Ion Release and Apatite Formation of Resin Based Pit and Fissure Sealants Containing 45S5 Bioactive Glass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of 45S5 BAG Powder
2.2. Preparation of Resin Matrix
2.3. Ion Release and pH Variation
2.4. Apatite Forming Properties
2.5. Statistical Analysis
3. Results
3.1. Powder Characterization of 45S5 BAG
3.2. Ca and P Ion Release
3.3. pH Variation
3.4. Analysis of Apatite Formation with Raman Spectroscopy
3.5. Analysis of Apatite Formation with SEM-EDS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ortiz, A.S.; Tomazoni, F.; Knorst, J.K.; Ardenghi, T.M. Influence of socioeconomic inequalities on levels of dental caries in adolescents: A cohort study. Int. J. Paediatr. Dent. 2020, 30, 42–49. [Google Scholar] [CrossRef]
- Lam, P.P.Y.; Sardana, D.; Ekambaram, M.; Lee, G.H.M.; Yiu, C.K.Y. Effectiveness of pit and fissure sealants for preventing and arresting occlusal caries in primary molars: A systematic review and meta-analysis. J. Evid. Based Dent. Pract. 2020, 20, 101404. [Google Scholar] [CrossRef] [PubMed]
- Rogers, H.J.; Gilchrist, F.; Marshman, Z.; Rodd, H.D.; Rowen, D. Selection and validation of a classification system for a child-centred preference-based measure of oral health-related quality of life specific to dental caries. J. Patient Rep. Outcomes 2020, 4, 105. [Google Scholar] [CrossRef] [PubMed]
- Gilchrist, F.; Marshman, Z.; Deery, C.; Rodd, H.D. The impact of dental caries on children and young people: What they have to say? Int. J. Paediatr. Dent. 2015, 25, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Dimaisip-Nabuab, J.; Duijster, D.; Benzian, H.; Heinrich-Weltzien, R.; Homsavath, A.; Monse, B.; Sithan, H.; Stauf, N.; Susilawati, S.; Kromeyer-Hauschild, K. Nutritional status, dental caries and tooth eruption in children: A longitudinal study in Cambodia, Indonesia and Lao PDR. BMC Pediatr. 2018, 18, 300. [Google Scholar] [CrossRef] [PubMed]
- Chabadel, O.; Véronneau, J.; Montal, S.; Tramini, P.; Moulis, E. Effectiveness of pit and fissure sealants on primary molars: A 2-yr split-mouth randomized clinical trial. Eur. J. Oral Sci. 2021, 129, e12758. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.W.; Yang, S.Y. Effect of zinc oxide incorporation on the antibacterial, physicochemical, and mechanical properties of pit and fissure sealants. Polymers 2023, 15, 529. [Google Scholar] [CrossRef] [PubMed]
- Memarpour, M.; Abedinzade, A.; Rafiee, A.; Hashemian, A. Penetration ability and microhardness of infiltrant resin and two pit and fissure sealants in primary teeth with early enamel lesions. Sci. Rep. 2022, 12, 4652. [Google Scholar] [CrossRef] [PubMed]
- AlQahtani, A.; Al-Dlaigan, Y.; Almahdy, A. Microtensile bond strength of bioactive pit and fissure sealants bonded to primary and permanent teeth. Materials 2022, 15, 1369. [Google Scholar] [CrossRef]
- Wright, J.T.; Crall, J.J.; Fontana, M.; Gillette, E.J.; Nový, B.B.; Dhar, V.; Donly, K.; Hewlett, E.R.; Quinonez, R.B.; Chaffin, J.; et al. Evidence-based clinical practice guideline for the use of pit-and-fissure sealants: A report of the American Dental Association and the American Academy of Pediatric Dentistry. J. Am. Dent. Assoc. 2016, 147, 672–682. [Google Scholar] [CrossRef]
- Ozan, G.; Sancakli, H.S.; Erdemir, U.; Yaman, B.C.; Yildiz, S.O.; Yildiz, E. Comparative evaluation of a fissure sealant and a flowable composite: A 36-month split-mouth, randomized clinical study. J. Dent. 2022, 123, 104205. [Google Scholar] [CrossRef] [PubMed]
