Dual-Mode Ce-MOF Nanozymes for Rapid and Selective Detection of Hydrogen Sulfide in Aquatic Products
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Apparatus
2.2.1. Morphology Characterization
2.2.2. XPS Analysis
2.2.3. FT-IR Analysis
2.2.4. XRD Analysis
2.2.5. Brunauer–Emmett–Teller (BET) Analysis
2.2.6. Optical Detection
2.3. Synthesis of Ce-MOF
2.4. The Mimetic Peroxidase-like Activity of Ce-MOF Nanozyme
2.5. Optimization of Experimental Conditions
2.6. Selectivity and Anti-Interference Experiment
2.7. Colorimetric–Fluorescence Sensing Analysis
2.8. Detection of H2S in the Real Samples
3. Results and Discussion
3.1. Characterization
3.2. Peroxidase Mimetic Activity Analysis of Ce-MOF
3.3. Colorimetric Characteristic Analysis of Ce-MOF
3.4. Analysis of Fluorescence Properties of Ce-MOF
Sensors | Types | LOD | Ref. |
---|---|---|---|
CR-DNP | Fluorescence | 0.4 μM | [45] |
Pb(btc)-1 | Colorimetric | 110 μM | [46] |
P1 | Fluorescence | 0.66 μM | [47] |
Probe L | Fluorescence | 0.372 μM | [5] |
Microplate cover-based colorimetric assay | Colorimetric | 1.48 μM | [48] |
Eu(tdl)2abp | Fluorescence | 0.64 μM | [49] |
GG-AgNPs | Colorimetric | 0.81 μM | [50] |
Ce-MOF | Colorimetric | 0.262 μM | This work |
Fluorescence | 0.156 μM |
3.5. Selectivity and Anti-Interference
3.6. Detection of H2S e in Real Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bhadwal, S.S.; Verma, S.; Hassan, S.; Kaur, S. Unraveling the Potential of Hydrogen Sulfide as a Signaling Molecule for Plant Development and Environmental Stress Responses: A State-of-the-Art Review. Plant Physiol. Biochem. 2024, 212, 108730. [Google Scholar] [CrossRef] [PubMed]
- Zhong, K.; Zhou, S.; Yan, X.; Li, X.; Hou, S.; Cheng, L.; Gao, X.; Li, Y.; Tang, L. A Simple H2S Fluorescent Probe with Long Wavelength Emission: Application in Water, Wine, Living Cells and Detection of H2S Gas. Dye. Pigment. 2020, 174, 108049. [Google Scholar] [CrossRef]
- Wallace, J.L.; Caliendo, G.; Santagada, V.; Cirino, G.; Fiorucci, S. Gastrointestinal Safety and Anti-Inflammatory Effects of a Hydrogen Sulfide–Releasing Diclofenac Derivative in the Rat. Gastroenterology 2007, 132, 261–271. [Google Scholar] [CrossRef]
- Giuliani, D.; Ottani, A.; Zaffe, D.; Galantucci, M.; Strinati, F.; Lodi, R.; Guarini, S. Hydrogen Sulfide Slows down Progression of Experimental Alzheimer’s Disease by Targeting Multiple Pathophysiological Mechanisms. Neurobiol. Learn. Mem. 2013, 104, 82–91. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Peng, X.; Chen, Y.; Geng, M. A Highly Selective Fluorescent Probe for Detection of H2S Based-on Benzothiazole and Its Application. Inorganica Chim. Acta 2023, 548, 121378. [Google Scholar] [CrossRef]
- Moumen, A.; Kumarage, G.C.W.; Comini, E. P-Type Metal Oxide Semiconductor Thin Films: Synthesis and Chemical Sensor Applications. Sensors 2022, 22, 1359. [Google Scholar] [CrossRef] [PubMed]
- Dariyal, P.; Sharma, S.; Chauhan, G.S.; Singh, B.P.; Dhakate, S.R. Recent Trends in Gas Sensing via Carbon Nanomaterials: Outlook and Challenges. Nanoscale Adv. 2021, 3, 6514–6544. [Google Scholar] [CrossRef] [PubMed]
