Evaluation of Shear Bond Strengths of 3D Printed Materials for Permanent Restorations with Different Surface Treatments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Optical Profilometer Measurement
2.3. Bonding Procedure
2.4. Shear Bond Test
2.5. Scanning Electron Microscope (SEM) Imaging
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Thompson, G.A.; An, H. Dental Materials in the Digital Age. Clinical Applications of Digital Dental Technology; Wiley: Hoboken, NJ, USA, 2023; pp. 96–121. [Google Scholar]
- Attaran, M. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Bus. Horiz. 2017, 60, 677–688. [Google Scholar] [CrossRef]
- Ceylan, G.; Emir, F.; Doğdu, C.; Demirel, M.; Özcan, M. Effect of repeated millings on the surface integrity of diamond burs and roughness of different CAD/CAM materials. Clin. Oral Investig. 2022, 26, 5325–5337. [Google Scholar] [CrossRef] [PubMed]
- Raposo, L.; Borella, P.; Ferraz, D.; Pereira, L.; Prudente, M.; Santos-Filho, P. Influence of computer-aided design/computer-aided manufacturing diamond bur wear on marginal misfit of two lithium disilicate ceramic systems. Oper. Dent. 2020, 45, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Greuling, A.; Matthies, A.; Eisenburger, M. Fracture load of 4-unit interim fixed partial dentures using 3D-printed and traditionally manufactured materials. J. Prosthet. Dent. 2023, 129, 607.e1–607.e8. [Google Scholar] [CrossRef] [PubMed]
- Frąckiewicz, W.; Szymlet, P.; Jedliński, M.; Światłowska-Bajzert, M.; Sobolewska, E. Mechanical characteristics of zirconia produced additively by 3D printing in dentistry—A systematic review with meta-analysis of novel reports. Dent. Mater. 2023, 40, 124–138. [Google Scholar] [CrossRef] [PubMed]
- Takaichi, A.; Fueki, K.; Murakami, N.; Ueno, T.; Inamochi, Y.; Wada, J.; Arai, Y.; Wakabayashi, N. A systematic review of digital removable partial dentures. Part II: CAD/CAM framework, artificial teeth, and denture base. J. Prosthodont. Res. 2022, 66, 53–67. [Google Scholar] [CrossRef] [PubMed]
- Lerner, H.; Nagy, K.; Pranno, N.; Zarone, F.; Admakin, O.; Mangano, F. Trueness and precision of 3D-printed versus milled monolithic zirconia crowns: An in vitro study. J. Dent. 2021, 113, 103792. [Google Scholar] [CrossRef]
- Camargo, B.; Willems, E.; Jacobs, W.; Van Landuyt, K.; Peumans, M.; Zhang, F.; Vleugels, J.; Van Meerbeek, B. 3D printing and milling accuracy influence full-contour zirconia crown adaptation. Dent. Mater. 2022, 38, 1963–1976. [Google Scholar] [CrossRef]
- Randolph, L.D.; Palin, W.M.; Leloup, G.; Leprince, J.G. Filler characteristics of modern dental resin composites and their influence on physico-mechanical properties. Dent. Mater. 2016, 32, 1586–1599. [Google Scholar] [CrossRef]
- Bora, P.V.; Sayed Ahmed, A.; Alford, A.; Pitttman, K.; Thomas, V.; Lawson, N.C. Characterization of materials used for 3D printing dental crowns and hybrid prostheses. J. Esthet. Restor. Dent. 2024, 36, 220–230. [Google Scholar] [CrossRef]
- Xu, W.; Jambhulkar, S.; Zhu, Y.; Ravichandran, D.; Kakarla, M.; Vernon, B.; Lott, D.G.; Cornella, J.L.; Shefi, O.; Miquelard-Garnier, G. 3D printing for polymer/particle-based processing: A review. Compos. Part B Eng. 2021, 223, 109102. [Google Scholar] [CrossRef]