- Kaga, M.; Kakuda, S.; Ida, Y.; Toshima, H.; Hashimoto, M.; Endo, K.; Sano, H. Inhibition of enamel demineralization by buffering effect of S-PRG filler-containing dental sealant. Eur. J. Oral Sci. 2014, 122, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; Choi, J.W.; Kim, K.M.; Kwon, J.S. Prevention of secondary caries using resin-based pit and fissure sealants containing hydrated calcium silicate. Polymers 2020, 12, 1200. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Mangal, U.; Kim, S.-J.; Yoon, Y.-P.; Ahn, E.-S.; Jang, E.-S.; Kwon, J.-S.; Choi, S.-H. Improvement in the microbial resistance of resin-based dental sealant by sulfobetaine methacrylate incorporation. Polymers 2020, 12, 1716. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, H.; Zhu, C.G.; Zhou, X.; Wang, H.; Han, Q.; Ren, B.; Cheng, L. Anti-bacterial and anti-microbial aging effects of resin-based sealant modified by quaternary ammonium monomers. J. Dent. 2021, 112, 103767. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.; Li, Y.; Weir, M.D.; Baras, B.H.; Wang, H.; Wang, S.; Sun, J.; Melo, M.A.; Ruan, J.; Xu, H.H. Novel pit and fissure sealant containing Nano-CaF2 and dimethylaminohexadecyl methacrylate with double benefits of fluoride release and antibacterial function. Dent. Mater. 2020, 36, 1241–1253. [Google Scholar] [CrossRef] [PubMed]
- Swetha, D.L.; Vinay, C.; Uloopi, K.S.; Rojaramya, K.S.; Chandrasekhar, R. Antibacterial and mechanical properties of pit and fissure sealants containing zinc oxide and calcium fluoride nanoparticles. Contemp. Clin. Dent. 2019, 10, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Memarpour, M.; Afzali Baghdadabadi, N.; Rafiee, A.; Vossoughi, M. Ion release and recharge from a fissure sealant containing amorphous calcium phosphate. PLoS ONE 2020, 15, e0241272. [Google Scholar] [CrossRef]
- Unal, M.; Oztas, N. Remineralization capacity of three fissure sealants with and without gaseous ozone on non-cavitated incipient pit and fissure caries. J. Clin. Pediatr. Dent. 2015, 39, 364–370. [Google Scholar] [CrossRef]
- Raszewski, Z.; Chojnacka, K.; Mikulewicz, M. Preparation and characterization of acrylic resins with bioactive glasses. Sci. Rep. 2022, 12, 16624. [Google Scholar] [CrossRef]
- Baino, F.; Hamzehlou, S.; Kargozar, S. Bioactive glasses: Where are we and where are we going? J. Funct. Biomater. 2018, 9, 25. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Chen, J.; Xu, X.; Wang, T. Impact of transparent tray-based application of bioactive glasses desensitizer on the permeability of enamel and dentin to hydrogen peroxide: An in vitro study. BMC Oral Health 2020, 20, 103. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; Han, A.R.; Kim, K.M.; Kwon, J.S. Effects of incorporating 45S5 bioactive glass into 30% hydrogen peroxide solution on whitening efficacy and enamel surface properties. Clin. Oral Investig. 2022, 26, 5301–5312. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; Kim, S.H.; Choi, S.Y.; Kim, K.M. Acid neutralizing ability and shear bond strength using orthodontic adhesives containing three different types of bioactive glass. Materials 2016, 9, 125. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; Kwon, J.S.; Kim, K.N.; Kim, K.M. Enamel surface with pit and fissure sealant containing 45S5 bioactive glass. J. Dent. Res. 2016, 95, 550–557. [Google Scholar] [CrossRef] [PubMed]
- ISO 10993-12:2021; Biological Evaluation of Medical Devices—Part 12: Sample Preparation and Reference Materials. ISO: Geneva, Switzerland, 2021.
