee, J.-H.; Lee, J.-H.; Shin, D.-W.; Park, J. Analysis of Self-Assembled Low-and High-Molecular-Weight Poly-L-Lysine–Ce6 Conjugate-Based Nanoparticles. Biomolecules 2024, 14, 431. [Google Scholar] [CrossRef]
- Shaikh, A. Fusarium Verticillioides Infection and Fumonisin Production during Maize Kernel Maturation; Stellenbosch University: Stellenbosch, South Africa, 2021. [Google Scholar]
- Chen, J.; Wen, J.; Tang, Y.; Shi, J.; Mu, G.; Yan, R.; Cai, J.; Long, M. Research Progress on Fumonisin B1 Contamination and Toxicity: A Review. Molecules 2021, 26, 5238. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Luo, K.; Zhu, Q.; Peng, J.; Liu, C.; Wang, X.; Li, S.; Zhang, H. The natural occurrence, toxicity mechanisms and management strategies of Fumonisin B1: A review. Environ. Pollut. 2023, 320, 121065. [Google Scholar] [CrossRef]
- Solis-Cruz, B.; Hernandez-Patlan, D.; Beyssac, E.; Latorre, J.D.; Hernandez-Velasco, X.; Merino-Guzman, R.; Tellez, G.; Lopez-Arellano, R. Evaluation of Chitosan and Cellulosic Polymers as Binding Adsorbent Materials to Prevent Aflatoxin B1, Fumonisin B1, Ochratoxin, Trichothecene, Deoxynivalenol, and Zearalenone Mycotoxicoses Through an In Vitro Gastrointestinal Model for Poultry. Polymers 2017, 9, 529. [Google Scholar] [CrossRef]
- Salimi, S.; Sotudeh-Gharebagh, R.; Zarghami, R.; Chan, S.Y.; Yuen, K.H. Production of Nanocellulose and Its Applications in Drug Delivery: A Critical Review. ACS Sustain. Chem. Eng. 2019, 7, 15800–15827. [Google Scholar] [CrossRef]
- Patil, N.A.; Kandasubramanian, B. Functionalized polylysine biomaterials for advanced medical applications: A review. Eur. Polym. J. 2021, 146, 110248. [Google Scholar] [CrossRef]
- Manouchehri, S.; Zarrintaj, P.; Saeb, M.R.; Ramsey, J.D. Advanced Delivery Systems Based on Lysine or Lysine Polymers. Mol. Pharm. 2021, 18, 3652–3670. [Google Scholar] [CrossRef]
- Thusyanthan, J.; Wickramaratne, N.S.; Senathilake, K.S.; Rajagopalan, U.; Tennekoon, K.H.; Thabrew, I.; Samarakoon, S.R. Cytotoxicity against human hepatocellular carcinoma (HepG2) cells and anti-oxidant activity of selected endemic or medicinal plants in Sri Lanka. Adv. Pharmacol. Pharm. Sci. 2022, 2022, 6407688. [Google Scholar] [CrossRef] [PubMed]
Frequency (cm−1) | Functional Group | References | |||||
---|---|---|---|---|---|---|---|
RF | CL | NC | C–NC | PL | NC–PL | ||
3400 | 3445 | 3445 | 3445 | − | − | O–H stretching vibration | [43] |
− | − | − | − | 3448, 3270, 3070 | 3448 | Primary and tertiary amine N–H stretching vibration | [55,56] |
− | − | − | − | 2940, 2866 | 2920, 2855 | –CH2 stretching vibration | [55,56] |
2920 | 2900 | 2900 | 2900 | − | − | C–H stretching of cellulose | [42] |
1734 | − | − | − | − | − | C=O stretching | [44] |
− | − | − | 1720 | − | − | C=O stretching | [53,54] |
1635 | 1635 | 1635 | 1635 | − | 1635 | H–O–H bond of lignin | [7] |
