A Study on the Evaluation of Thermal Insulation Performance of Cellulose-Based Silica Aerogel Composite Building Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Aerogel Cellulose Specimen Manufacturing Method
2.3. Evaluation of Insulation Performance (Description of ISO 22007-2 Test)
3. Evaluation Results
3.1. Physical Properties of the Specimens
3.2. Structural Characteristics of the Specimens
3.3. Results of Insulation Performance Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Unnikrishnan, A.; Figliozzi, M. A Study of the Impact of COVID-19 on Home Delivery Purchases and Expenditures. 2020. Available online: https://archives.pdx.edu/ds/psu/33410 (accessed on 29 July 2020).
- Klemm, D.; Heublein, B.; Fink, H.; Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.-H.; Ho, M.-C. Toxicity Characteristics of Commercially Manufactured Insulation Materials for Building Applications in Taiwan. Constr. Build. Mater. 2007, 21, 1254–1261. [Google Scholar] [CrossRef]
- Yoon, J.-K.; Koo, K.-W. A Study on Properties of Thermal Insulation Board Prepared by Porous Silica Aerogel. Trans. Korean Inst. Electr. Eng. 2012, 61, 1362–1367. [Google Scholar] [CrossRef]
- Su, Z.; Meng, J.; Su, Y. Application of SiO2 Nanocomposite Ferroelectric Material in Preparation of Trampoline Net for Physical Exercise. Adv. Nano Res. 2023, 14, 355–362. [Google Scholar] [CrossRef]
- Sun, L.; Liang, T.; Zhang, C.; Chen, J. The Rheological Performance of Shear-Thickening Fluids Based on Carbon Fiber and Silica Nanocomposite. Phys. Fluids 2023, 35, 032002. [Google Scholar] [CrossRef]
- Jelle, B.P.; Baetens, R.; Gustavsen, A. Aerogel Insulation for Building Applications. Sol-Gel Handb. 2015, Chapter 45. 1385–1412. [Google Scholar] [CrossRef]
- Alvey, J.B.; Patel, J.; Stephenson, L.D. Experimental Study on the Effects of Humidity and Temperature on Aerogel Composite and Foam Insulations. Energy Build. 2017, 144, 358–371. [Google Scholar] [CrossRef]
- Akhter, F.; Soomro, S.A.; Inglezakis, V.J. Silica Aerogels; a Review of Synthesis, Applications, and Fabrication of Hybrid Composites. J. Porous Mater. 2021, 28, 1387–1400. [Google Scholar] [CrossRef]
- Richter, K.; Norris, P.M.; Tien, C.-L. Aerogels: Applications, Structure, and Heat Transfer Phenomena. Annu. Rev. Heat Transf. 1995, 6, 61–114. [Google Scholar] [CrossRef]
- Ganobjak, M.; Brunner, S.; Hofmann, J.; Klar, V.; Ledermann, M.; Herzog, V.; Kämpfen, B.; Kilian, R.; Wehdorn, M.; Wernery, J. Current Trends in Aerogel Use in Heritage Buildings: Case Studies from the Aerogel Architecture Award 2021. Gels 2023, 9, 814. [Google Scholar] [CrossRef]
- Ganobjak, M.; Brunner, S.; Wernery, J. Aerogel Materials for Heritage Buildings: Materials, Properties and Case Studies. J. Cult. Herit. 2020, 42, 81–98. [Google Scholar] [CrossRef]
- Thapliyal, P.C.; Singh, K. Aerogels as Promising Thermal Insulating Materials: An Overview. J. Mater. 2014, 2014, 127049. [Google Scholar] [CrossRef]
- Sambucci, M.; Savoni, F.; Valente, M. Aerogel Technology for Thermal Insulation of Cryogenic Tanks—Numerical Analysis for Comparison with Traditional Insulating Materials. Gels 2023, 9, 307. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, X.; Zhu, X.; Xin, S. A Low-Temperature Phase Change Material Based on Capric-Stearic Acid/Expanded Graphite for Thermal Energy Storage. ACS Omega 2021, 6, 17988–17998. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Park, D.; Rie, D. Manufacture and Combustion Characteristics of Cellulose Flame-Retardant Plate through the Hot-Press Method. Polymers 2023, 15, 4736. [Google Scholar] [CrossRef]
- Park, S.-J.; Kim, K.-S. A Study on Oil Adsorption of Expanded Gaphites. Korean Chem. Eng. Res. 2004, 42, 362–367. Available online: https://www.researchgate.net/publication/263645246_A_Study_on_Oil_Adsorption_of_Expanded_Gaphites (accessed on 5 September 2023).
- Laachachi, A.; Burger, N.; Apaydin, K.; Sonnier, R.; Ferriol, M. Is Expanded Graphite Acting as Flame Retardant in Epoxy Resin? Polym. Degrad. Stab. 2015, 117, 22–29. [Google Scholar] [CrossRef]
- ISO 22007-2:2022; Plastics—Determination of Thermal Conductivity and Thermal Diffusivity—Part 2: Transient Plane Heat Source (Hot Disc) Method. ISO: Geneva, Switzerland, 2022.
