State-of-the-Art on Advancements in Carbon–Phenolic and Carbon–Elastomeric Ablatives
Abstract
:1. Introduction
2. Carbon-Phenolic Ablative Composites
Phenolic Ablative Composites in Literature | Ablation Characteristics | Method of Ablation Test | References | |
---|---|---|---|---|
% Reduction in LAR | % Reduction in MAR | |||
Needled felt carbon- quartz fiber/phenolic-silica hybrid aerogel (C-QF/Ph-Si75) | 84.4 | 81 | Oxy-acetylene torch test at 2000 °C for 300 s | [41] |
7.5 wt.% of ZrSi2 + carbon–phenolic | 69.6 | 46.3 | Oxy-acetylene torch test at a heat flux of 4.28 × 106 W/m2 for 30 s | [54] |
Acidified graphitic carbon nitride-carbon/phenolic 0.2 wt.% ag-C3N4-CF/Ph | 69 | 27 | Oxy-acetylene torch test at ~2900 °C | [45] |
0.1 wt.% GO + carbon and phenolic | 62 | - | Oxy-acetylene torch test at 3000 °C for 30 s | [63] |
15 wt.% borosilicate glass + polycarbosilane (PCS) + C-Ph | 62 | 8.5 | Oxy-acetylene torch test for 60 s | [57] |
5 wt.% SiC + C-Ph | 60 | - | plasma wind tunnel, heat flux of 1.6 × 106 W/m2 for 50 s | [52] |
5 wt.% silicon carbide + 0.1 wt.% MWCNT+carbon fibre and phenolic resin | 43 | - | Oxy-acetylene torch test for 20 s | [62] |
TaSi2/ZrSi2 + carbon–phenolic | 29 | 43 | laser ablation, heat flux 1 × 107 W/m2 for irradiation of 30–100 s | [53] |
SiBCN–phenolic-C | 27 | 17 | Oxy-acetylene torch test for 30 s | [59] |
7 wt.% ZrB2-SiC + carbon and phenolic (C-Ph-ZS7) | 23 | - | Oxy-acetylene torch test at 2500 °C for 160 s | [48] |
ZrSiO4 sol + carbon fabric + phenolic resin | - | 21 | Oxy-acetylene torch test for 30 s | [27] |
6 wt.% organo-modified montmorillonite (o-MMT) nano clay + C-Ph | - | 35 | Oxy-acetylene torch test heat flux 5 × 106 W/m2 | [56] |
3. Carbon–Elastomeric Ablative Composites
Elastomeric Ablative Composites in Literature | Ablation Characteristics | Method of Ablation Test | Reference | |
---|---|---|---|---|
% Reduction in LAR | % Reduction in MAR | |||
Waste leave side filled with carbon fiber + polymeric methylene diphenylene diisocyanate (PMDI) | 83 | 60 | Oxy-acetylene torch test at 2400 °C for 30 s | [88] |
10 phr Polyarylacetylene (P.A.) + silicone rubber-carbon woven laminates (SRWL) | 71.60 | - | Oxy-acetylene torch test | [77] |
20 wt.% BER(4,4-bis(3-(oxirane-2-ylmethoxy)benzyl)-1,1′-biphenyl) + silicone rubber | 54 | 30 | Oxy-acetylene flame test at a heat flux of 4.152 × 106 W/m2 for 30 s | [69] |
3 mm carbon fibers + ceramic filled silicone rubber | 53.6 | 64.4 | Oxy-acetylene torch test at a heat flux of 4.57 × 106 W/m2 for 30 s | [72] |
Aramid fiber (AF) + carbon fiber + ethylene propylene diene monomer (EPDM) | 31 | - | Oxy-acetylene flame test at a heat flux of 4.57 × 106 W/m2 for 30 s | [13] |
10 phr Magnesium carbonate (MgCO3) + carbon fibers (CFs) + silicone rubber | 30.76 | - | Oxy-acetylene torch test for 30 s | [74] |
methyl–polyhedral oligomeric silsesquioxanes (methyl–POSS) + ethylene propylene diene monomer (EPDM) | - | 28 | - | [78] |
CNTs + ethylene propylene diene monomer (EPDM) | - | 10.7 | - | [81] |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bunsell, A.R.; Joannès, S.; Thionnet, A. Fundamentals of Fiber Reinforced Composite Materials, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Nagavally, R.R. Composite materials-history, types, fabrication techniques, advantages, and applications. Int. J. Mech. Prod. Eng. 2017, 5, 82–87. [Google Scholar]
- Natali, M.; Kenny, J.M.; Torre, L. Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: A review. Prog. Mater. Sci. 2016, 84, 192–275. [Google Scholar] [CrossRef]