- Karaoğlanoğlu, S.; Aydın, N.; Oktay, E.; Ersöz, B. Comparison of the surface properties of 3D-printed permanent restorative resins and resin-based CAD/CAM blocks. Oper. Dent. 2023, 48, 588–598. [Google Scholar] [CrossRef]
- Bozoğulları, H.N.; Temizci, T. Evaluation of the Color Stability, Stainability, and Surface Roughness of Permanent Composite-Based Milled and 3D Printed CAD/CAM Restorative Materials after Thermocycling. Appl. Sci. 2023, 13, 11895. [Google Scholar] [CrossRef]
- Van Meerbeek, B.; Peumans, M.; Poitevin, A.; Mine, A.; Van Ende, A.; Neves, A.; De Munck, J. Relationship between bond-strength tests and clinical outcomes. Dent. Mater. 2010, 26, E100–E121. [Google Scholar] [CrossRef]
- Kamada, K.; Yoshida, K.; Atsuta, M. Effect of ceramic surface treatments on the bond of four resin luting agents to a ceramic material. J. Prosthet. Dent. 1998, 79, 508–513. [Google Scholar] [CrossRef]
- Khan, A.A.; Al Kheraif, A.A.A.; Jamaluddin, S.; Elsharawy, M.; Divakar, D.D. Recent Trends in Surface Treatment Methods for Bonding Composite Cement to Zirconia: A Review. J. Adhes. Dent. 2017, 19, 7. [Google Scholar] [PubMed]
- Cobb, D.; Vargas, M.; Fridrich, T.; Bouschlicher, M. Metal surface treatment: Characterization and effect on composite-to-metal bond strength. Oper. Dent. 2000, 25, 427–433. [Google Scholar]
- Campos, F.; Almeida, C.; Rippe, M.; De Melo, R.; Valandro, L.; Bottino, M. Resin bonding to a hybrid ceramic: Effects of surface treatments and aging. Oper. Dent. 2016, 41, 171–178. [Google Scholar] [CrossRef]
- ISO 4049; Dentistry—Polymer-Based Restorative Materials. International Organization for Standardization: Geneva, Switzerland, 2019.
- da Costa, T.R.; Serrano, A.M.; Atman, A.P.; Loguercio, A.D.; Reis, A. Durability of composite repair using different surface treatments. J. Dent. 2012, 40, 513–521. [Google Scholar] [CrossRef]
- Yoshihara, K.; Nagaoka, N.; Maruo, Y.; Nishigawa, G.; Irie, M.; Yoshida, Y.; Van Meerbeek, B. Sandblasting may damage the surface of composite CAD-CAM blocks. Dent. Mater. 2017, 33, e124–e135. [Google Scholar] [CrossRef]
- Andrade, A.P.; Shimaoka, A.M.; de Carvalho, R.C.R. Composite resin repairs: What is the most effective protocol? Braz. Dent. Sci. 2017, 20, 99–109. [Google Scholar] [CrossRef]
- Loomans, B.A.; Cardoso, M.V.; Roeters, F.; Opdam, N.; De Munck, J.; Huysmans, M.; Van Meerbeek, B. Is there one optimal repair technique for all composites? Dent. Mater. 2011, 27, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Cuevas-Suárez, C.E.; Nakanishi, L.; Isolan, C.P.; Ribeiro, J.S.; Moreira, A.G.; Piva, E. Repair bond strength of bulk-fill resin composite: Effect of different adhesive protocols. Dent. Mater. J. 2020, 39, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Staxrud, F.; Dahl, J.E. Role of bonding agents in the repair of composite resin restorations. Eur. J. Oral Sci. 2011, 119, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, F.; Yazkan, B.; Herguner Siso, S. Effects of different universal adhesives and surface treatments on repair bond strength between resin composites. J. Esthet. Restor. Dent. 2022, 34, 1068–1076. [Google Scholar] [CrossRef] [PubMed]
