Effect of Technological Factors on the Extraction of Polymeric Condensed Tannins from Acacia Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Small-Scale Experiments
2.2.2. Large-Scale Experiments
2.2.3. Spray Drying
2.2.4. Chemical Analysis
Determination of Stiasny (Catechin) Number
2.2.5. Preparation of the Resins
2.2.6. Resin Testing
2.2.7. 13C NMR Analysis
2.2.8. Matrix-Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF) Analysis
3. Results and Discussion
3.1. Small-Scale Experiments on Tannin Extraction
3.2. Scaled-Up Tannin Extraction Experiments
3.3. Chemical Analysis of ANT and ASS Tannins
3.4. Tensile Strength (TS) of Resin Preparations
3.5. 13C NMR Analyses
3.6. MALDI-TOF Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khanbabaee, K.; van Ree, T. Tannins: Classification and Definition. Nat. Prod. Rep. 2001, 18, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Pizzi, A.; Cameron, F.A. Flavonoid Tannins—Structural Wood Components for Drought-Resistance Mechanisms of Plants. Wood Sci. Technol. 1986, 20, 119–124. [Google Scholar] [CrossRef]
- Pizzi, A.P.; Laborie, M.-P.; Candan, Z.A. Review on Sources, Extractions and Analysis Methods of a Sustainable Biomaterial: Tannins. J. Renew. Mater. 2024, 12, 397–425. [Google Scholar] [CrossRef]
- Pizzi, A. Tannins Medical/Pharmacological and Related Applications: A Critical Review. Sustain. Chem. Pharm. 2021, 22, 100481. [Google Scholar] [CrossRef]
- Das, A.K.; Islam, M.N.; Faruk, M.O.; Ashaduzzaman, M.; Dungani, R. Review on Tannins: Extraction Processes, Applications and Possibilities. S. Afr. J. Bot. 2020, 135, 58–70. [Google Scholar] [CrossRef]
- Pizzi, A. Tannin-Based Adhesives. J. Macromol. Sci. Macromol. Chem. 1980, 18, 247–315. [Google Scholar] [CrossRef]
- Fraga-Corral, M.; García-Oliveira, P.; Pereira, A.G.; Lourenço-Lopes, C.; Jimenez-Lopez, C.; Prieto, M.A.; Simal-Gandara, J. Technological Application of Tannin-Based Extracts. Molecules 2020, 25, 614. [Google Scholar] [CrossRef] [PubMed]
- Cuong, D.X.; Hoan, N.X.; Dong, D.H.; Thuy, L.T.M.; Van Thanh, N.; Ha, H.T.; Tuyen, D.T.T.; Chinh, D.X.; Dang, X.C.; Hoan, N.X. Tannins: Extraction from Plants. In Tannins-Structural Properties, Biological Properties and Current Knowledge; BoD—Books on Demand: Norderstedt, Germany, 2019. [Google Scholar]
- Perrut, M. Supercritical Fluid Applications: Industrial Developments and Economic Issues. Ind. Eng. Chem. Res. 2000, 39, 4531–4535. [Google Scholar] [CrossRef]
- Dalzell, S.A.; Kerven, G.L. A Rapid Method for the Measurement of Leucaena spp. Proanthocyanidins by the Proanthocyanidin (Butanol/HCl) Assay. J. Sci. Food Agric. 1998, 78, 405–416. [Google Scholar] [CrossRef]
- de Hoyos-Martínez, P.L.; Merle, J.; Labidi, J.; Charrier-El Bouhtoury, F. Tannins Extraction: A Key Point for Their Valorization and Cleaner Production. J. Clean. Prod. 2019, 206, 1138–1155. [Google Scholar] [CrossRef]