- Al-Eesa, N.A.; Johal, A.; Hill, R.G.; Wong, F.S.L. Fluoride containing bioactive glass composite for orthodontic adhesives apatite formation properties. Dent. Mater. 2018, 34, 1127–1133. [Google Scholar] [CrossRef] [PubMed]
- Flores-Ledesma, A.; Tejeda-Cruz, A.; Bucio, L.; Wintergerst, A.M.; Rodríguez-Chávez, J.A.; Moreno-Vargas, Y.A.; Arenas-Alatorre, J.A. Hydration products and bioactivity of an experimental MTA-like cement modified with wollastonite and bioactive glass. Ceram. Int. 2020, 46, 15963–15971. [Google Scholar] [CrossRef]
- Westhauser, F.; Hohenbild, F.; Arango-Ospina, M.; Schmitz, S.I.; Wilkesmann, S.; Hupa, L.; Moghaddam, A.; Boccaccini, A.R. Bioactive glass (BG) ICIE16 shows promising osteogenic properties compared to crystallized 45S5-BG. Int. J. Mol. Sci. 2020, 21, 1639. [Google Scholar] [CrossRef] [PubMed]
- Baheiraei, N.; Eyni, H.; Bakhshi, B.; Najafloo, R.; Rabiee, N. Effects of strontium ions with potential antibacterial activity on in vivo bone regeneration. Sci. Rep. 2021, 11, 8745. [Google Scholar] [CrossRef]
- Erasmus, E.P.; Johnson, O.T.; Sigalas, I.; Massera, J. Effects of sintering temperature on crystallization and fabrication of porous bioactive glass scaffolds for bone regeneration. Sci. Rep. 2017, 7, 6046. [Google Scholar] [CrossRef]
- Par, M.; Mohn, D.; Attin, T.; Tarle, Z.; Tauböck, T.T. Polymerization shrinkage behaviour of resin composites functionalized with unsilanized bioactive glass fillers. Sci. Rep. 2020, 10, 15237. [Google Scholar] [CrossRef]
- Bakry, A.S.; Abbassy, M.A. The efficacy of a bioglass (45S5) paste temporary filling used to remineralize enamel surfaces prior to bonding procedures. J. Dent. 2019, 85, 33–38. [Google Scholar] [CrossRef]
- Rojas, O.; Prudent, M.; López, M.E.; Vargas, F.; Ageorges, H. Influence of atmospheric plasma spraying parameters on porosity formation in coatings manufactured from 45S5 bioglass® powder. J. Therm. Spray Technol. 2020, 29, 185–198. [Google Scholar] [CrossRef]
- Yang, S.Y.; Piao, Y.-Z.; Kim, S.-M.; Lee, Y.-K.; Kim, K.-N.; Kim, K.-M. Acid neutralizing, mechanical and physical properties of pit and fissure sealants containing melt-derived 45S5 bioactive glass. Dent. Mater. 2013, 29, 1228–1235. [Google Scholar] [CrossRef]
- Xie, X.; Wang, L.; Xing, D.; Qi, M.; Li, X.; Sun, J.; Melo, M.A.S.; Weir, M.D.; Oates, T.W.; Bai, Y.; et al. Novel rechargeable calcium phosphate nanoparticle-filled dental cement. Dent. Mater. J. 2019, 38, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, A.; Nijakowski, K.; Drożdżyńska, A.; Przybylak, M.; Woś, P.; Surdacka, A. Influence of the polymerization modes on the methacrylic acid release from dental light-cured materials-in vitro study. Materials 2022, 15, 8976. [Google Scholar] [CrossRef] [PubMed]