- Furtado, M.D.; Immich, F.; da Rosa, W.L.d.O.; Piva, E.; da Silva, A.F. Repair of aged restorations made in direct resin composite–A systematic review. Int. J. Adhes. Adhes. 2023, 124, 103367. [Google Scholar] [CrossRef]
- Yin, H.; Kwon, S.; Chung, S.H.; Kim, R.J.Y. Performance of universal adhesives in composite resin repair. BioMed Res. Int. 2022, 2022, 7663490. [Google Scholar] [CrossRef] [PubMed]
- Fehrenbach, J.; Isolan, C.P.; Münchow, E.A. Is the presence of 10-MDP associated to higher bonding performance for self-etching adhesive systems? A meta-analysis of in vitro studies. Dent. Mater. 2021, 37, 1463–1485. [Google Scholar] [CrossRef]
- Bonstein, T.; Garlapo, D.; John, D., Jr.; Bush, P.J. Evaluation of varied repair protocols applied to aged composite resin. J. Adhes. Dent. 2005, 7, 41. [Google Scholar]
- Karabekiroglu, K.N.; Al-Haj Husain, N.; Özcan, M. Evaluation of multimode adhesion promoters with functional monomers without and with silica-coating for resin composite repair. J. Adhes. Sci. Technol. 2023, 37, 1485–1500. [Google Scholar] [CrossRef]
- Lima, R.B.W.; Barreto, S.C.; Alfrisany, N.M.; Porto, T.S.; De Souza, G.M.; De Goes, M.F. Effect of silane and MDP-based primers on physico-chemical properties of zirconia and its bond strength to resin cement. Dent. Mater. 2019, 35, 1557–1567. [Google Scholar] [CrossRef] [PubMed]
- Sanohkan, S.; Kukiattrakoon, B.; Larpboonphol, N.; Sae-Yib, T.; Jampa, T.; Manoppan, S. The effect of various primers on shear bond strength of zirconia ceramic and resin composite. J. Conserv. Dent. JCD 2013, 16, 499. [Google Scholar] [PubMed]
- Teixeira Mendes, L.; Loomans, B.A.; Opdam, N.J.; Lopes da Silva, C.; Casagrande, L.; Larissa Lenzi, T. Silane Coupling Agents are Beneficial for Resin Composite Repair: A Systematic Review and Meta-Analysis of In Vitro Studies. J. Adhes. Dent. 2020, 22, 443. [Google Scholar]
- Fornazari, I.A.; Wille, I.; Meda, E.; Brum, R.; Souza, E. Effect of surface treatment, silane, and universal adhesive on microshear bond strength of nanofilled composite repairs. Oper. Dent. 2017, 42, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, N.C.; Moecke, S.E.; Caneppele, T.M.; Perote, L.C.; Batista, G.R.; Huhtalla, M.F.; Torres, C.R. Bond strength of composite resin restoration repair: Influence of silane and adhesive systems. J. Contemp. Dent. Pract. 2019, 20, 880–886. [Google Scholar] [PubMed]
- Park, S.J.; Jin, J.S. Effect of silane coupling agent on mechanical interfacial properties of glass fiber-reinforced unsaturated polyester composites. J. Polym. Sci. Part B Polym. Phys. 2003, 41, 55–62. [Google Scholar] [CrossRef]
- Cho, S.; Rajitrangson, P.; Matis, B.; Platt, J. Effect of Er, Cr: YSGG laser, air abrasion, and silane application on repaired shear bond strength of composites. Oper. Dent. 2013, 38, E58–E66. [Google Scholar] [CrossRef]
- Brosh, T.; Pilo, R.; Bichacho, N.; Blutstein, R. Effect of combinations of surface treatments and bonding agents on the bond strength of repaired composites. J. Prosthet. Dent. 1997, 77, 122–126. [Google Scholar] [CrossRef]