- Rivier, M.; Lachaud, J.; Congedo, P.M. Ablative thermal protection system under uncertainties including pyrolysis gas composition. Aerosp. Sci. Technol. 2019, 84, 1059–1069. [Google Scholar] [CrossRef]
- Devaraju, S.; Alagar, M. Polymer Matrix Composite Materials for Aerospace Applications. Encycl. Mater. Compos. 2021, 1, 947–969. [Google Scholar] [CrossRef]
- Kumar, C.V.; Kandasubramanian, B. Advances in ablative composites of carbon based materials: A review. Ind. Eng. Chem. Res. 2019, 58, 22663–22701. [Google Scholar] [CrossRef]
- Uyanna, O.; Najafi, H. Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects. Acta Astronaut. 2020, 176, 341–356. [Google Scholar] [CrossRef]
- Fahy, W.P.; Chang, A.; Wu, H.; Koo, J.H. Recent Developments of Ablative Thermal Protection Systems for Atmospheric Entry. In AIAA Scitech 2021 Forum; Aerospace Research Central: Lawrence, KS, USA, 2021; p. 1474. [Google Scholar] [CrossRef]
- Rallini, M.; Natali, M.; Torre, L. An Introduction to Ablative Materials and High-Temperature Testing Protocols. In Nanomaterials in Rocket Propulsion Systems; Elsevier: Amsterdam, The Netherlands, 2019; pp. 529–549. [Google Scholar] [CrossRef]
- Natali, M.; Torre, L. Composite Materials: Ablative; Wiley Encyclopedia of Composites: New York, NY, USA, 2011; pp. 1–14. [Google Scholar] [CrossRef]
- Rueschhoff, L.M.; Carney, C.M.; Apostolov, Z.D.; Cinibulk, M.K. Processing of fiber-reinforced ultra-high temperature ceramic composites: A review. Int. J. Ceram. Eng. Sci. 2020, 2, 22–37. [Google Scholar] [CrossRef]
- Hu, Y.; Geng, W.; You, H.; Wang, Y.; Loy, D.A. Modification of a phenolic resin with epoxy-and methacrylate-functionalized silica sols to improve the ablation resistance of their glass fiber-reinforced composites. Polymers 2014, 6, 105–113. [Google Scholar] [CrossRef]
- Ji, Y.; Han, S.; Xia, L.; Li, C.; Wu, H.; Guo, S.; Yan, N.; Li, H.; Luan, T. Synergetic effect of aramid fiber and carbon fiber to enhance ablative resistance of EPDM-based insulators via constructing high-strength char layer. Compos. Sci. Technol. 2021, 201, 108494. [Google Scholar] [CrossRef]
- Huang, X. Fabrication and properties of carbon fibers. Materials 2009, 2, 2369–2403. [Google Scholar] [CrossRef]
- Newcomb, B.A. Processing, structure, and properties of carbon fibers. Compos. Part A Appl. Sci. Manuf. 2016, 91, 262–282. [Google Scholar] [CrossRef]
- Koo, J.H.; Natali, M.; Tate, J.; Allcorn, E. Polymer NANOCOMPOSITES as ablative materials− a comprehensive review. Int. J. Energetic Mater. Chem. Propuls. 2013, 12, 119–162. [Google Scholar] [CrossRef]
- Arai, Y.; Inoue, R.; Goto, K.; Kogo, Y. Carbon fiber reinforced ultra-high temperature ceramic matrix composites: A review. Ceram. Int. 2019, 45, 14481–14489. [Google Scholar] [CrossRef]
- Asim, M.; Saba, N.; Jawaid, M.; Nasir, M.; Pervaiz, M.; Alothman, O.Y. A review on phenolic resin and its composites. Curr. Anal. Chem. 2018, 14, 185–197. [Google Scholar] [CrossRef]
- Tang, K.; Zhang, A.; Ge, T.; Liu, X.; Tang, X.; Li, Y. Research progress on modification of phenolic resin. Mater. Today Commun. 2021, 26, 101879. [Google Scholar] [CrossRef]
- Warrick, E.L.; Pierce, O.R.; Polmanteer, K.E.; Saam, J.C. Silicone elastomer developments 1967–1977. Rubber Chem. Technol. 1979, 52, 437–525. [Google Scholar] [CrossRef]
- George, K.; Panda, B.P.; Mohanty, S.; Nayak, S.K. Recent developments in elastomeric heat shielding materials for solid rocket motor casing application for future perspective. Polym. Adv. Technol. 2018, 29, 8–21. [Google Scholar] [CrossRef]