- Kemppainen, K.; Siika-aho, M.; Pattathil, S.; Giovando, S.; Kruus, K. Spruce Bark as an Industrial Source of Condensed Tannins and Non-Cellulosic Sugars. Ind. Crop. Prod. 2014, 52, 158–168. [Google Scholar] [CrossRef]
- Zarin, M.A.; Wan, H.Y.; Isha, A.; Armania, N. Antioxidant, Antimicrobial and Cytotoxic Potential of Condensed Tannins from Leucaena Leucocephala Hybrid-Rendang. Food Sci. Hum. Wellness 2016, 5, 65–75. [Google Scholar] [CrossRef]
- Nisca, A.; Ștefănescu, R.; Moldovan, C.; Mocan, A.; Mare, A.D.; Ciurea, C.N.; Man, A.; Muntean, D.-L.; Tanase, C. Optimization of Microwave Assisted Extraction Conditions to Improve Phenolic Content and in Vitro Antioxidant and Anti-Microbial Activity in Quercus Cerris Bark Extracts. Plants 2022, 11, 240. [Google Scholar] [CrossRef]
- Bianchi, S.; Kroslakova, I.; Janzon, R.; Mayer, I.; Saake, B.; Pichelin, F. Characterization of Condensed Tannins and Carbohydrates in Hot Water Bark Extracts of European Softwood Species. Phytochemistry 2015, 120, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Khirstova, P.; Icho, G. Comparative Study of Tannins of Acacia nilotica an Indigenous Tanning Material in Sudan with Acacia Mearnsii. Suranaree J. Soc. Technol. 2005, 12, 259–265. [Google Scholar]
- Mahdi, H.; Palmina, K.; Glavtch, I. Characterization of Acacia nilotica as an Indigenous Tanning Material of Sudan. J. Trop. For. Sci. 2006, 18, 181–187. [Google Scholar]
- Osman, Z. Comparative Thermodynamic Study on the Contribution of the Autocondensation and Copolymerization Reactions for the Tannins of the Subspecies of Acacia nilotica. J. Polym. Environ. 2013, 21, 1100–1108. [Google Scholar] [CrossRef]
- Adiguzel-Zengin, A.C.; Zengin, G.; Kilicarislan-Ozkan, C.; Dandar, U.; Kilic, E. Characterization and Application of Acacia nilotica L. as an Alternative Vegetable Tanning Agent for Leather Processing. Fresenius Environ. Bull. 2017, 26, 7319–7326. [Google Scholar]
- Nasr, A.; Mueller, H.; Abdelsalam, M.; Azzam, A.; Jungandreas, C.; Poppitz, W. Evaluation of Potential Application for Sunt Pod Extracts (Acadia nilotica) in Leather Tanning. J. Am. Leather Chem. Assoc. 2017, 112, 23–32. [Google Scholar]
- Phillips, G.O.; Ogasawara, T.; Ushida, K. The Regulatory and Scientific Approach to Defining Gum Arabic (Acacia senegal and Acacia seyal) as a Dietary Fibre. Food Hydrocoll. 2008, 22, 24–35. [Google Scholar] [CrossRef]
- Elamin, H.M. Trees & Shrubs of the Sudan; Ithaca Press: Ithaca, NY, USA, 1990; ISBN 978-0-86372-116-8. [Google Scholar]
- Bibliography: Standard Methods of Analysis. Leather and Tanning Materials. Official Methods of the International Society of Leather Trades Chemists. Analyst 1927, 52, 83. [CrossRef]
- Yazaki, Y.; Guangcheng, Z.; Searle, S.D. Extractives Yields and Polyflavanoid Contents of Acacia Mearnsii Barks in Australia. Aust. For. 1990, 53, 148–153. [Google Scholar] [CrossRef]
- DIN 52186; Testing of Wood—Bending Test. Hegewald & Peschke: Nossen, Germany, 1978.
