Rapid Evaporation of a Metal Electrode for a High-Efficiency Perovskite Solar Cell
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of PSCs
2.3. Device Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Pfeifer, L.; Zakeeruddin, S.M.; Chu, J.; Grätzel, M. Tailoring passivators for highly efficient and stable perovskite solar cells. Nat. Rev. Chem. 2023, 7, 632–652. [Google Scholar] [CrossRef]
- Li, H.; Zhang, C.; Gong, C.; Zhang, D.; Zhang, H.; Zhuang, Q.; Zang, Z. 2D/3D heterojunction engineering at the buried interface towards high-performance inverted methylammonium-free perovskite solar cells. Nat. Energy 2023, 8, 946–955. [Google Scholar] [CrossRef]
- Li, G.; Su, Z.; Canil, L.; Hughes, D.; Aldamasy, M.H.; Dagar, J.; Abate, A. Highly efficient pin perovskite solar cells that endure temperature variations. Science 2023, 379, 399–403. [Google Scholar] [CrossRef]
- Mali, S.S.; Patil, J.V.; Shao, J.Y.; Zhong, Y.W.; Rondiya, S.R.; Dzade, N.Y.; Hong, C.K. Phase-heterojunction all-inorganic perovskite solar cells surpassing 21.5% efficiency. Nat. Energy 2023, 8, 989–1001. [Google Scholar] [CrossRef]
- Wu, R.; Yang, J.; Xiong, J.; Liu, P. Efficient electron-blocking layer-free planar heterojunction perovskite solar cells with a high open-circuit voltage. Org. Electron. 2015, 26, 265–272. [Google Scholar] [CrossRef]
- Wang, C.; Yang, J. Interface modification for organic and perovskite solar cells. Sci. China Mater. 2016, 59, 743–756. [Google Scholar] [CrossRef]
- Wu, R.; Yang, B.; Zhang, C.; Huang, Y.; Cui, Y.; Liu, P.; Zhou, C.; Hao, Y.; Gao, Y.; Yang, J. Prominent efficiency enhancement in pero vskite solar cells smploying silica-coated gold nanorods. J. Phys. Chem. C 2016, 120, 6996–7004. [Google Scholar] [CrossRef]
- Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Electron-hole diffusion Lengths > 175 mm in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347, 967–970. [Google Scholar] [CrossRef]
- Kojim, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, F.; Qu, Z.; Yu, S.; Shen, T.; Deng, H.; Chu, X.; Peng, X.; Yuan, Y.; Zhang, X.; et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 2022, 377, 531–534. [Google Scholar] [CrossRef]
- Li, H.; Shi, J.; Deng, J.; Chen, Z.; Li, Y.; Zhao, W.; Wu, J.; Wu, H.; Luo, Y.; Li, D.; et al. Intermolecular p-p Conjugation Self-Assembly to Stabilize Surface Passivation of Highly Efficient Perovskite Solar Cells. Adv. Mater. 2020, 32, 1907396. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Liu, Y.F.; Eickemeyer, T.; Pan, L.; Ren, D.; RuizPreciado, M.; Carlsen, A.B.; Yang, B.; Dong, X.; Wang, Z.; et al. Tailored Amphiphilic Molecular Mitigators for Stable Perovskite Solar Cells with 23.5% Efficiency. Adv. Mater. 2020, 32, 1907757. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yuan, J.; Ling, X.; Zhang, Y.; Yang, Y.; Cheung, S.H.; Ho, C.H.Y.; Gao, X.; Ma, W. A Universal Strategy to Utilize Polymeric Semiconductors for Perovskite Solar Cells with Enhanced Efficiency and Longevity. Adv. Funct. Mater. 2018, 28, 1706377. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, C.; Wang, S.; Liu, G.; Xia, H.; Tong, S.; He, J.; Niu, D.; Zhou, C.; Ding, K.; et al. Low-Temperature Processed, Efficient, and Highly Reproducible Cesium-Doped Triple Cation Perovskite Planar Heterojunction Solar Cells. Sol. RRL 2018, 2, 1700209–1700216. [Google Scholar] [CrossRef]
- Burschka, J.; Pellet, N.; Moon, S.J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Gra¨tzel, M. Sequential deposition as a route to high- performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, C.; Tong, S.; Shen, J.; Wang, C.; Li, Y.; Xiao, S.; He, J.; Zhang, J.; Gao, Y.; et al. Air-Induced High-Quality CH3NH3PbI3 Thin Film for Efficient Planar Heterojunction Perovskite Solar Cells. J. Phys. Chem. C 2017, 121, 6575–6580. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Zhang, C.; Shi, L.; Tong, S.; Guo, B.; Zhang, J.; He, J.; Gao, Y.; Su, C.; et al. Enhancing the performance of planar heterojunction perovskite solar cells using stable semiquinone and amine radical modified hole transport layer. J. Power Sources 2018, 390, 134–141. [Google Scholar] [CrossRef]