- Burchell, T.D. (Ed.) Carbon Materials for Advanced Technologies, 1st ed.; Elsevier: Pergamon, Turkey, 1999; ISBN 0-08-042683-2. [Google Scholar]
- Rajak, D.K.; Wagh, P.H.; Linul, E. Manufacturing technologies of carbon/glass fiber-reinforced polymer composites and their properties: A review. Polymers 2021, 13, 3721. [Google Scholar] [CrossRef]
- Ku, B.C.; Kim, H.C.; Jeong, Y.; Jung, Y.; Choo, H. Fabrication and applications of carbon nanotube fibers. Carbon Lett. 2012, 13, 191–204. [Google Scholar] [CrossRef]
- Chen, X.; Chen, L.; Zhang, C.; Song, L.; Zhang, D. Three-dimensional needle-punching for composites–A review. Compos. Part A Appl. Sci. Manuf. 2016, 85, 12–30. [Google Scholar] [CrossRef]
- Wang, C.; Cheng, H.; Hong, C.; Zhang, X.; Zeng, T. Lightweight chopped carbon fiber reinforced silica-phenolic resin aerogel nanocomposite: Facile preparation, properties and application to thermal protection. Compos. Part A Appl. Sci. Manuf. 2018, 112, 81–90. [Google Scholar] [CrossRef]
- Xu, F.; Zhu, S.; Ma, Z.; Liu, Y.; Li, H.; Hu, J. Improved interfacial strength and ablation resistance of carbon fabric reinforced phenolic composites modified with functionalized ZrSiO4 sol. Mater. Des. 2020, 191, 108623. [Google Scholar] [CrossRef]
- Song, W.; Jia, X.; Ma, C.; Wang, J.; Qiao, W.; Ling, L. Facile fabrication of lightweight carbon fiber/phenolic ablator with improved flexibility via natural rubber modification. Compos. Commun. 2022, 31, 101119. [Google Scholar] [CrossRef]
- Bellemans, A.; Scoggins, J.B.; Jaffe, R.L.; Magin, T.E. Transport properties of carbon-phenolic gas mixtures. Phys. Fluids 2019, 31, 096102. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Wang, Y.; Liu, B.; Bai, X. Preliminary study on the thermal insulation of a multilayer passive thermal protection system with carbon-phenolic composites in a combustion chamber. Case Stud. Therm. Eng. 2022, 35, 102120. [Google Scholar] [CrossRef]
- Torres-Herrador, F.; Eschenbacher, A.; Coheur, J.; Blondeau, J.; Magin, T.E.; Van Geem, K.M. Decomposition of carbon/phenolic composites for aerospace heatshields: Detailed speciation of phenolic resin pyrolysis products. Aerosp. Sci. Technol. 2021, 119, 107079. [Google Scholar] [CrossRef]
- Bessire, B.K.; Minton, T.K. Decomposition of phenolic impregnated carbon ablator (PICA) as a function of temperature and heating rate. ACS Appl. Mater. Interfaces 2017, 9, 21422–21437. [Google Scholar] [CrossRef]
- Shaheryar, A.; Khan, S.; Qaiser, H.; Khurram, A.A.; Subhani, T. Mechanical and thermal properties of hybrid carbon fiber–phenolic matrix composites containing graphene nanoplatelets and graphite powder. Plast. Rubber Compos. 2017, 46, 431–441. [Google Scholar] [CrossRef]
- Asaro, L.; Manfredi, L.B.; Rodriguez, E.S. Study of the ablative properties of phenolic/carbon composites modified with mesoporous silica particles. J. Compos. Mater. 2018, 52, 4139–4150. [Google Scholar] [CrossRef]
- Chinnaraj, R.K.; Kim, Y.C.; Choi, S.M. Thermal Ablation Experiments of Carbon Phenolic and SiC-Coated Carbon Composite Materials Using a High-Velocity Oxygen-Fuel Torch. Materials 2023, 16, 1895. [Google Scholar] [CrossRef]
- Rallini, M.; Torre, L.; Kenny, J.M.; Natali, M. Effect of boron carbide nanoparticles on the thermal stability of carbon/phenolic composites. Polym. Compos. 2017, 38, 1819–1827. [Google Scholar] [CrossRef]