- Breitmaier, E.W. Carbon-13 NMR Spectroscopy, 13th ed.; VCH: Weinheim, Germany, 1987. [Google Scholar]
- Fechtal, M.; Riedl, B.; Calvé, L. Modeling of Tannins as Adhesives. I. Condensation of the (+)-Catechin with Formaldehyde. Holzforschung 1993, 47, 419–424. [Google Scholar] [CrossRef]
- Dentinho, M.T.P.; Paulos, K.; Francisco, A.; Belo, A.T.; Jerónimo, E.; Almeida, J.; Bessa, R.J.B.; Santos-Silva, J. Effect of Soybean Meal Treatment with Cistus ladanifer Condensed Tannins in Growth Performance, Carcass and Meat Quality of Lambs. J. Livest. Sci. 2020, 236, 104021. [Google Scholar] [CrossRef]
- Gou, X.; Okejiri, F.; Zhang, Z.H.; Liu, M.M.; Liu, J.X.; Chen, H.; Chen, K.Q.; Lu, X.Y.; Ouyang, P.K.; Fu, J. Tannin-derived bimetallic CuCo/C catalysts for an efficient in-situ hydrogenation of lauric acid in methanol-water media. Fuel Process. Technol. 2020, 205, 106426. [Google Scholar] [CrossRef]
- Hussain, I.; Sanglard, M.; Bridson, J.H.; Parker, K. Preparation and physicochemical characterisation of polyurethane foams prepared using hydroxybutylated condensed tannins as a polyol source. Ind. Crop. Prod. 2020, 154, 112636. [Google Scholar] [CrossRef]
- Petchidurai, G.; Nagoth, J.A.; John, M.S.; Sahayaraj, K.; Murugesan, N.; Pucciarelli, S. Standardization and Quantification of Total Tannins, Condensed Tannin and Soluble Phlorotannins Extracted from Thirty-Two Drifted Coastal Macroalgae Using High Performance Liquid Chromatography. Bioresour. Technol. Rep. 2019, 7, 100273. [Google Scholar] [CrossRef]
- Shi, J.; Wang, Y.; Wei, H.; Hu, J.; Gao, M. Structure Analysis of Condensed Tannin from Rice Straw and Its Inhibitory Effect on Staphylococcus Aureus. Ind. Crop. Prod. 2020, 145, 112130. [Google Scholar] [CrossRef]
- Case, P.; Bizama, C.; Segura, C.; Wheeler, C.; Berg, A.; DeSisto, W. Pyrolysis of Pre-Treated Tannins Obtained from Radiata Pine Bark. J. Anal. Appl. Pyrolysis 2014, 107, 250–255. [Google Scholar] [CrossRef]
- Świergiel, J.; Jadżyn, J. Does water belong to the homologous series of hydroxyl compounds H(CH2)nOH? Phys. Chem. Chem. Phys. 2017, 19, 10062–10068. [Google Scholar] [CrossRef] [PubMed]
- Widyawati, P.S.; Dwi, T.; Budianta, W.; Kusuma, F.A.; Wijaya, E.L. Difference of Solvent Polarity To Phytochemical Content and Antioxidant Activity of Pluchea indicia Less Leaves Extracts. Int. J. Pharmacogn. Phytochem. Res. 2014, 6, 850–855. [Google Scholar]
- Antwi-Boasiako, C.; Animapauh, S.O. Tannin Extraction from the Barks of Three Tropical Hardwoods for the Production of Adhesives. J. Appl. Sci. Res. 2012, 8, 2959–2965. [Google Scholar]
- Medini, F.; Falleh, H.; Riadh, K.; Abdelly, C. Total Phenolic, Flavonoid and Tannin Contents and Antioxidant and Antimicrobial Activities of Organic Extracts of Shoots of the Plant Limonium delicatulum. J. Taibah Univ. Sci. 2014, 8, 216–224. [Google Scholar] [CrossRef]
- Abdul Razak, M.; Low, C.; Abu Said, A. Determination of Relative Tannin Contents of the Barks of Some Malaysian Plants. Malays. For. 1981, 44, 87–92. [Google Scholar]
- NF EN 314-1; Plywood—Bond Quality-Test Methods. iTeh, Inc.: Newark, DE, USA, 1993.