- Vak, D.; Kim, S.S.; Jo, J.; Oh, S.H.; Na, S.I.; Kim, J.; Kim, D.Y. Fabrication of organic bulk heterojunction solar cells by a spray deposition method for low-cost power generation. Appl. Phys. Lett. 2007, 91, 081102. [Google Scholar] [CrossRef]
- Huang, H.; Shi, J.; Zhu, L.; Li, D.; Luo, Y.; Meng, Q. Two-step ultrasonic spray deposition of CH3NH3PbI3 for efficient and large-area perovskite solar cell. Nano Energy 2016, 27, 352–358. [Google Scholar] [CrossRef]
- Rocks, C.; Svrcek, V.; Maguire, P.; Mariotti, D. Understanding surface chemistry during MAPbI3 spray deposition and its effect on photovoltaic performance. J. Mater. Chem. C 2017, 5, 902–916. [Google Scholar] [CrossRef]
- Cotella, G.; Baker, J.; Worsley, D.; Rossi, F.D.; Pearce, C.P.; Carnie, M.; Watson, T. One-step deposition by slot-die coating of mixed lead halide perovskite for photovoltaic applications. Sol. Energy Mater. Sol. Cell 2017, 159, 362–369. [Google Scholar] [CrossRef]
- Bu, T.; Li, J.; Zheng, F.; Chen, W.; Wen, X.; Ku, Z.; Peng, Y.; Zhong, J.; Cheng, Y.B.; Huang, F. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat. Commun. 2018, 9, 4609–4618. [Google Scholar] [CrossRef] [PubMed]
- Era, M.; Hattori, T.; Taira, T.; Tsutsui, T. Self-organized growth of PbI-based layered perovskite quantum well by dual-source vapor deposition. Chem. Mater. 1997, 9, 8–10. [Google Scholar] [CrossRef]
- Momblona, C.; Gilescrig, L.; Bandiello, E.; Hutter, M.E.; Sessolo, M.; Lederer, K.; Blochwitznimoth, J.; Bolink, H.J. Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers. Energy Environ. Sci. 2016, 9, 3456–3463. [Google Scholar] [CrossRef]
- Deng, Y.; Zheng, X.; Bai, Y.; Wang, Q.; Zhao, J.; Huang, J. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat. Energy 2018, 3, 560–566. [Google Scholar] [CrossRef]
- Yin, J.; Lin, Y.; Zhang, C.; Li, J.; Zheng, N. Growth-Dynamic-Controllable Rapid Crystallization Boosts the Perovskite Photovoltaics’Robust Preparation: From Blade Coating to Painting. ACS Appl. Mater. Interfaces 2018, 10, 23103–23111. [Google Scholar] [CrossRef]
- Wei, Z.; Chen, H.; Yan, K.; Yang, S. Inkjet Printing and Instant Chemical Transformation of a CH3NH3PbI3/Nanocarbon Electrode and Interface for Planar Perovskite Solar Cells. Angew. Chem. Int. Ed. 2014, 53, 13239–13243. [Google Scholar] [CrossRef]
- Gasper, E.; Peng, Y.; Hou, Q.; Spicciac, L.; Bach, U.; Jasieniak, J.; Chen, Y. Ultra-thin high efficiency semitransparent perovskite solar cells. Nano Energy 2015, 13, 249–257. [Google Scholar] [CrossRef]
- Roldan-Carmona, C.; Malinkiewicz, O.; Betancur, R.; Longo, G.; Momblona, C.; Jaramillo, F.; Camacho, L.; Bolink, H.J. High efficiency single-junction semitransparent perovskite solar cells. Energy Environ. Sci. 2014, 7, 2968–2973. [Google Scholar] [CrossRef]
- Guo, F.; Azimi, H.; Hou, Y.; Przybill, T.; Hu, M.; Bronnbauer, C.; Langner, S.; Spiecker, E.; Forbericha, K.; Brabec, C. High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. Nanoscale 2015, 7, 1642–1649. [Google Scholar] [CrossRef]
- Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y.; et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zheng, X.; Deng, Y.; Li, T.; Shao, Y.; Gruverman, A.; Shield, J.; Huang, J. Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime? Energy Environ. Sci. 2016, 12, 3650–3656. [Google Scholar] [CrossRef]