- Jafari, F.; Eslami-Farsani, R.; Khalili, S.M.R. Optimization of Mechanical and Thermal Properties of Elastomer Modified Carbon Fibers/Phenolic Resin Composites. Fibers Polym. 2021, 22, 1986–1994. [Google Scholar] [CrossRef]
- Natali, M.; Puri, I.; Kenny, J.M.; Torre, L.; Rallini, M. Microstructure and ablation behavior of an affordable and reliable nanostructured Phenolic Impregnated Carbon Ablator (PICA). Polym. Degrad. Stab. 2017, 141, 84–96. [Google Scholar] [CrossRef]
- Cheon, J.H.; Shin, E.S. Assessment of the ablation characteristics of carbon/phenolic composites using X-ray microtomography. Compos. Sci. Technol. 2019, 182, 107740. [Google Scholar] [CrossRef]
- Dong, F.; Wang, X.; Zhang, C.; Qian, K.; Hong, Y.; Zhang, D. Ablation behavior and damage mechanisms of carbon/boron-modified phenolic 2.5 D woven composite. Polym. Degrad. Stab. 2023, 209, 110279. [Google Scholar] [CrossRef]
- Cheng, H.; Fan, Z.; Hong, C.; Zhang, X. Lightweight multiscale hybrid carbon-quartz fiber fabric reinforced phenolic-silica aerogel nanocomposite for high temperature thermal protection. Compos. Part A Appl. Sci. Manuf. 2021, 143, 106313. [Google Scholar] [CrossRef]
- Cheng, H.; Xue, H.; Hong, C.; Zhang, X. Preparation, mechanical, thermal and ablative properties of lightweight needled carbon fiber felt/phenolic resin aerogel composite with a bird’s nest structure. Compos. Sci. Technol. 2017, 140, 63–72. [Google Scholar] [CrossRef]
- Jin, X.; Liu, C.; Huang, H.; Pan, R.; Wu, C.; Yan, X.; Zhang, X. Multiscale, elastic, and low-density carbon fiber/siliconoxycarbide-phenolic interpenetrating aerogel nanocomposite for ablative thermal protection. Compos. Part B Eng. 2022, 245, 110212. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, Y.; Lu, C.; Wen, X.; Liu, X.; Lu, K.; Wu, S.; Liu, Q. Extraordinary improvement of ablation resistance of carbon/phenolic composites reinforced with low loading of graphene oxide. Compos. Sci. Technol. 2018, 167, 53–61. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, Y.; Lu, C.; Wen, X.; Liu, X.; Wu, S.; Lu, K.; Yin, J. Enhanced thermal resistance of carbon/phenolic composites by addition of novel nano-g-C3N4. Compos. Sci. Technol. 2019, 180, 60–70. [Google Scholar] [CrossRef]
- Feng, A.; Jia, Z.; Yu, Q.; Zhang, H.; Wu, G. Preparation and characterization of carbon nanotubes/carbon fiber/phenolic composites on mechanical and thermal conductivity properties. Nano 2018, 13, 1850037. [Google Scholar] [CrossRef]
- Kuppusamy RR, P.; Neogi, S.; Mohanta, S.; Chinnasamy, M.; Rathanasamy, R.; Uddin, M.E. Mechanical, Thermal, and Ablative Properties of Silica, Zirconia, and Titania Modified Carbon-Phenol Ablative Composites. Adv. Mater. Sci. Eng. 2022, 2022, 7808587. [Google Scholar] [CrossRef]
- Ghelich, R.; Mehdinavaz Aghdam, R.; Jahannama, M.R. Elevated temperature resistance of SiC-carbon/phenolic nanocomposites reinforced with zirconium diboride nanofibers. J. Compos. Mater. 2018, 52, 1239–1251. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, L.; Yun, J.; Tang, L.; Wen, Z.; Zhang, X.; Gu, J. Improved thermal stabilities, ablation and mechanical properties for carbon fibers/phenolic resins laminated composites modified by silicon-containing polyborazine. Eng. Sci. 2018, 2, 57–66. [Google Scholar] [CrossRef]
- Torres-Herrador, F.; Turchi, A.; Van Geem, K.M.; Blondeau, J.; Magin, T.E. Determination of heat capacity of carbon composites with application to carbon/phenolic ablators up to high temperatures. Aerosp. Sci. Technol. 2021, 108, 106375. [Google Scholar] [CrossRef]