- Juntavee, N.; Juntavee, A.; Plongniras, P. Remineralization potential of nano-hydroxyapatite on enamel and cementum surrounding margin of computer-aided design and computer-aided manufacturing ceramic restoration. Int. J. Nanomed. 2018, 13, 2755–2765. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.H.; Kim, H.-J.; Choi, J.-Y.; Kim, H.-W.; Choi, S.; Kim, S.; Bang, A.; Kim, D.-S. Effect of dentin desensitizer containing novel bioactive glass on the permeability of dentin. Materials 2022, 15, 4041. [Google Scholar] [CrossRef]
- Liaqat, S.; Aljabo, A.; Khan, M.A.; Ben Nuba, H.; Bozec, L.; Ashley, P.; Young, A. Characterization of dentine to assess bond strength of dental composites. Materials 2015, 8, 2110–2126. [Google Scholar] [CrossRef]
- Kim, H.J.; Jang, J.-H.; Woo, S.U.; Choi, K.-K.; Kim, S.-Y.; Ferracane, J.L.; Lee, J.-H.; Choi, D.; Choi, S.; Kim, S.; et al. Effect of novel bioactive glass-containing dentin adhesive on the permeability of demineralized dentin. Materials 2021, 14, 5423. [Google Scholar] [CrossRef]
- Cancelliere, R.; Rea, G.; Micheli, L.; Mantegazza, P.; Bauer, E.M.; El Khouri, A.; Tempesta, E.; Altomare, A.; Capelli, D.; Capitelli, F. Electrochemical and structural characterization of lanthanum-doped hydroxyapatite: A promising material for sensing applications. Materials 2023, 16, 4522. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; Han, A.R.; Choi, J.W.; Kim, K.M.; Kwon, J.S. Novel antibacterial and apatite forming restorative composite resin incorporated with hydrated calcium silicate. Biomater. Res. 2023, 27, 25. [Google Scholar] [CrossRef] [PubMed]
- Beun, S.; Bailly, C.; Devaux, J.; Leloup, G. Physical, mechanical and rheological characterization of resin-based pit and fissure sealants compared to flowable resin composites. Dent. Mater. 2012, 28, 349–359. [Google Scholar] [CrossRef] [PubMed]
Group | Resin Matrix (wt.%) | Filler (wt.%) | |
---|---|---|---|
45S5 BAG | Silanized Glass Filler | ||
0 wt.% BAG | 50 | 0 | 50.0 |
12.5 wt.% BAG | 50 | 12.5 | 37.5 |
25 wt.% BAG | 50 | 25.0 | 25.0 |
37.5 wt.% BAG | 50 | 37.5 | 12.5 |
50 wt.% BAG | 50 | 50.0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.-W.; Han, A.R.; Yang, S.-Y. Ion Release and Apatite Formation of Resin Based Pit and Fissure Sealants Containing 45S5 Bioactive Glass. Polymers 2024, 16, 1855. https://doi.org/10.3390/polym16131855
Choi J-W, Han AR, Yang S-Y. Ion Release and Apatite Formation of Resin Based Pit and Fissure Sealants Containing 45S5 Bioactive Glass. Polymers. 2024; 16(13):1855. https://doi.org/10.3390/polym16131855
Chicago/Turabian StyleChoi, Ji-Won, A Ruem Han, and Song-Yi Yang. 2024. "Ion Release and Apatite Formation of Resin Based Pit and Fissure Sealants Containing 45S5 Bioactive Glass" Polymers 16, no. 13: 1855. https://doi.org/10.3390/polym16131855
APA StyleChoi, J. -W., Han, A. R., & Yang, S. -Y. (2024). Ion Release and Apatite Formation of Resin Based Pit and Fissure Sealants Containing 45S5 Bioactive Glass. Polymers, 16(13), 1855. https://doi.org/10.3390/polym16131855