- Oaishi, R.T.; Ahmed, S.; Tuj-Zohra, F.-; Rahman, A.; Abid, N.M. Facile Extraction and Prospective Application of Indigenous Cassia Fistula Tannin in Sustainable Leather Manufacture. J. Dispers. Sci. Technol. 2023, 1–12. [Google Scholar] [CrossRef]
- Ruiz-Aquino, F.; Feria-Reyes, R.; Rutiaga-Quiñones, J.G.; Robledo-Taboada, L.H.; Gabriel-Parra, R. Characterization of Tannin Extracts Derived from the Bark of Four Tree Species by HPLC and FTIR. For. Sci. Technol. 2023, 19, 38–46. [Google Scholar] [CrossRef]
- Pizzi, A. Biomolecules Tannins: Prospectives and Actual Industrial Applications. Biomolecules 2019, 9, 344. [Google Scholar] [CrossRef]
- Kardel, M.; Taube, F.; Schulz, H.; Schütze, W.; Gierus, M. Different Approaches to Evaluate Tannin Content and Structure of Selected Plant Extracts—Review and New Aspects. J. Appl. Bot. Food Qual. 2013, 86, 154–166. [Google Scholar] [CrossRef]
- Elbadawi, M.; Osman, Z.; Tahir, P.M.; Nasroun, T.; Kantiner, W. Properties of Particleboards Made from Acacia seyal Var. Seyal Using Uf-Tannin Modified Adhesives. Cellul. Chem. Technol. 2015, 49, 369–374. [Google Scholar]
- NF EN 314-2; Plywood—Bonding Quality. iTeh, Inc.: Newark, DE, USA, 1993.
- Hafiz, N.L.M.; Tahir, P.M.; Hua, L.S.; Abidin, Z.Z.; Sabaruddin, F.A.; Yunus, N.M.; Abdullah, U.H.; Abdul Khalil, H.P.S. Curing and Thermal Properties of Co-Polymerized Tannin Phenol–Formaldehyde Resin for Bonding Wood Veneers. J. Mater. Res. Technol. 2020, 9, 6994–7001. [Google Scholar] [CrossRef]
- Soviwadan, D.; Pizzi, A.P.; Lacoste, C.; Zhang, J.; Abdalla, S.; El-Marzouki, F.M. Flavonoid Tannins Linked to Long Carbohydrate Chains—MALDI-TOF Analysis of the Tannin Extract of the African Locust Bean Shells. Ind. Crop. Prod. 2015, 67, 25–32. [Google Scholar] [CrossRef]
- Pizzi, A.; Pasch, H.; Rode, K.; Giovando, S. Polymer Structure of Commercial Hydrolyzable Tannins by Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass Spectrometry. J. Appl. Polym. Sci. 2009, 113, 3847–3859. [Google Scholar] [CrossRef]
Extraction Temperature (°C) | 30 | 50 | 70 | ||||||
---|---|---|---|---|---|---|---|---|---|
Water-to-pod ratio | 2:1 | 4:1 | 6:1 | 2:1 | 4:1 | 6:1 | 2:1 | 4:1 | 6:1 |
Moisture content (%) | 7.20 | 6.50 | 6.48 | ||||||
Tannins (T) % | 2.83 | 4.39 | 5.03 | 2.17 | 5.49 | 5.64 | 1.44 | 4.41 | 6.42 |
Catechin number | 1.97 | 2.61 | 3.27 | 1.63 | 2.82 | 3.73 | 1.78 | 3.49 | 4.70 |
Non-tannins (NT) | 2.99 | 5.15 | 5.76 | 2.34 | 3.96 | 5.49 | 2.38 | 4.22 | 5.70 |