- Wang, S.; Huang, H.; Tian, Y. Effects of zirconium carbide content on thermal stability and ablation properties of carbon/phenolic composites. Ceram. Int. 2020, 46, 4307–4313. [Google Scholar] [CrossRef]
- Wang, S.; Huang, H.; Tian, Y.; Huang, J. Effects of SiC content on mechanical, thermal and ablative properties of carbon/phenolic composites. Ceram. Int. 2020, 46, 16151–16156. [Google Scholar] [CrossRef]
- Xu, F.; Zhu, S.; Ma, Z.; Liu, H.; Chen, Y.; Wu, T. Effect of TaSi2/ZrSi2 on ablation properties of carbon-phenolic composite irradiated by high-intensity continuous laser. Ceram. Int. 2020, 46, 28443–28450. [Google Scholar] [CrossRef]
- Ding, J.; Yang, T.; Huang, Z.; Qin, Y.; Wang, Y. Thermal stability and ablation resistance, and ablation mechanism of carbon–phenolic composites with different zirconium silicide particle loadings. Compos. Part B Eng. 2018, 154, 313–320. [Google Scholar] [CrossRef]
- Ding, J.; Sun, J.; Huang, Z.; Wang, Y. Improved high-temperature mechanical property of carbon-phenolic composites by introducing titanium diboride particles. Compos. Part B Eng. 2019, 157, 289–294. [Google Scholar] [CrossRef]
- Rao, G.R.; Srikanth, I.; Reddy, K.L. Effect of organo-modified montmorillonite nanoclay on mechanical, thermal and ablation behavior of carbon fiber/phenolic resin composites. Def. Technol. 2021, 17, 812–820. [Google Scholar] [CrossRef]
- Duan, L.; Zhao, X.; Wang, Y. Oxidation and ablation behaviors of carbon fiber/phenolic resin composites modified with borosilicate glass and polycarbosilane interface. J. Alloys Compd. 2020, 827, 154277. [Google Scholar] [CrossRef]
- Paglia, L.; Genova, V.; Marra, F.; Bracciale, M.P.; Bartuli, C.; Valente, T.; Pulci, G. Manufacturing, thermochemical characterization and ablative performance evaluation of carbon-phenolic ablative material with nano-Al2O3 addition. Polym. Degrad. Stab. 2019, 169, 108979. [Google Scholar] [CrossRef]
- Yuan, W.; Wang, Y.; Luo, Z.; Chen, F.; Li, H.; Zhao, T. Improved performances of SiBCN powders modified phenolic resins-carbon fiber composites. Processes 2021, 9, 955. [Google Scholar] [CrossRef]
- Duan, L.; Luo, L.; Wang, Y. Oxidation and ablation behavior of a ceramizable resin matrix composite based on carbon fiber/phenolic resin. Mater. Today Commun. 2022, 33, 104901. [Google Scholar] [CrossRef]
- Panina, K.S.; Danilov, E.A.; Gareev, A.R. Evaluation of heat resistance of carbon fiber reinforced plastics based on organosilicon compounds. J. Phys. Conf. Ser. 2021, 1967, 012029. [Google Scholar] [CrossRef]
- Saghar, A.; Khan, M.; Sadiq, I.; Subhani, T. Effect of carbon nanotubes and silicon carbide particles on ablative properties of carbon fiber phenolic matrix composites. Vacuum 2018, 148, 124–126. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, Y.; Lu, C.; Xiao, D.; Wu, S.; Liu, Y. Mechanical, thermal, and ablative properties between graphene oxide and graphitic carbon nitride based carbon/phenolic composites: A comparative study. Polym. Compos. 2018, 39, E1928–E1938. [Google Scholar] [CrossRef]
- Wang, Y.; Risch, T.K.; Koo, J.H. Assessment of a one-dimensional finite element charring ablation material response model for phenolic-impregnated carbon ablator. Aerosp. Sci. Technol. 2019, 91, 301–309. [Google Scholar] [CrossRef]
- Silva Pesci, P.G.; Araujo Machado, H.; de Paula e Silva, H.; Paterniani Rita, C.C..; Petraconi Filho, G.; Botelho, E.C. Numerical-experimental analysis of a carbon-phenolic composite via plasma jet ablation test. Mater. Res. Express 2018, 5, 065601. [Google Scholar] [CrossRef]