- Parichenko, A.; Huang, S.; Pang, J.; Ibarlucea, B.; Cuniberti, G. Recent Advances in Technologies toward the Development of 2D Materials-Based Electronic Noses. TrAC Trends Anal. Chem. 2023, 166, 117185. [Google Scholar] [CrossRef]
- Anisimov, D.S.; Chekusova, V.P.; Trul, A.A.; Abramov, A.A.; Borshchev, O.V.; Agina, E.V.; Ponomarenko, S.A. Fully Integrated Ultra-Sensitive Electronic Nose Based on Organic Field-Effect Transistors. Sci. Rep. 2021, 11, 10683. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Farha, F.; Li, Q.; Wan, Y.; Xu, Y.; Zhang, T.; Ning, H. Review on Smart Gas Sensing Technology. Sensors 2019, 19, 3760. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.-Y.; Chai, T.-Q.; Zhang, H.; Yang, F.-Q. Applications of Mild-Condition Synthesized Metal Complexes with Enzyme-like Activity in the Colorimetric and Fluorescence Analysis. Coord. Chem. Rev. 2024, 508, 215761. [Google Scholar] [CrossRef]
- Vanable, E.P.; Habgood, L.G.; Patrone, J.D. Current Progress in the Chemoenzymatic Synthesis of Natural Products. Molecules 2022, 27, 6373. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Huang, L.; Wang, Y.; Sun, J.; Yue, T.; Zhang, W.; Wang, J. One-Pot Bottom-up Fabrication of a 2D/2D Heterojuncted Nanozyme towards Optimized Peroxidase-like Activity for Sulfide Ions Sensing. Sens. Actuators B Chem. 2020, 306, 127565. [Google Scholar] [CrossRef]
- Wang, K.; Meng, X.; Yan, X.; Fan, K. Nanozyme-Based Point-of-Care Testing: Revolutionizing Environmental Pollutant Detection with High Efficiency and Low Cost. Nano Today 2024, 54, 102145. [Google Scholar] [CrossRef]
- Muzammil, K.; Solanki, R.; Alkaim, A.F.; Romero Parra, R.M.; Lafta, H.A.; Jalil, A.T.; Gupta, R.; Hammid, A.T.; Mustafa, Y.F. A Novel Approach Based on the Ultrasonic-Assisted Microwave Method for the Efficient Synthesis of Sc-MOF@SiO2 Core/Shell Nanostructures for H2S Gas Adsorption: A Controllable Systematic Study for a Green Future. Front. Chem. 2022, 10, 956104. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; AlTakroori, H.H.D.; Greish, Y.E.; Alzamly, A.; Siddig, L.A.; Qamhieh, N.; Mahmoud, S.T. Flexible Cu3(HHTP)2 MOF Membranes for Gas Sensing Application at Room Temperature. Nanomaterials 2022, 12, 913. [Google Scholar] [CrossRef] [PubMed]
- Qi, B.; Wang, X.; Wang, X.; Cheng, J.; Shang, Y. Synthesis and H2S-Sensing Properties of MOF-Derived Cu-Doped ZnO Nanocages. Nanomaterials 2022, 12, 2579. [Google Scholar] [CrossRef] [PubMed]
- Nagarkar, S.S.; Saha, T.; Desai, A.V.; Talukdar, P.; Ghosh, S.K. Metal-Organic Framework Based Highly Selective Fluorescence Turn-on Probe for Hydrogen Sulphide. Sci. Rep. 2014, 4, 7053. [Google Scholar] [CrossRef]
- Du, X.; Wu, G.; Dou, X.; Ding, Z.; Xie, J. Recent Advances of Fluorescence MOF-Based Sensors for the Freshness of Aquatic Products. Microchem. J. 2024, 203, 110901. [Google Scholar] [CrossRef]
- Chen, Q.; He, Q.; Wang, Y.; Huang, C.; Lin, Y.; Wang, J.; Shen, W.; Qiu, B.; Xu, X. Aptamer-Controlled Peroxidase Activity of Platinum Nanoparticles/Fe-MOF Nanozyme for Highly Effective Voltammetric Detection of Carcinoembryonic Antigen. Microchem. J. 2024, 201, 110609. [Google Scholar] [CrossRef]