Total solids % | 6.43 | 10.63 | 12.32 | 5.59 | 9.85 | 11.61 | 4.56 | 9.8 | 11.95 |
Total solubles (Tso) % | 5.83 | 9.55 | 11.78 | 4.51 | 9.42 | 11.34 | 3.82 | 8.63 | 10.92 |
Purity (T/Tso) | 0.5 | 0.5 | 0.5 | 0.5 | 0.51 | 0.5 | 0.4 | 0.5 | 0.5 |
Extraction rate (T/NT) | 0.95 | 0.85 | 0.87 | 0.93 | 0.22 | 0.98 | 0.60 | 1.04 | 1.1 |
pH | 4.26 | 4.30 | 3.81 | 3.81 | 4.09 | 4.20 | 4.28 | 3.78 | 4.08 |
Extraction Temperature (°C) | 30 | 50 | 70 | ||||||
---|---|---|---|---|---|---|---|---|---|
Water-to-pod ratio | 2:1 | 4:1 | 6:1 | 2:1 | 4:1 | 6:1 | 2:1 | 4:1 | 6:1 |
Moisture content (%) | 6.2 | 6.19 | 6.29 | ||||||
Tannins (T) % | 9.59 | 12.34 | 15.08 | 8.66 | 14.82 | 13.76 | 9.59 | 12.51 | 17.29 |
Catechin number | 8.79 | 12.26 | 13.08 | 6.79 | 12.19 | 13.33 | 8.08 | 10.79 | 13.46 |
Non-tannins (NT) | 8.79 | 10.74 | 11.03 | 8.03 | 4.06 | 13.39 | 6.44 | 7.03 | 6.92 |
Total solids % | 24.83 | 31.48 | 34.52 | 17.85 | 29.14 | 29.8 | 21.3 | 27.4 | 32.31 |
Total solubles (Tso) % | 11.39 | 23.08 | 26.11 | 16.69 | 25.88 | 27.16 | 16.54 | 19.53 | 24.26 |
Purity (T/Tso) | 0.5 | 0.5 | 0.6 | 0.5 | 0.6 | 0.5 | 0.6 | 0.6 | 0.7 |
Extraction rate (T/NT) | 1.14 | 1.15 | 1.37 | 1.08 | 1.30 | 1.03 | 1.38 | 1.78 | 2.5 |
pH | 3.57 | 3.88 | 4.10 | 3.44 | 3.59 | 3.45 | 4.30 | 4.34 | 3.37 |
Extraction Temperature (°C) | 30 | 50 | 70 | ||||||
---|---|---|---|---|---|---|---|---|---|
Water-to-pod ratio | 2:1 | 4:1 | 6:1 | 2:1 | 4:1 | 6:1 | 2:1 | 4:1 | 6:1 |
Moisture content (%) | 6.47 | 7.44 | 7.45 | ||||||
Tannins (T) % | 24.49 | 24.61 | 28.52 | 17.04 | 24.59 | 24.49 | 41.92 | 34.77 | 43.69 |
Catechin number | 17.69 | 22.75 | 24.62 | 18.36 | 23.19 | 21.86 | 26.42 | 24.78 | 27.67 |
Non-tannins (NT) | 13.74 | 21.13 | 11.34 | 16.39 | 14.08 | 21.79 | 8.54 | 8.45 | 3.93 |
Total solids % | 39.09 | 52.09 | 51.82 | 35.28 | 44.58 | 49.57 | 50.88 | 53.16 | 53.94 |
Total solubles (Tso) % | 40.81 | 45.74 | 39.86 | 33.43 | 40.11 | 46.39 | 50.46 | 42.83 | 47.62 |
Purity (T/Tso) | 0.6 | 0.5 | 0.7 | 0.5 | 0.6 | 0.6 | 0.8 | 0.8 | 0.9 |
Extraction rate (T/NT) | 1.78 | 1.65 | 2.61 | 2.51 | 1.09 | 1.85 | 4.9 | 4.33 | 11.12 |
pH | 3.80 | 3.93 | 3.93 | 3.52 | 3.52 | 3.56 | 4.32 | 3.71 | 4.01 |
Tannins Extract Code | 70GPC6 | 70GPM6 | 70GPF6 | |||
---|---|---|---|---|---|---|
Phase | Liquid | Solid | Liquid | Solid | Liquid | Solid |
MC (%) | 6.23 | 5.09 | 6.35 | 4.36 | 5.21 | 5.15 |
Tannins (T) % | 10.2 | 38.9 | 16.4 | 46.8 | 32.5 | 47.6 |
Catechin number | 9.0 | 45.7 | 16.5 | 52.8 | 30.7 | 57.2 |