- Fesmire, J.; Sass, J. Aerogel Insulation Applications for Liquid Hydrogen Launch Vehicle Tanks. Cryogenics 2008, 48, 223–231. [Google Scholar] [CrossRef]
- Panyakaew, S.; Fotios, S. New thermal insulation boards made from coconut husk and bagasse. Energy Build. 2011, 43, 1732–1739. [Google Scholar] [CrossRef]
- Bakatovich, A.; Davydenko, N.; Gaspar, F. Thermal insulating plates produced on the basis of vegetable agricultural waste. Energy Build. 2018, 180, 72–82. [Google Scholar] [CrossRef]
- Ahn, C.; Park, D.; Hwang, J.; Rie, D. A Study on the Reliability of Mass, Density, and Fire Performance of Recycled Wastepaper Building Finishing Material Made with Large Wet Cellulose 3D Printers. Sustainability 2022, 14, 13090. [Google Scholar] [CrossRef]
- Cha, J.-H.; Seo, J.-K.; Kim, S.-M. Correlation Analysis of the Thermal Conductivity Heat Flow Meter and MTPS (Modified Transient Plane Source) Method Using Wood Flooring and Wall Materials. J. Korea Furnit. Soc. 2011, 22, 118–125. Available online: https://koreascience.kr/article/JAKO201117161875734.page (accessed on 26 September 2023).
- Acharya, A.; Joshi, D.; Gokhale, V.A. AEROGEL—A Promising Building Material for Sustainable Buildings. Chem. Process Eng. Res. 2013, 9, 1–6, ISSN 2224-7467 (Paper). ISSN 2225-0913 (Online). [Google Scholar]
Color | White, Translucent |
---|---|
Density (kg/m3) | <40 |
Thermal conductivity (W/mK at 25 °C) | 0.011 |
Porosity (%) | 99 |
Aperture (nm) | 10~50 |
Pore volume (cm2/g) | 3.0~3.6 |
Particle size (μm) | 1~10 |
Specific surface area (m2/g) | 650~1250 |
Speed of sound (m/s) | ~100 |
Test Specimens Category | Paper (g) | Aerogel (mL) | Organic Compounds (g) |
---|---|---|---|
A-400 | 150 | 400 | 600 |
A-600 | 150 | 600 | 600 |
A-800 | 150 | 800 | 600 |
A-1000 | 150 | 1000 | 600 |
Test Specimens Category | Paper (g) | Aerogel (mL) | Organic Compound (g) | Ceramic Binder (wt%) | Expandable Graphite (wt%) |
---|---|---|---|---|---|
EC-1 | 150 | 200 | 600 | 30 | 40 |
EC-2 | 150 | 600 | |||
EC-3 | 150 | 1000 |
Test Specimen Category | Weight before Drying (g) | Weight after Drying (g) | Height (cm) | Area (cm2) | Volume (cm3) | Density (g/cm3) | Water Content (%) |
---|---|---|---|---|---|---|---|
A-400 | 221.5 | 97.6 | 2.24 | 100 | 224 | 0.44 | 55.94 |
A-600 | 188.6 | 84.6 | 2.1 | 100 | 210 | 0.40 | 55.14 |
A-800 | 200.4 | 86.8 | 2.13 | 100 | 213 | 0.41 | 56.69 |
A-1000 | 188.6 | 84.8 | 2.05 | 100 | 205 | 0.41 | 55.04 |
EC-1 | 232.5 | 108.4 | 2.57 | 100 | 257 | 0.42 | 53.38 |
EC-2 | 231 | 86.1 | 2.08 | 100 | 208 | 0.41 | 62.73 |
EC-3 | 222.75 | 92.2 | 2.18 | 100 | 218 | 0.42 | 58.61 |
Element | Pure Test Group Specimen | Composite Test Group Specimen | ||
---|---|---|---|---|
Weight% | Atomic% | Weight% | Atomic% | |
Carbon (C) | 43.86 | 51.56 | 44.04 | 51.93 |
Oxygen (O) | 53.25 | 46.99 | 52.09 | 46.12 |
Silicon (Si) | 2.89 | 1.46 | 3.87 | 1.95 |
Totals | 100.00 | - | 100.00 | - |
A Test Specimens | A-400 | A-600 | A-800 | A-1000 | EC-1 | EC-2 | EC-3 |
---|---|---|---|---|---|---|---|
R-value (m2⋅K/W) | 0.118 | 0.119 | 0.124 | 0.127 | 0.137 | 0.114 | 0.122 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, J.; Kim, Y.; Park, J.; Rie, D. A Study on the Evaluation of Thermal Insulation Performance of Cellulose-Based Silica Aerogel Composite Building Materials. Polymers 2024, 16, 1848. https://doi.org/10.3390/polym16131848
Hwang J, Kim Y, Park J, Rie D. A Study on the Evaluation of Thermal Insulation Performance of Cellulose-Based Silica Aerogel Composite Building Materials. Polymers. 2024; 16(13):1848. https://doi.org/10.3390/polym16131848
Chicago/Turabian StyleHwang, Jeo, Yoonmi Kim, Jooyoung Park, and Dongho Rie. 2024. "A Study on the Evaluation of Thermal Insulation Performance of Cellulose-Based Silica Aerogel Composite Building Materials" Polymers 16, no. 13: 1848. https://doi.org/10.3390/polym16131848
APA StyleHwang, J., Kim, Y., Park, J., & Rie, D. (2024). A Study on the Evaluation of Thermal Insulation Performance of Cellulose-Based Silica Aerogel Composite Building Materials. Polymers, 16(13), 1848. https://doi.org/10.3390/polym16131848