- Wang, C.; Ren, G.; Yuan, B.; Zhang, W.; Lu, M.; Liu, J.; Li, K.; Lin, Y. Enhancing Enzyme-like Activities of Prussian Blue Analog Nanocages by Molybdenum Doping: Toward Cytoprotecting and Online Optical Hydrogen Sulfide Monitoring. Anal. Chem. 2020, 92, 7822–7830. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Wu, X.-L.; Xiong, J.; Yuan, X.; Liu, S.-L.; Zong, M.-H.; Lou, W.-Y. Multivalent Ce-MOFs as Biomimetic Laccase Nanozyme for Environmental Remediation. Chem. Eng. J. 2022, 450, 138220. [Google Scholar] [CrossRef]
- Lammert, M.; Wharmby, M.T.; Smolders, S.; Bueken, B.; Lieb, A.; Lomachenko, K.A.; De Vos, D.; Stock, N. Cerium-Based Metal Organic Frameworks with UiO-66 Architecture: Synthesis, Properties and Redox Catalytic Activity. Chem. Commun. 2015, 51, 12578–12581. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, X.; Zhang, Y.; Fang, Q.; Du, Y.; Wei, H. A Metal–Organic Framework-Derived Ruthenium–Nitrogen–Carbon Nanozyme for Versatile Hydrogen Sulfide and Cystathionine γ-Lyase Activity Assay. Biosens. Bioelectron. 2024, 244, 115785. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Li, M.; Hao, M.; Yu, L.L.; Li, Y. A Novel Selective Detection Method for Sulfide in Food Systems Based on the GMP-Cu Nanozyme with Laccase Activity. Talanta 2021, 235, 122775. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Jiang, J.; Shen, N.; Peng, H.; Luo, Y.; Li, N.; Huang, L.; Lu, Y.; Liu, L.; Li, B.; et al. Flexible Microfluidic Colorimetric Detection Chip Integrated with ABTS+ and Co@MnO2 Nanozyme Catalyzed TMB Reaction Systems for Bio-Enzyme Free Detection of Sweat Uric Acid. Anal. Chim. Acta 2024, 1299, 342453. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Tian, Z.; Qu, Y. One-Step Reagentless Colorimetric Analysis Platform of Biomineralized Ce-UiO-66 for Universal Detection of Biomarkers. Sens. Actuators B Chem. 2023, 397, 134705. [Google Scholar] [CrossRef]
- Giannakoudakis, D.A.; Bandosz, T.J. Defectous UiO-66 MOF Nanocomposites as Reactive Media of Superior Protection against Toxic Vapors. ACS Appl. Mater. Interfaces 2020, 12, 14678–14689. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhang, Z.; Han, Y.; Yang, W.; Tang, W.; Yue, T.; Li, Z. Visual Detection of Vitamin C in Fruits and Vegetables Using UiO-66 Loaded Ce-MnO2 Mimetic Oxidase. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 285, 121900. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, X.; Kapteijn, F. Water and Metal–Organic Frameworks: From Interaction toward Utilization. Chem. Rev. 2020, 120, 8303–8377. [Google Scholar] [CrossRef] [PubMed]
- Kumaresan, L.; Hanamantrao, D.P.; Raj SL, S.; Chenrayan, S.; Rangasamy, B.; Vediappan, K. Spherically Structured Ce-Metal-Organic Frameworks with Rough Surfaces and Carbon-Coated Cerium Oxide as Potential Electrodes for Lithium Storage and Supercapacitors. ChemistrySelect 2023, 8, e202204759. [Google Scholar] [CrossRef]