Non-tannins (NT) % | 6.30 | 46.19 | 16.40 | 34.40 | 10.90 | 41.50 |
Total solids % | 16.8 | 85.9 | 31.4 | 89.8 | 46.6 | 92.3 |
Total solubles (Tso) % | 16.5 | 85.9 | 26.3 | 81.2 | 43.4 | 81.4 |
Purity (T/Tso) | 0.70 | 0.50 | 0.60 | 0.50 | 0.75 | 0.60 |
Extraction rate (T/NT) | 1.60 | 0.80 | 1.70 | 1.00 | 2.98 | 1.15 |
Subspecies | Tannins (T%) | Total Polyphenolic Materials (%) | Soluble Materials (SM%) | Tannin Purity (T/SM) |
---|---|---|---|---|
ANT | 50.7 | 65.01 | 81.3 | 0.6 |
ASS | 57.6 | 69.20 | 92.6 | 0.6 |
Sample# | Tannin Extract Fraction | Tensile Strength Liquid Phase (MPA) | Tensile Strength Solid Phase (MPA) |
---|---|---|---|
1 | 70GPC6 | 1.33 | 1.65 |
2 | 70GPM6 | 1.55 | 1.88 |
3 | 70GPF6 | 1.70 | 2.48 |
4 | UF | 1.60 |
B-Ring | Interflavonoid Bond | Free | C Trans | Free | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Catechol | Pyrogall | ||||||||||||
C5,C7 C9 | C3’ C4’ PD | C′1 | C1’ | C′6 | C′5, C′2 PC | C4–C8 | C4–C6 | C10 | C6,C8 | C3 cis | C4 | ||
NMR shifts ppm | 160–155 | 145–148 PD | 131–129 | 132–135 | 123–121 | 120–116 | 115–110 | 105 | 103 | 97–98 | 83–86 | 71–68 | 28 |
Ant | 60 | 100 | 40 | 50 | 33 | 52 | 50 | 25 | 25 | 33 | 25 | 82 | 35 |
ASS | 86 | 85 | 48 | - | - | 56 | 43 | 53 | - | 48 | 15 | 100 | 32 |
272 Da = fisenidin, no Na+ (ASS and ANT) |
290 Da = catechin or robinetinidin, no Na+ (ASS and ANT) |
294 Da = fisetinidin, with Na+ (ASS and ANT) |
304 Da = gallocatechin (delphinidin), no Na+, deprotonated (ASS and ANT) |
316 Da = catechin or robinetinidin, with Na+, multiprotonated (ASS and ANT) |
326–328 Da = gallocatechin (delphinidin), with Na+, protonated (328 Da) (ASS and ANT) |
346 Da = fragment, no Na+ (346 Da) and with Na+, and with Na+ (367.9 Da) (ASS and ANT) |
364 Da = glucose dimer with Na+ (ASS and ANT) |
436 Da = 1 Galloyl residue on 2 stripped glucose residues, dimer (ANT) |
459 Da = fisetinidin-glucose, with Na+, protonated (ASS) |
503.8 Da = glucose trimer, no Na+, and 525 Da with Na+ (ASS) |
519–521 Da = glucose-glucose-glucuronic acid, no Na+, and 541.7 Da with Na+ (ASS and ANT) |
543.7 Da = fisetinindin dimer, no Na+, and 567 Da with Na+ (ASS) |
561–562 Da = catechin-fisetinidin dimer, no Na+, or robinetinidin-fisetinidin dimer, no Na+, and 583.6 Da with Na+ (ASS and ANT) |
570 Da = 1 Galloyl residue on 3 glucoses chain, trimer (ANT) |
601 and 604 Da = catechin dimer, with Na+ (ASS and ANT) |
613 Da = catechin-glucose-glucose, no Na+ (ASS) |