- Loomans, B.; Cardoso, M.; Opdam, N.; Roeters, F.; De Munck, J.; Huysmans, M.; Van Meerbeek, B. Surface roughness of etched composite resin in light of composite repair. J. Dent. 2011, 39, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Junior, S.A.R.; Ferracane, J.L.; Della Bona, Á. Influence of surface treatments on the bond strength of repaired resin composite restorative materials. Dent. Mater. 2009, 25, 442–451. [Google Scholar] [CrossRef]
- Reymus, M.; Lümkemann, N.; Stawarczyk, B. 3D-printed material for temporary restorations: Impact of print layer thickness and post-curing method on degree of conversion. Int. J. Comput. Dent. 2019, 22, 231–237. [Google Scholar] [PubMed]
- Lim, J.-H.; Lee, S.-Y.; Gu, H.; Jin, G.; Kim, J.-E. Evaluating oxygen shielding effect using glycerin or vacuum with varying temperature on 3D printed photopolymer in post-polymerization. J. Mech. Behav. Biomed. Mater. 2022, 130, 105170. [Google Scholar] [CrossRef] [PubMed]
Materials | Shade | Manufacturer | Lot No. | Compositions |
---|---|---|---|---|
Rodin Sculpture 1.0 Ceramic Nanohybrid | A1 | Pac-Dent | 309002 | Methyl methacrylate resin, Photo initiator, Photo inhibitor, Pigment, Ceramic fillers |
Rodin Sculpture 2.0 Ceramic Nanohybrid | A1 | Pac-Dent | 312152 | Monomer, Oligomer, Photo initiator, Photo inhibitor, Pigment, Ceramic fillers |
Aelite All-Purpose Body | A1 | Bisco | 2100007080 | Ethoxylated bisphenol A dimethacrylate, Triethyleneglycol dimethacrylate, Glass fillers, Amorphous silica |
Porcelain Primer | Bisco | 2300001686 | Acetone, 3-(Trimethoxysilyl)propyl-2-Methyl-2-Propenoic Acid (3-MPTS), Acetic acid | |
Z-Prime Plus | Bisco | 2100003987 | BisGMA, 2-Hydroxyethyl Methacrylate (HEMA), 10-Methacryloyloxydecyl Dihydrogen Phosphate (10-MDP) | |
All-Bond Universal | Bisco | 220001298 | BisGMA, 2-Hydroxyethyl Methacrylate, 10-Methacryloyloxydecyl Dihydrogen Phosphate, Ethyl 4-dimethylaminobenzoate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Lee, J.; Park, C.; Jo, D.; Yu, B.; Khalifah, S.A.; Hayashi, M.; Kim, R.H. Evaluation of Shear Bond Strengths of 3D Printed Materials for Permanent Restorations with Different Surface Treatments. Polymers 2024, 16, 1838. https://doi.org/10.3390/polym16131838
Kim M, Lee J, Park C, Jo D, Yu B, Khalifah SA, Hayashi M, Kim RH. Evaluation of Shear Bond Strengths of 3D Printed Materials for Permanent Restorations with Different Surface Treatments. Polymers. 2024; 16(13):1838. https://doi.org/10.3390/polym16131838
Chicago/Turabian StyleKim, Mijoo, Jimin Lee, Chan Park, Deukwon Jo, Bo Yu, Shahed Al Khalifah, Marc Hayashi, and Reuben H. Kim. 2024. "Evaluation of Shear Bond Strengths of 3D Printed Materials for Permanent Restorations with Different Surface Treatments" Polymers 16, no. 13: 1838. https://doi.org/10.3390/polym16131838
APA StyleKim, M., Lee, J., Park, C., Jo, D., Yu, B., Khalifah, S. A., Hayashi, M., & Kim, R. H. (2024). Evaluation of Shear Bond Strengths of 3D Printed Materials for Permanent Restorations with Different Surface Treatments. Polymers, 16(13), 1838. https://doi.org/10.3390/polym16131838