- Qin, Y.; Li, S.; Liang, L.; Wu, J.; Zhu, Y.; Zhao, S.; Ye, F. Regulating the Redox and Non-Redox Enzyme-Mimicking Activities of Ce-UiO-66-NO2 Nanozyme for Dual-Mode Sensing of Phosphate. Sens. Actuators B Chem. 2024, 412, 135782. [Google Scholar] [CrossRef]
- Jiang, B.; Duan, D.; Gao, L.; Zhou, M.; Fan, K.; Tang, Y.; Xi, J.; Bi, Y.; Tong, Z.; Gao, G.F.; et al. Standardized Assays for Determining the Catalytic Activity and Kinetics of Peroxidase-like Nanozymes. Nat. Protoc. 2018, 13, 1506–1520. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.-Q.; Liu, C.-Y.; Zeng, X.-Y.; Chen, J.; Lü, J.; Lin, R.-G.; Cao, R.; Lin, Z.-J.; Su, J.-W. MOF-808: A Metal–Organic Framework with Intrinsic Peroxidase-Like Catalytic Activity at Neutral pH for Colorimetric Biosensing. Inorg. Chem. 2018, 57, 9096–9104. [Google Scholar] [CrossRef] [PubMed]
- Darabdhara, G.; Bordoloi, J.; Manna, P.; Das, M.R. Biocompatible Bimetallic Au-Ni Doped Graphitic Carbon Nitride Sheets: A Novel Peroxidase-Mimicking Artificial Enzyme for Rapid and Highly Sensitive Colorimetric Detection of Glucose. Sens. Actuators B Chem. 2019, 285, 277–290. [Google Scholar] [CrossRef]
- Lu, Y.; Ye, W.; Yang, Q.; Yu, J.; Wang, Q.; Zhou, P.; Wang, C.; Xue, D.; Zhao, S. Three-Dimensional Hierarchical Porous PtCu Dendrites: A Highly Efficient Peroxidase Nanozyme for Colorimetric Detection of H2O2. Sens. Actuators B Chem. 2016, 230, 721–730. [Google Scholar] [CrossRef]
- Mekonnen, M.L.; Mola, A.M.; Abda, E.M. Rapid Colorimetric Detection of Thiabendazole Based on Its Inhibition Effect on the Peroxidase Mimetic Activity of Ag-MoS2 Nanozyme. ACS Agric. Sci. Technol. 2023, 3, 82–89. [Google Scholar] [CrossRef]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic Peroxidase-like Activity of Ferromagnetic Nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhang, Y.; Xu, Y.; Liu, X.; Chen, J.; Yang, M.; Hou, C.; Huo, D. Single-Atom Cu-Attached MOFs as Peroxide-like Enzymes to Construct Dual-Mode Immunosensors for Detection of Breast Cancer Typing in Serum. Sens. Actuators B Chem. 2024, 400, 134903. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, J.; Zhang, B.-T.; Li, J.; Shi, Y.; Zhang, Y. Oxidative Degradation of Chloroxylenol in Aqueous Solution by Thermally Activated Persulfate: Kinetics, Mechanisms and Toxicities. Chem. Eng. J. 2019, 368, 553–563. [Google Scholar] [CrossRef]
- Jabiyeva, N.; Çakıroğlu, B.; Özdemir, A. The Peroxidase-like Activity of Au NPs Deposited Inverse Opal CeO2 Nanozyme for Rapid and Sensitive H2O2 Sensing. J. Photochem. Photobiol. A Chem. 2024, 452, 115576. [Google Scholar] [CrossRef]
- Yu, H.; Zhou, F.; Xie, H.; Yang, X.; Qiu, B.; Xu, X. One-Pot Synthesis of Two Novel Ce-MOFs for the Detection of Tetracyclic Antibiotics and Fe3+. J. Mol. Struct. 2024, 1307, 138023. [Google Scholar] [CrossRef]
- Wu, G.; Cheng, Q.; Ding, Z.; Xie, J. Hybrid Polymer Dots with Isothiocyanate Functional Groups for Rapid Sensing Tyramine in Aquatic Products. J. Food Compos. Anal. 2024, 128, 106058. [Google Scholar] [CrossRef]