617–619 Da = gallocatechin-catechin dimer, with Na+ (ASS and ANT) |
657 Da = Trigalloyl glucose, monomer (ASS) |
721 Da = catechin-fisetinidin-glucose, no Na+, deprotonated (ASS and ANT) |
727 Da = fisetinidin-fisetinidin-glucose, with Na+, deprotonated (ASS and ANT) |
742–743 Da = Catechin fisetinidin-glucose, with Na+ (ASS and ANT) |
756 Da = Catechin-fisetinidin-glucuronic acid, with Na+ (ASS) |
759 Da = gallocatechin-fisetinidin-glucose, no Na+ OR/AND catechin-catechin-glucose, no Na+ (ASS) |
885–887 Da = catechin trimer with Na+, deprotonated (ASS and ANT) |
903 Da = gallocatechin-catechin-catechin trimer with Na+, deprotonated (ASS and ANT) |
919 Da = gallocatechin-gallocatechin-catechin trimer, with Na+ (ASS and ANT) |
935 Da = gallocatechi-gallocatechin-gallocatechin trimer with Na+ (mainly ASS; and ANT) |
1055 Da = catechin trimer-glucose, with Na+ (ASS) |
1175–1176 Da = Catechin tetramer, with Na+, deprotonated (ASS and ANT) |
1191–1192 Da = gallocatechin-(catechin)3 tetramer with Na+, deprotonated (ASS and ANT) |
1479–1480 Da = gallocatechin-(catechin)4 pentamer with Na+, deprotonated (ASS and ANT) |
1496 Da = (gallocatechin)2-(catechin)3 pentamer, with Na+, deprotonated (ANT) |
Dimer Types | Experimental Intensities (%) | |
---|---|---|
Tannins | Catechin dimers (601–603 Da) | Gallocatechin dimers (628–667 Da) |
ANT | 81 | 19 |
ASS | 71 | 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osman, Z.; Pizzi, A.; Elbadawi, M.E.; Mehats, J.; Mohammed, W.; Charrier, B. Effect of Technological Factors on the Extraction of Polymeric Condensed Tannins from Acacia Species. Polymers 2024, 16, 1550. https://doi.org/10.3390/polym16111550
Osman Z, Pizzi A, Elbadawi ME, Mehats J, Mohammed W, Charrier B. Effect of Technological Factors on the Extraction of Polymeric Condensed Tannins from Acacia Species. Polymers. 2024; 16(11):1550. https://doi.org/10.3390/polym16111550
Chicago/Turabian StyleOsman, Zeinab, Antonio Pizzi, Mohammed Elamin Elbadawi, Jérémy Mehats, Wadah Mohammed, and Bertrand Charrier. 2024. "Effect of Technological Factors on the Extraction of Polymeric Condensed Tannins from Acacia Species" Polymers 16, no. 11: 1550. https://doi.org/10.3390/polym16111550
APA StyleOsman, Z., Pizzi, A., Elbadawi, M. E., Mehats, J., Mohammed, W., & Charrier, B. (2024). Effect of Technological Factors on the Extraction of Polymeric Condensed Tannins from Acacia Species. Polymers, 16(11), 1550. https://doi.org/10.3390/polym16111550