1605 | − | − | − | − | − | Aromatic rings from lignin alcohol | [45] |
− | − | − | − | 1625, 1530 | 1630 | Amide I and amide II vibrations | [55,56] |
1510 | − | − | − | − | − | Benzene ring C=C vibration in lignin. | [46] |
1428 | 1428 | 1428 | 1428 | − | − | Nearly aromatic C–H in-plane stretching | [47] |
1374 | 1374 | 1374 | 1374 | − | − | Phenolic O–H and C–H in methyl groups | [47] |
− | − | − | − | 1257, 1160 | − | C–N stretching vibration | [55,56] |
1240 | − | − | − | − | − | C–O–C stretching | [47,48] |
1159 | 1159 | 1159 | 1159 | − | 1159 | C–H of cuaiacyl and syringyl | [47] |
1110 | 1110, 1032 | 1110, 1032 | 1110, 1032 | − | − | Syringyl ring aromatic C–H in-plane deformation | [51] |
1060 | 1060 | 1060 | 1060 | − | 1060 | Cellulose C–OH antisymmetric bend | [51,52] |
− | 995 | 995 | 995 | − | − | Cellulose –CH2 stretching | [46] |
895 | 895 | 895 | 895 | − | − | Glycosidic linkage –C–H vibration | [14,50] |
830, 780 | − | − | − | − | − | Aromatic ring –C–H stretching and O–H bending out of plane | [49] |
Samples | Diameter (nm) | Length (nm) |
---|---|---|
RF | 92.1 × 103 ± 3.8 | – |
CL | 7.6 × 103 ± 2.3 | – |
NC | 33.4 ± 11.4 | 224.8 ± 85.4 |
C–NC | 44.3 ± 18.1 | 265.3 ± 64.1 |
NC–PL | 53.6 ± 15.1 | 363.5 ± 103.6 |
Samples | DLS (nm) | Zeta Potential (mV) |
---|---|---|
PL | 174.1 ± 15.3 | 48.7 ± 3.7 |
NC | 112.1 ± 3.4 | −64.7 ± 1.5 |
C–NC | 439.0 ± 14.1 | −39.7 ± 1.7 |
NC–PL | 867.0 ± 19.8 | 38.0 ± 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thipchai, P.; Sringarm, K.; Punyodom, W.; Jantanasakulwong, K.; Thanakkasaranee, S.; Panyathip, R.; Arjin, C.; Rachtanapun, P. Production of Nanocellulose from Sugarcane Bagasse and Development of Nanocellulose Conjugated with Polylysine for Fumonisin B1 Toxicity Absorption. Polymers 2024, 16, 1881. https://doi.org/10.3390/polym16131881
Thipchai P, Sringarm K, Punyodom W, Jantanasakulwong K, Thanakkasaranee S, Panyathip R, Arjin C, Rachtanapun P. Production of Nanocellulose from Sugarcane Bagasse and Development of Nanocellulose Conjugated with Polylysine for Fumonisin B1 Toxicity Absorption. Polymers. 2024; 16(13):1881. https://doi.org/10.3390/polym16131881
Chicago/Turabian StyleThipchai, Parichat, Korawan Sringarm, Winita Punyodom, Kittisak Jantanasakulwong, Sarinthip Thanakkasaranee, Rangsan Panyathip, Chaiwat Arjin, and Pornchai Rachtanapun. 2024. "Production of Nanocellulose from Sugarcane Bagasse and Development of Nanocellulose Conjugated with Polylysine for Fumonisin B1 Toxicity Absorption" Polymers 16, no. 13: 1881. https://doi.org/10.3390/polym16131881
APA StyleThipchai, P., Sringarm, K., Punyodom, W., Jantanasakulwong, K., Thanakkasaranee, S., Panyathip, R., Arjin, C., & Rachtanapun, P. (2024). Production of Nanocellulose from Sugarcane Bagasse and Development of Nanocellulose Conjugated with Polylysine for Fumonisin B1 Toxicity Absorption. Polymers, 16(13), 1881. https://doi.org/10.3390/polym16131881