- Dou, X.; Xu, S.; Jiang, Y.; Ding, Z.; Xie, J. Aptamers-Functionalized Nanoscale MOFs for Saxitoxin and Tetrodotoxin Sensing in Sea Foods through FRET. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 284, 121827. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Liu, M.; Liu, Z.; Cao, D.; Hou, J.; Zeng, W. Ratiometric and Colorimetric Detection of Hydrogen Sulfide with High Selectivity and Sensitivity Using a Novel FRET-Based Fluorescence Probe. Dye. Pigment. 2015, 118, 88–94. [Google Scholar] [CrossRef]
- Souza, B.A.; Sousa, F.L.; Oliveira, D.M.; Pinto, L.; Freitas, D.V.; Navarro, M. Pb-MOF Electrosynthesis Based on Recycling of Lead-Acid Battery Electrodes for Hydrogen Sulfide Colorimetric Detection. Inorganica Chim. Acta 2021, 526, 120540. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, C.; Tang, H.; Cao, D. A Novel Chromophore Reaction-Based Pyrrolopyrrole Aza-BODIPY Fluorescent Probe for H2S Detection and Its Application in Food Spoilage. Food Chem. 2023, 427, 136591. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.-W.; Lee, Y.-H.; Ahn, Y.J.; Kim, G.D.; Jang, H.M.; Lee, G.-J. Detection of Cysteine-Induced Salivary H2S to Evaluate the H2S-Producing Capability of Oral Bacteria, Using a Simple and Sensitive Colorimetric Assay: A Preliminary Study. Microchem. J. 2023, 195, 109391. [Google Scholar] [CrossRef]
- Chen, X.; Cai, W.; Liu, G.; Tu, Y.; Fan, C.; Pu, S. A Highly Selective Colorimetric and Fluorescent Probe Eu(Tdl)2abp for H2S Sensing: Application in Live Cell Imaging and Natural Water. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 282, 121657. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Li, Z.; Shi, J.; Huang, X.; Sun, Z.; Zhang, D.; Zou, X.; Sun, Y.; Zhang, J.; Holmes, M.; et al. A Colorimetric Hydrogen Sulfide Sensor Based on Gellan Gum-Silver Nanoparticles Bionanocomposite for Monitoring of Meat Spoilage in Intelligent Packaging. Food Chem. 2019, 290, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Wu, G.; Dou, X.; Ding, Z.; Xie, J. Alizarin Complexone Modified UiO-66-NH2 as Dual-Mode Colorimetric and Fluorescence pH Sensor for Monitoring Perishable Food Freshness. Food Chem. 2024, 445, 138700. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Q.; Du, X.; Fu, Z.; Ding, Z.; Xie, J. Dual-Mode Ce-MOF Nanozymes for Rapid and Selective Detection of Hydrogen Sulfide in Aquatic Products. Polymers 2024, 16, 1747. https://doi.org/10.3390/polym16121747
Cheng Q, Du X, Fu Z, Ding Z, Xie J. Dual-Mode Ce-MOF Nanozymes for Rapid and Selective Detection of Hydrogen Sulfide in Aquatic Products. Polymers. 2024; 16(12):1747. https://doi.org/10.3390/polym16121747
Chicago/Turabian StyleCheng, Qi, Xiaoyu Du, Zuyao Fu, Zhaoyang Ding, and Jing Xie. 2024. "Dual-Mode Ce-MOF Nanozymes for Rapid and Selective Detection of Hydrogen Sulfide in Aquatic Products" Polymers 16, no. 12: 1747. https://doi.org/10.3390/polym16121747
APA StyleCheng, Q., Du, X., Fu, Z., Ding, Z., & Xie, J. (2024). Dual-Mode Ce-MOF Nanozymes for Rapid and Selective Detection of Hydrogen Sulfide in Aquatic Products. Polymers, 16(12), 1747. https://doi.org/10.3390/polym16121747