- Wang, S.; Liu, H.; Bala, H.; Zong, B.; Huang, L.; Guo, Z.; Fu, W.; Zhang, B.; Sun, G.; Cao, J.; et al. A highly stable hole-conductor-free CsxMA1-xPbI3 perovskite solar cell based on carbon counter electrode. Electrochim. Acta 2020, 335, 135686. [Google Scholar] [CrossRef]
- Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X.; Kosco, J.; Islam, M.; Haque, S. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 2017, 8, 15218–15227. [Google Scholar] [CrossRef]
- Song, Z.; Abate, A.; Watthage, S.C.; Liyanage, G.K.; Phillips, A.B.; Steiner, U.; Graetzel, M.; Heben, M.J. Perovskite solar cell stability in humid air: Partially reversible phase transitions in the PbI2-CH3NH3I-H2O system. Adv. Energy Mater. 2016, 6, 1600846. [Google Scholar] [CrossRef]
- Glatthaar, M.; Riedea, M.; Keegan, N.; Sylvester-Hvid, K.; Zimmermanna, B.; Niggemann, M.; Hinsch, A.; Gombert, A. Efficiency limiting factors of organic bulk heterojunction solar cells identified by electrical impedance spectroscopy. Energy Mater. Sol. Cells 2007, 91, 390–393. [Google Scholar] [CrossRef]
- Choi, W.; Shin, H.; Kim, J.M.; Choi, J.; Yoon, W. Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries. J. Electrochem. Sci. Technol. 2020, 11, 1–13. [Google Scholar] [CrossRef]
- Westerhoff, U.; Kurbach, K.; Lienesch, D.F.; Kurrat, M. Analysis of Lithium-Ion Battery Models Based on Electrochemical Impedance Spectroscopy. Energy Technol. 2016, 4, 1620–1630. [Google Scholar] [CrossRef]
- Gonzalez-Pedro, V.; Juarez-Perez, E.; Arsyad, W.; Barea, E.; Fabregat-Santiago, F.; Mora-Sero, I.; Bisquert, J. General working principles of CH3NH3PbX3 perovskite solar cells. J. Nano Lett. 2014, 14, 888–893. [Google Scholar] [CrossRef]
- Kim, H.; Mora-Sero, I.; Gonzalez-Pedro, V.; Fabregat-Santiago, F.; Juarez-Perez, E.; Park, N.; Bisquert, J. Mechanism of carrier accumulation in perovskite thin- absorber solar cells. Nat. Commun. 2013, 4, 2242–2248. [Google Scholar] [CrossRef]
- Carr, J.A.; Chaudhary, S. The identification, characterization and mitigation of defect states in organic photovoltaic devices: A review and outlook. Energy Environ. Sci. 2013, 6, 3414–3438. [Google Scholar] [CrossRef]
- Shao, Y.; Xiao, Z.; Bi, C.; Yuan, Y.; Huang, J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 2014, 5, 5784–5790. [Google Scholar] [CrossRef] [PubMed]
Condition | PCE (%) | Jsc (mA/cm2) | Voc (V) | FF (%) |
---|---|---|---|---|
Conventional evaporation | 3.4 ± 1.2 (4.6) | 7.4 ± 1.1 (8.45) | 0.89 ± 0.10 (0.99) | 50.0 ± 4.4 (55.0) |
High-speed evaporation | 11.6 ± 0.8 (12.6) | 19.7 ± 1.8 (21.9) | 0.98 ± 0.07 (1.0) | 60.3 ± 4.1 (56.0) |
Ultra-high-speed evaporation | 16.9 ± 1.4 (19.2) | 23.1 ± 0.8 (23.2) | 1.1 ± 0.04 (1.1) | 67.7 ± 3.7 (73.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, R.; Sun, S.; Liu, D.; Lai, J.; Yu, Y.; Hu, S.; Liu, J.; Li, S.; Li, Y.; Li, L.; et al. Rapid Evaporation of a Metal Electrode for a High-Efficiency Perovskite Solar Cell. Polymers 2024, 16, 94. https://doi.org/10.3390/polym16010094
Wu R, Sun S, Liu D, Lai J, Yu Y, Hu S, Liu J, Li S, Li Y, Li L, et al. Rapid Evaporation of a Metal Electrode for a High-Efficiency Perovskite Solar Cell. Polymers. 2024; 16(1):94. https://doi.org/10.3390/polym16010094
Chicago/Turabian StyleWu, Runsheng, Shigen Sun, Dongyang Liu, Junjie Lai, Yingjie Yu, Shijie Hu, Jun Liu, Shuigen Li, Yunming Li, Ling Li, and et al. 2024. "Rapid Evaporation of a Metal Electrode for a High-Efficiency Perovskite Solar Cell" Polymers 16, no. 1: 94. https://doi.org/10.3390/polym16010094
APA StyleWu, R., Sun, S., Liu, D., Lai, J., Yu, Y., Hu, S., Liu, J., Li, S., Li, Y., Li, L., Jiang, M., Liu, C., Deng, J., & Wang, C. (2024). Rapid Evaporation of a Metal Electrode for a High-Efficiency Perovskite Solar Cell. Polymers, 16(1), 94. https://doi.org/10.3390/polym16010094