- Paglia, L.; Genova, V.; Tirillò, J.; Bartuli, C.; Simone, A.; Pulci, G.; Marra, F. Design of new carbon-phenolic ablators: Manufacturing, plasma wind tunnel tests and finite element model rebuilding. Appl. Compos. Mater. 2021, 28, 1675–1695. [Google Scholar] [CrossRef]
- Hasan, M.Z. Thermal response and surface recession of a carbon-phenolic charring heatshield of spacecraft: Numerical simulation and validation. J. Space Saf. Eng. 2022, 9, 298–318. [Google Scholar] [CrossRef]
- Torres-Herrador, F.; Meurisse, J.B.; Panerai, F.; Blondeau, J.; Lachaud, J.; Bessire, B.K.; Magin, T.E.; Mansour, N.N. A high heating rate pyrolysis model for the Phenolic Impregnated Carbon Ablator (PICA) based on mass spectroscopy experiments. J. Anal. Appl. Pyrolysis 2019, 141, 104625. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Z.; Yan, L.; Chen, Y.; Liang, M.; Zou, H. Ordered graphitized ceramic layer induced by liquid crystal epoxy resin in silicone rubber composites with enhanced ablation resistance performance. Mater. Chem. Phys. 2021, 270, 124823. [Google Scholar] [CrossRef]
- Han, R.; Wang, Z.; Zhang, Y.; Niu, K. Thermal stability of CeO2/graphene/phenyl silicone rubber composites. Polym. Test. 2019, 75, 277–283. [Google Scholar] [CrossRef]
- Kumar, S.; Panda, B.P.; Mohanty, S.; Nayak, S.K. Effect of silicon carbide on the mechanical and thermal properties of ethylene propylene diene monomer-based carbon fiber composite material for heat shield application. J. Appl. Polym. Sci. 2020, 137, 49097. [Google Scholar] [CrossRef]
- Ji, Y.; Han, S.; Chen, Z.; Wu, H.; Guo, S.; Yan, N.; Li, H.; Luan, T. Understanding the role of carbon fiber skeletons in silicone rubber-based ablative composites. Polymers 2022, 14, 268. [Google Scholar] [CrossRef]
- Zhang, H.; Yan, L.; Zhou, S.; Zou, H.; Chen, Y.; Liang, M.; Ren, X. A comparison of ablative resistance properties of liquid silicone rubber composites filled with different fibers. Polym. Eng. Sci. 2021, 61, 442–452. [Google Scholar] [CrossRef]
- Huang, Y.; Kong, Y.; Yan, L.; Zou, H.; Chen, Y.; Liang, M. In situ construction of fiber-supported micro-porous char structure to enhance anti-ablative performance of silicone rubber composites. Polym. Adv. Technol. 2021, 32, 2899–2907. [Google Scholar] [CrossRef]
- Dugast, G.; Settar, A.; Chetehouna, K.; Gascoin, N.; Marceau, J.L.; Bouchez, M.; De Bats, M. Experimental and numerical analysis on the thermal degradation of reinforced silicone-based composites: Effect of carbon fibers and silicon carbide powder contents. Thermochim. Acta 2020, 686, 178563. [Google Scholar] [CrossRef]
- Lin, J.L.; Su, S.M.; He, Y.B.; Kang, F.Y. Improving thermal and mechanical properties of the alumina filled silicone rubber composite by incorporating carbon nanotubes. New Carbon Mater. 2020, 35, 66–72. [Google Scholar] [CrossRef]
- Jiang, C.; Jin, Y.; Gao, J. Ablation and thermal insulation properties of silicone rubber-polyarylacetylene-carbonwoven laminates for solid rocket motor. Plast. Rubber Compos. 2021, 50, 362–369. [Google Scholar] [CrossRef]
- Li, J.; Hu, B.; Hui, K.; Li, K.; Wang, L. Effects of inorganic nanofibers and high char yield fillers on char layer structure and ablation resistance of ethylene propylene diene monomer composites. Compos. Part A Appl. Sci. Manuf. 2021, 150, 106633. [Google Scholar] [CrossRef]
- Andrianov, A.; Lee, J.; Possa, G.; de Oliveira Silva, H. Experimental study of the insulating effectiveness of silicone rubber composites by oxyacetylene ablation testing. J. Aerosp. Technol. Manag. 2020, 12. [Google Scholar] [CrossRef]
- Azizi, S.; Momen, G.; Ouellet-Plamondon, C.; David, E. Performance improvement of EPDM and EPDM/Silicone rubber composites using modified fumed silica, titanium dioxide and graphene additives. Polym. Test. 2020, 84, 106281. [Google Scholar] [CrossRef]
- Guo, M.; Li, J.; Wang, Y. Effects of carbon nanotubes on char structure and heat transfer in ethylene propylene diene monomer composites at high temperature. Compos. Sci. Technol. 2021, 211, 108852. [Google Scholar] [CrossRef]
- Guo, M.; Li, J.; Li, K.; Zhu, G.; Hu, B.; Liu, Y.; Ji, J. Carbon nanotube reinforced ablative material for thermal protection system with superior resistance to high-temperature dense particle erosion. Aerosp. Sci. Technol. 2020, 106, 106234. [Google Scholar] [CrossRef]
- Arshad, N.; Qasim, G.; Beagan, A.M. Investigations on the Morphological, Mechanical, Ablative, Physical, Thermal, and Electrical Properties of EPDM-Based Composites for the Exploration of Enhanced Thermal Insulation Potential. Polymers 2022, 14, 863. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.S.; Inam, F.; Bahadar, A.; Bashir, M.A.; Hassan, F.; Khan, M.B.; Khan, Z.M.; Jamil, T. Ablation, thermal stability/transport/phase transition study of carbon nanofiber-reinforced elastomeric nanocomposites. J. Therm. Anal. Calorim. 2018, 131, 2637–2646. [Google Scholar] [CrossRef]
- Mokhireva, K.A.; Svistkov, A.L.; Solod’ko, V.N.; Komar, L.A.; Stöckelhuber, K.W. Experimental analysis of the effect of carbon nanoparticles with different geometry on the appearance of anisotropy of mechanical properties in elastomeric composites. Polym. Test. 2017, 59, 46–54. [Google Scholar] [CrossRef]
- Heidarian, J.; Hassan, A. Characterization and comparison of fluoroelastomer unfilled, filled with carbon nanotube (unmodified, acid or base surface modified) and carbon black using TGA-GCMS. J. Elastomers Plast. 2021, 53, 861–885. [Google Scholar] [CrossRef]
- Battig, A.; Fadul NA, R.; Frasca, D.; Schulze, D.; Schartel, B. Multifunctional graphene nanofiller in flame retarded polybutadiene/chloroprene/carbon black composites. e-Polymers 2021, 21, 244–262. [Google Scholar] [CrossRef]
- Abboud, A.S.; Hanoosh, W.S. Synthesis of composites based on waste natural Products and Polyurethane. Egypt. J. Chem. 2022, 65, 789–798. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, A.; Ranjan, C.; Kumar, K.; Reddy, M.H.; Babu, B.S.; Katiyar, J.K. State-of-the-Art on Advancements in Carbon–Phenolic and Carbon–Elastomeric Ablatives. Polymers 2024, 16, 1461. https://doi.org/10.3390/polym16111461
Kumar A, Ranjan C, Kumar K, Reddy MH, Babu BS, Katiyar JK. State-of-the-Art on Advancements in Carbon–Phenolic and Carbon–Elastomeric Ablatives. Polymers. 2024; 16(11):1461. https://doi.org/10.3390/polym16111461
Chicago/Turabian StyleKumar, Amit, Chikesh Ranjan, Kaushik Kumar, M. Harinatha Reddy, B. Sridhar Babu, and Jitendra Kumar Katiyar. 2024. "State-of-the-Art on Advancements in Carbon–Phenolic and Carbon–Elastomeric Ablatives" Polymers 16, no. 11: 1461. https://doi.org/10.3390/polym16111461
APA StyleKumar, A., Ranjan, C., Kumar, K., Reddy, M. H., Babu, B. S., & Katiyar, J. K. (2024). State-of-the-Art on Advancements in Carbon–Phenolic and Carbon–Elastomeric Ablatives. Polymers, 16(11), 1461. https://doi.org/10.3390/polym16111461